Search results for: clayey sand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 815

Search results for: clayey sand

185 Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column

Authors: Mohamed Eltarabily, Abdelazim Negm, Chihiro Yoshimura

Abstract:

Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile.

Keywords: groundwater, nitrate leaching, HYDRUS-2D, soil column

Procedia PDF Downloads 206
184 A Study on the Reinforced Earth Walls Using Sandwich Backfills under Seismic Loads

Authors: Kavitha A.S., L.Govindaraju

Abstract:

Reinforced earth walls offer excellent solution to many problems associated with earth retaining structures especially under seismic conditions. Use of cohesive soils as backfill material reduces the cost of reinforced soil walls if proper drainage measures are taken. This paper presents a numerical study on the application of a new technique called sandwich technique in reinforced earth walls. In this technique, a thin layer of granular soil is placed above and below the reinforcement layer to initiate interface friction and the remaining portion of the backfill is filled up using the existing insitu cohesive soil. A 6 m high reinforced earth wall has been analysed as a two-dimensional plane strain finite element model. Three types of reinforcing elements such as geotextile, geogrid and metallic strips were used. The horizontal wall displacements and the tensile loads in the reinforcement were used as the criteria to evaluate the results at the end of construction and dynamic excitation phases. Also to verify the effectiveness of sandwich layer on the performance of the wall, the thickness of sand fill surrounding the reinforcement was varied. At the end of construction stage it is found that the wall with sandwich type backfill yielded lower displacements when compared to the wall with cohesive soil as backfill. Also with sandwich backfill, the reinforcement loads reduced substantially when compared to the wall with cohesive soil as backfill. Further, it is found that sandwich technique as backfill and geogrid as reinforcement is a good combination to reduce the deformations of geosynthetic reinforced walls during seismic loading.

Keywords: geogrid, geotextile, reinforced earth, sandwich technique

Procedia PDF Downloads 257
183 Amelioration of Salinity Stress in Spinach (Spinace oleracae) by Exogenous Application of Triacontanol

Authors: Ameer Khan, Iffat Jamal, Ambreen Azam

Abstract:

An experiment was conducted in the Department of Botany, University of Sargodha to observe the amelioration of salinity stress in spinach (Spinacia oleracea) by exogenous application of Triacontanol. Two spinach cultivars (Spinacea oleracea and Rumax dentatus) were obtained from the Agriculture Research institute, Faisalabad. This experiment was conducted in pots. Each pot was filled with 9kg mixture of (sand + soil). Different salinity levels (0mM, 60mM, and 120mM) were created with NaCl according to the saturation percentage of soil after two weeks of seed germination. After the two weeks of salinity treatment, different levels of Triacontanol (0µM, 10µM, 20µM) were applied as foliar spray. Triacontanol was applied along with Tween 80 as surfactant. After the two weeks of Triacontanol application different growth, physiological and biochemical parameters were collected from the experimental study. Both treatments of Triacontanol (10µM, 20µM) were effective to ameliorate the effect of salinity, but 20µM Triacontanol was more effective to increase the shoot length, shoot, root fresh and dry weight. Chlorophyll contents were (chl a, chl b, total chl). Different biochemical parameters were also collected from experimental study. Saline growth medium increased the accumulation of protein and decreased the total free amino acids, and total soluble sugar under salt stress. Application of Triacontanol increased the protein contents. Overall, Application of triacontanol mitigated the effect of salinity.

Keywords: salinity, triacontanol, spinach, biochemical, physiological

Procedia PDF Downloads 256
182 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete

Authors: Erjola Reufi, Thomas Beer

Abstract:

Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.

Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber

Procedia PDF Downloads 273
181 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: cyclic loading, DEM, numerical modelling, sands

Procedia PDF Downloads 295
180 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting

Authors: Nader Khalafian, Mohsen Ghaderi

Abstract:

Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.

Keywords: reverse faulting, surface deformation, numerical, neural network

Procedia PDF Downloads 400
179 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions

Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres

Abstract:

Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.

Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature

Procedia PDF Downloads 46
178 Variation with Depth of Physico-Chemical, Mineralogical and Physical Properties of Overburden over Gneiss Basement Complex in Minna Metropolis, North Central Nigeria

Authors: M. M. Alhaji, M. Alhassan, A. M. Yahaya

Abstract:

Soil engineers pay very little or no attention to variation in the mineralogical and consequently, the geotechnical properties of overburden with depth on basement complexes, a situation which can lead to sudden failure of civil engineering structures. Soil samples collected at depths ranging from 0.5m to 4.0m at 0.5m intervals, from a trial pit dogged manually to depth of 4.0m on an overburden over gneiss basement complex, was evaluated for physico-chemical, mineralogical and physical properties. This is to determine the variation of these properties with depth within the profile of the strata. Results showed that sodium amphibolite and feldspar, which are both primary minerals dominate the overall profile of the overburden. Carbon which dominates the lower profile of the strata was observed to alter to gregorite at upper section of the profile. Organic matter contents and cation exchange capacity reduces with increase in depth while lost on ignition and pH were relatively constant with depth. The index properties, as well as natural moisture contents, increases from 0.5m to between 1.0m to 1.5m depth after which the values reduced to constant values at 3.0m depth. The grain size analysis shows high composition of sand sized particles with silts of low to non-plasticity. The maximum dry density (MDD) values are generally relatively high and increases from 2.262g/cm³ at 0.5m depth to 2.410g/cm³ at 4.0m depth while the optimum moisture content (OMC) reduced from 9.8% at 0.5m depth to 6.7% at 4.0m depth.

Keywords: Gneiss basement complex, mineralogical properties, North Central Nigeria, physico-chemical properties, physical properties, overburden soil

Procedia PDF Downloads 112
177 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley

Authors: Bal Deep Sharma, Suresh Ray Yadav

Abstract:

Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.

Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength

Procedia PDF Downloads 34
176 Study of the Hydraulic Concrete Physical-Mechanical Properties by Using Admixtures

Authors: Natia Tabatadze

Abstract:

The research aim is to study the physical - mechanical characteristics of structural materials, in particular, hydraulic concrete in the surface active environment and receiving of high strength concrete, low-deformable, resistant to aggressive environment concrete due application of nano technologies. The obtained concrete with additives will by possible to apply in hydraulic structures. We used cement (compressive strength R28=39,42 mPa), sand (0- 5 mm), gravel (5-10 mm, 10-20 mm), admixture CHRYSO® Fuge B 1,5% dosage of cement. CHRYSO® Fuge B renders mortar and concrete highly resistant to capillary action and reduces, or even eliminates infiltration of water under pressure. The fine particles that CHRYSO® Fuge B contains combine with the lime in the cement to form water repellent particles. These obstruct the capillary action within concrete. CHRYSO® Fuge B does not significantly modify the characteristics of the fresh concrete and mortar, nor the compressive strength. As result of research, the alkali-silica reaction was improved (relative elongation 0,122 % of admixture instead of 0,126 % of basic concrete after 14 days). The aggressive environment impact on the strength of heavy concrete, fabricated on the basis of the hydraulic admixture with the penetrating waterproof additives also