Search results for: complexity measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4138

Search results for: complexity measurement

3928 Progress in Accuracy, Reliability and Safety in Firedamp Detection

Authors: José Luis Lorenzo Bayona, Ljiljana Medic-Pejic, Isabel Amez Arenillas, Blanca Castells Somoza

Abstract:

The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption.

Keywords: ATEX standards, gas detector, methane meter, mining safety

Procedia PDF Downloads 109
3927 Vibration Measurements of Single-Lap Cantilevered SPR Beams

Authors: Xiaocong He

Abstract:

Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.

Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions

Procedia PDF Downloads 402
3926 Feasibility Study of Measurement of Turning Based-Surfaces Using Perthometer, Optical Profiler and Confocal Sensor

Authors: Khavieya Anandhan, Soundarapandian Santhanakrishnan, Vijayaraghavan Laxmanan

Abstract:

In general, measurement of surfaces is carried out by using traditional methods such as contact type stylus instruments. This prevalent approach is challenged by using non-contact instruments such as optical profiler, co-ordinate measuring machine, laser triangulation sensors, machine vision system, etc. Recently, confocal sensor is trying to be used in the surface metrology field. This sensor, such as a confocal sensor, is explored in this study to determine the surface roughness value for various turned surfaces. Turning is a crucial machining process to manufacture products such as grooves, tapered domes, threads, tapers, etc. The roughness value of turned surfaces are in the range of range 0.4-12.5 µm, were taken for analysis. Three instruments were used, namely, perthometer, optical profiler, and confocal sensor. Among these, in fact, a confocal sensor is least explored, despite its good resolution about 5 nm. Thus, such a high-precision sensor was used in this study to explore the possibility of measuring turned surfaces. Further, using this data, measurement uncertainty was also studied.

Keywords: confocal sensor, optical profiler, surface roughness, turned surfaces

Procedia PDF Downloads 111
3925 Explaining Irregularity in Music by Entropy and Information Content

Authors: Lorena Mihelac, Janez Povh

Abstract:

In 2017, we conducted a research study using data consisting of 160 musical excerpts from different musical styles, to analyze the impact of entropy of the harmony on the acceptability of music. In measuring the entropy of harmony, we were interested in unigrams (individual chords in the harmonic progression) and bigrams (the connection of two adjacent chords). In this study, it has been found that 53 musical excerpts out from 160 were evaluated by participants as very complex, although the entropy of the harmonic progression (unigrams and bigrams) was calculated as low. We have explained this by particularities of chord progression, which impact the listener's feeling of complexity and acceptability. We have evaluated the same data twice with new participants in 2018 and with the same participants for the third time in 2019. These three evaluations have shown that the same 53 musical excerpts, found to be difficult and complex in the study conducted in 2017, are exhibiting a high feeling of complexity again. It was proposed that the content of these musical excerpts, defined as “irregular,” is not meeting the listener's expectancy and the basic perceptual principles, creating a higher feeling of difficulty and complexity. As the “irregularities” in these 53 musical excerpts seem to be perceived by the participants without being aware of it, affecting the pleasantness and the feeling of complexity, they have been defined as “subliminal irregularities” and the 53 musical excerpts as “irregular.” In our recent study (2019) of the same data (used in previous research works), we have proposed a new measure of the complexity of harmony, “regularity,” based on the irregularities in the harmonic progression and other plausible particularities in the musical structure found in previous studies. We have in this study also proposed a list of 10 different particularities for which we were assuming that they are impacting the participant’s perception of complexity in harmony. These ten particularities have been tested in this paper, by extending the analysis in our 53 irregular musical excerpts from harmony to melody. In the examining of melody, we have used the computational model “Information Dynamics of Music” (IDyOM) and two information-theoretic measures: entropy - the uncertainty of the prediction before the next event is heard, and information content - the unexpectedness of an event in a sequence. In order to describe the features of melody in these musical examples, we have used four different viewpoints: pitch, interval, duration, scale degree. The results have shown that the texture of melody (e.g., multiple voices, homorhythmic structure) and structure of melody (e.g., huge interval leaps, syncopated rhythm, implied harmony in compound melodies) in these musical excerpts are impacting the participant’s perception of complexity. High information content values were found in compound melodies in which implied harmonies seem to have suggested additional harmonies, affecting the participant’s perception of the chord progression in harmony by creating a sense of an ambiguous musical structure.

Keywords: entropy and information content, harmony, subliminal (ir)regularity, IDyOM

Procedia PDF Downloads 106
3924 The Perceived Impact of Consultancy Organisations and Social Enterprises: Converging and Diverging Discourses

Authors: Seda Muftugil-Yalcin

Abstract:

With the proliferation of the number of social enterprises worldwide, there is now a whole ecosystem full of different organisational actors revolving around social enterprises. Impact hubs, incubation centers, and organisations (profit or non-profit) that offer consultancy services to social enterprises can be said to constitute one such cluster in the eco-system. These organisations offer a variety of services to social enterprises which desire to maximize their positive social impact. Especially with regards to impact measurement, there are numerous systems/guides/approaches/tools developed that claim to benefit social enterprises. Many organisations choose one of the existing tools and craft programs that help social enterprises to measure and to manage their social impacts. However, empirical evidence with regards to how the services of these consultancy organisations are precisely utilized on the field is scarce. This inevitably casts doubt on the impact of these organisations themselves. This research dwells on four case studies from the Netherlands and Turkey. In each country, two university-affiliated impact centers and two independent consultancy agencies that work with social entrepreneurs in the area of social impact measurement are closely examined. The overarching research question has been 'With regards to impact measurement, how do the founders/managers of these organisations perceive and make sense of their contribution to social enterprises and to the social entrepreneurship eco-system at large?' As for methodology, in-depth interviews were carried out with the managers/founders of these organisations and discourse analysis method has been used for data analysis together with grounded theory. The comparison between Turkey and Netherlands elucidate common denominators of impact measurement hype and discourses that are currently existing worldwide. In addition, it also reveals differing priorities of social enterprises in these different settings, which shape the expectations of social enterprises of consultancy organisations. Comparison between university affiliated impact hubs and independent consultancy organisations also give away important data about how different forms of consultancy organisations (in this case university based and independent) position themselves in relation to alike organisations with similar aims. The overall aim of the research is to reveal the contribution of the consultancy organisations that work with social enterprises to the social entrepreneurship field as perceived by them through a cross cultural study. The findings indicate that in both settings, the organisations that were claiming to bring positive social impact on the social entrepreneurship eco-system through their impact measurement trainings were themselves having a hard time in concretizing their own contributions; which indicated that these organisations were in need of a different impact measurement discourse than the ones they were championing.

Keywords: consultancy organisations, social entrepreneurship, social impact measurement, social impact discourse

Procedia PDF Downloads 97
3923 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network

Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S

Abstract:

Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.

Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)

Procedia PDF Downloads 140
3922 Lateral Cephalometric Radiograph to Determine Sex in Forensic Investigations

Authors: Paulus Maulana

Abstract:

Forensic identification is to help investigators determine a person's identity. Personal identification is often a problem in civil and criminal cases. Orthodontists like all other dental professionals can play a major role by maintaining lateral cephalogram and thus providing important or vital information or can clues to the legal authorities in order to help them in their search. Radiographic lateral cephalometry is a measurement method which focused on the anatomical points of human lateral skull. Sex determination is one of the most important aspects of the personal identification in forensic. Lateral cephalogram is a valuable tool in identification of sex as reveal morphological details of the skull on single radiograph. This present study evaluates the role of lateral cephalogram in identification of sex that parameters of lateral cephalogram are linear measurement and angle measurement. The linear measurements are N-S ( Anterior cranial length), Sna-Snp (Palatal plane length), Me-Go (menton-gonion), N-Sna ( Midfacial anterior height ), Sna-Me (Lower anterior face height), Co-Gn (total mandibular length). The angle measurements are SNA, SNB, ANB, Gonial, Interincical, and facial.

Keywords: lateral cephalometry, cephalogram, sex, forensic, parameter

Procedia PDF Downloads 170
3921 Trade-Offs between Verb Frequency and Syntactic Complexity in Children with Developmental Language Disorder

Authors: Pui I. Chao, Shanju Lin

Abstract:

Purpose: Children with developmental language disorder (DLD) have persistent language difficulties and often face great challenges when demands are high. The aim of this study was to investigate whether verb frequency would trade-off with syntactic complexity when they talk. Method: Forty-five children with DLD, 45 chronological age matches with TD (AGE), and 45 MLU-matches with TD (MLU) who were Mandarin speakers were selected from the previous study. Language samples were collected under three contexts: conversation about children’s family and school, story retelling, and free play. MLU, verb density, utterance length difference, verb density difference, and average verb frequency were calculated and further analyzed by ANOVAs. Results: Children with DLD and their MLU matches produced shorter utterances and used fewer verbs in expressions than the AGE matches. Compared to their AGE matches, the DLD group used more verbs and verbs with lower frequency in shorter utterances but used fewer verbs and verbs with higher frequency in longer utterances. Conclusion: Mandarin-speaking children with DLD showed difficulties in verb usage and were more vulnerable to trade-offs than their age-matched peers in utterances with high demand. As a result, task demand should be taken into account as speech-language pathologists assess whether children with DLD have adequate abilities in verb usage.

Keywords: developmental language disorder, syntactic complexity, trade-offs, verb frequency

Procedia PDF Downloads 124
3920 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm

Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra

Abstract:

With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.

Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction

Procedia PDF Downloads 92
3919 Governance Networks of China’s Neighborhood Micro-Redevelopment: The Case of Haikou

Authors: Lin Zhang

Abstract:

Neighborhood redevelopment is vital to improve residents’ living environment, and there has been a national neighborhood micro-redevelopment initiative in China since 2020, which is largely different from the previous large-scale demolition and reconstruction projects. Yet, few studies systematically examine the new interactions of multiple actors in this initiative. China’s neighborhood (micro-) redevelopment is a kind of governance network, and the complexity perspective could reflect the dynamic nature of multiple actors and their relationships in governance networks. In order to better understand the fundamental shifts of governance networks in China’s neighborhood micro-redevelopment, this paper adopted a theoretical framework of complexity in governance networks and analyzed the new governance networks of neighborhood micro-redevelopment projects in Haikou accordingly.

Keywords: neighborhood redevelopment, governance, networks, Haikou

Procedia PDF Downloads 48
3918 11-Round Impossible Differential Attack on Midori64

Authors: Zhan Chen, Wenquan Bi

Abstract:

This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.

Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori

Procedia PDF Downloads 251
3917 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.

Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity

Procedia PDF Downloads 401
3916 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 187
3915 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 57
3914 Building Information Modeling Applied for the Measurement of Water Footprint of Construction Supplies

Authors: Julio Franco

Abstract:

Water is used, directly and indirectly, in all activities of the construction productive chain, making it a subject of worldwide relevance for sustainable development. The ongoing expansion of urban areas leads to a high demand for natural resources, which in turn cause significant environmental impacts. The present work proposes the application of BIM tools to assist the measurement of the water footprint (WF) of civil construction supplies. Data was inserted into the model as element properties, allowing them to be analyzed by element or in the whole model. The WF calculation was automated using parameterization in Autodesk Revit software. Parameterization was associated to the materials of each element in the model so that any changes in these elements directly alter the results of WF calculations. As a case study, we applied into a building project model to test the parameterized calculus of WF. Results show that the proposed parameterization successfully automated WF calculations according to design changes. We envision this tool to assist the measurement and rationalization of the environmental impact in terms of WF of construction projects.

Keywords: building information modeling, BIM, sustainable development, water footprint

Procedia PDF Downloads 121
3913 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens

Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu

Abstract:

A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.

Keywords: ball lens, quadrant detector, axial error, radial error

Procedia PDF Downloads 430
3912 Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit

Authors: M. Tsebia, H. Bentarzi

Abstract:

In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink.

Keywords: PMU, inter-area oscillation, Maghrebian power system, Simulink

Procedia PDF Downloads 323
3911 Wave Pressure Metering with the Specific Instrument and Measure Description Determined by the Shape and Surface of the Instrument including the Number of Sensors and Angle between Them

Authors: Branimir Jurun, Elza Jurun

Abstract:

Focus of this paper is description and functioning manner of the instrument for wave pressure metering. Moreover, an essential component of this paper is the proposal of a metering unit for the direct wave pressure measurement determined by the shape and surface of the instrument including the number of sensors and angle between them. Namely, far applied instruments by means of height, length, direction, wave time period and other components determine wave pressure on a particular area. This instrument, allows the direct measurement i.e. measurement without additional calculation, of the wave pressure expressed in a standardized unit of measure. That way the instrument has a standardized form, surface, number of sensors and the angle between them. In addition, it is made with the status that follows the wave and always is on the water surface. Database quality which is listed by the instrument is made possible by using the Arduino chip. This chip is programmed for receiving by two data from each of the sensors each second. From these data by a pre-defined manner a unique representative value is estimated. By this procedure all relevant wave pressure measurement results are directly and immediately registered. Final goal of establishing such a rich database is a comprehensive statistical analysis that ranges from multi-criteria analysis across different modeling and parameters testing to hypothesis accepting relating to the widest variety of man-made activities such as filling of beaches, security cages for aquaculture, bridges construction.

Keywords: instrument, metering, water, waves

Procedia PDF Downloads 233
3910 Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications

Authors: Svilen Dimitrov, Manthan Pancholi, Norbert Schmitz, Didier Stricker

Abstract:

This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space.

Keywords: wearable harness, inertial measurement units, smartphone therapeutic games, motion tracking, lower-body activity monitoring

Procedia PDF Downloads 368
3909 Test-Retest Agreement, Random Measurement Error and Practice Effect of the Continuous Performance Test-Identical Pairs for Patients with Schizophrenia

Authors: Kuan-Wei Chen, Chien-Wei Chen, Tai-Ling Chang, Nan-Cheng Chen, Ching-Lin Hsieh, Gong-Hong Lin

Abstract:

Background and Purposes: Deficits in sustained attention are common in patients with schizophrenia. Such impairment can limit patients to effectively execute daily activities and affect the efficacy of rehabilitation. The aims of this study were to examine the test-retest agreement, random measurement error, and practice effect of the Continuous Performance Test-Identical Pairs (CPT-IP) (a commonly used sustained attention test) in patients with schizophrenia. The results can provide empirical evidence for clinicians and researchers to apply a sustained attention test with sound psychometric properties in schizophrenia patients. Methods: We recruited patients with chronic schizophrenia to be assessed twice with 1 week interval using CPT-IP. The intra-class correlation coefficient (ICC) was used to examine the test-retest agreement. The percentage of minimal detectable change (MDC%) was used to examine the random measurement error. Moreover, the standardized response mean (SRM) was used to examine the practice effect. Results: A total of 56 patients participated in this study. Our results showed that the ICC was 0.82, MDC% was 47.4%, and SRMs were 0.36 for the CPT-IP. Conclusion: Our results indicate that CPT-IP has acceptable test-retests agreement, substantial random measurement error, and small practice effect in patients with schizophrenia. Therefore, to avoid overestimating patients’ changes in sustained attention, we suggest that clinicians interpret the change scores of CPT-IP conservatively in their routine repeated assessments.

Keywords: schizophrenia, sustained attention, CPT-IP, reliability

Procedia PDF Downloads 270
3908 From Linear to Nonlinear Deterrence: Deterrence for Rising Power

Authors: Farhad Ghasemi

Abstract:

Along with transforming the international system into a complex and chaotic system, the fundamental question arises: how can deterrence be reconstructed conceptually and theoretically in this system model? The deterrence system is much more complex today than it was seven decades ago. This article suggests that the perception of deterrence as a linear system is a fundamental mistake because it does not consider the new dynamics of the international system, including network power dynamics. The author aims to improve this point by focusing on complexity and chaos theories, especially their nonlinearity and cascading failure principles. This article proposes that the perception of deterrence as a linear system is a fundamental mistake, as the new dynamics of the surrounding international system do not take into account. The author recognizes deterrence as a nonlinear system and introduces it as a concept in strategic studies.

Keywords: complexity, international system, deterrence, linear deterrence, nonlinear deterrence

Procedia PDF Downloads 115
3907 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data

Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin

Abstract:

The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.

Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline

Procedia PDF Downloads 283
3906 Numerical response of Coaxial HPGe Detector for Skull and Knee measurement

Authors: Pabitra Sahu, M. Manohari, S. Priyadharshini, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

Radiation workers of reprocessing plants have a potential for internal exposure due to actinides and fission products. Radionuclides like Americium, lead, Polonium and Europium are bone seekers and get accumulated in the skeletal part. As the major skeletal content is in the skull (13%) and knee (22%), measurements of old intake have to be carried out in the skull and knee. At the Indira Gandhi Centre for Atomic Research, a twin HPGe-based actinide monitor is used for the measurement of actinides present in bone. Efficiency estimation, which is one of the prerequisites for the quantification of radionuclides, requires anthropomorphic phantoms. Such phantoms are very limited. Hence, in this study, efficiency curves for a Twin HPGe-based actinide monitoring system are established theoretically using the FLUKA Monte Carlo method and ICRP adult male voxel phantom. In the case of skull measurement, the detector is placed over the forehead, and for knee measurement, one detector is placed over each knee. The efficiency values of radionuclides present in the knee and skull vary from 3.72E-04 to 4.19E-04 CPS/photon and 5.22E-04 to 7.07E-04 CPS/photon, respectively, for the energy range 17 to 3000keV. The efficiency curves for the measurement are established, and it is found that initially, the efficiency value increases up to 100 keV and then starts decreasing. It is found that the skull efficiency values are 4% to 63% higher than that of the knee, depending on the energy for all the energies except 17.74 keV. The reason is the closeness of the detector to the skull compared to the knee. But for 17.74 keV the efficiency of the knee is more than the skull due to the higher attenuation caused in the skull bones because of its greater thickness. The Minimum Detectable Activity (MDA) for 241Am present in the skull and knee is 9 Bq. 239Pu has a MDA of 950 Bq and 1270 Bq for knee and skull, respectively, for a counting time of 1800 sec. This paper discusses the simulation method and the results obtained in the study.

Keywords: FLUKA Monte Carlo Method, ICRP adult male voxel phantom, knee, Skull.

Procedia PDF Downloads 9
3905 The Role Played by Awareness and Complexity through the Use of a Logistic Regression Analysis

Authors: Yari Vecchio, Margherita Masi, Jorgelina Di Pasquale

Abstract:

Adoption of Precision Agriculture (PA) is involved in a multidimensional and complex scenario. The process of adopting innovations is complex and social inherently, influenced by other producers, change agents, social norms and organizational pressure. Complexity depends on factors that interact and influence the decision to adopt. Farm and operator characteristics, as well as organizational, informational and agro-ecological context directly affect adoption. This influence has been studied to measure drivers and to clarify 'bottlenecks' of the adoption of agricultural innovation. Making decision process involves a multistage procedure, in which individual passes from first hearing about the technology to final adoption. Awareness is the initial stage and represents the moment in which an individual learns about the existence of the technology. 'Static' concept of adoption has been overcome. Awareness is a precondition to adoption. This condition leads to not encountering some erroneous evaluations, arose from having carried out analysis on a population that is only in part aware of technologies. In support of this, the present study puts forward an empirical analysis among Italian farmers, considering awareness as a prerequisite for adoption. The purpose of the present work is to analyze both factors that affect the probability to adopt and determinants that drive an aware individual to not adopt. Data were collected through a questionnaire submitted in November 2017. A preliminary descriptive analysis has shown that high levels of adoption have been found among younger farmers, better educated, with high intensity of information, with large farm size and high labor-intensive, and whose perception of the complexity of adoption process is lower. The use of a logit model permits to appreciate the weight played by the intensity of labor and complexity perceived by the potential adopter in PA adoption process. All these findings suggest important policy implications: measures dedicated to promoting innovation will need to be more specific for each phase of this adoption process. Specifically, they should increase awareness of PA tools and foster dissemination of information to reduce the degree of perceived complexity of the adoption process. These implications are particularly important in Europe where is pre-announced the reform of Common Agricultural Policy, oriented to innovation. In this context, these implications suggest to the measures supporting innovation to consider the relationship between various organizational and structural dimensions of European agriculture and innovation approaches.

Keywords: adoption, awareness, complexity, precision agriculture

Procedia PDF Downloads 109
3904 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe

Authors: J. Kloypayan, W. Pimpakan

Abstract:

The pipe taper thread measurement and uncertainty normally used the four-wire probe according to the JIS B 0262. Besides, according to the EA-10/10 standard, the pipe thread could be measured using the three-wire probe. This research proposed to use the three-wire probe measuring the pitch diameter of the pipe taper thread. The measuring accessory component was designed and made, then, assembled to one side of the ULM 828 CiM machine. Therefore, this machine could be used to measure and calibrate both the pipe thread and the pipe taper thread. The equations and the expanded uncertainty for pitch diameter measurement were formulated. After the experiment, the results showed that the pipe taper thread had the pitch diameter equal to 19.165 mm and the expanded uncertainty equal to 1.88µm. Then, the experiment results were compared to the results from the National Institute of Metrology Thailand. The equivalence ratio from the comparison showed that both results were related. Thus, the proposed method of using the three-wire probe measured the pitch diameter of the pipe taper thread was acceptable.

Keywords: pipe taper thread, three-wire probe, measure and calibration, the universal length measuring machine

Procedia PDF Downloads 378
3903 A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation

Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping

Abstract:

In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation. The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported.

Keywords: explicit group method, finite difference, helmholtz equation, rotated grid, standard grid

Procedia PDF Downloads 425
3902 Measurement and Analysis of Human Hand Kinematics

Authors: Tamara Grujic, Mirjana Bonkovic

Abstract:

Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reach-to-grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.

Keywords: human hand, kinematics, measurement and analysis, reach-to-grasp movement

Procedia PDF Downloads 439
3901 The Effects of Sous Vide Technology Combined with Different Herbals on Sensorial and Physical Quality of Fish Species Caught in the Northern Aegean Sea and Marmara Sea

Authors: Zafer Ceylan, Gülgün F.Unal Şengör, Onur Gönülal

Abstract:

In this study, sous vide technology were treated with different herbs into different fish species which were caught from northern Aegean and Marmara Sea. Before samples were packaged under vacuum, herbs had been cut and added at the same ratio into the package. Samples were sliced, the weight of each sample was about 150 g, and packaged under vacuum. During the storage period at 4ºC, taste, odor, texture properties of fish samples treated with sous vide were evaluated by trained panelists. Meanwhile, the effect of different herbs on pH values of the samples was investigated. These results were correlated with sensorial results. Furthermore, the effects of different herbs on L, a, b values of fish samples treated with sous vide were evaluated by color measurement. All sensorial results indicated that the values of samples treated with herbs were higher than that of the control group. Color measurement results and pH values were found parallel with sensorial results.

Keywords: Sous vide, fish, herbs, consumer preferences, pH, color measurement

Procedia PDF Downloads 465
3900 Structuring Paraphrases: The Impact Sentence Complexity Has on Key Leader Engagements

Authors: Meaghan Bowman

Abstract:

Soldiers are taught about the importance of effective communication with repetition of the phrase, “Communication is key.” They receive training in preparing for, and carrying out, interactions between foreign and domestic leaders to gain crucial information about a mission. These interactions are known as Key Leader Engagements (KLEs). For the training of KLEs, doctrine mandates the skills needed to conduct these “engagements” such as how to: behave appropriately, identify key leaders, and employ effective strategies. Army officers in training learn how to confront leaders, what information to gain, and how to ask questions respectfully. Unfortunately, soldiers rarely learn how to formulate questions optimally. Since less complex questions are easier to understand, we hypothesize that semantic complexity affects content understanding, and that age and education levels may have an effect on one’s ability to form paraphrases and judge their quality. In this study, we looked at paraphrases of queries as well as judgments of both the paraphrases’ naturalness and their semantic similarity to the query. Queries were divided into three complexity categories based on the number of relations (the first number) and the number of knowledge graph edges (the second number). Two crowd-sourced tasks were completed by Amazon volunteer participants, also known as turkers, to answer the research questions: (i) Are more complex queries harder to paraphrase and judge and (ii) Do age and education level affect the ability to understand complex queries. We ran statistical tests as follows: MANOVA for query understanding and two-way ANOVA to understand the relationship between query complexity and education and age. A probe of the number of given-level queries selected for paraphrasing by crowd-sourced workers in seven age ranges yielded promising results. We found significant evidence that age plays a role and marginally significant evidence that education level plays a role. These preliminary tests, with output p-values of 0.0002 and 0.068, respectively, suggest the importance of content understanding in a communication skill set. This basic ability to communicate, which may differ by age and education, permits reproduction and quality assessment and is crucial in training soldiers for effective participation in KLEs.

Keywords: engagement, key leader, paraphrasing, query complexity, understanding

Procedia PDF Downloads 131
3899 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region

Authors: Musab Isah

Abstract:

This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.

Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool

Procedia PDF Downloads 16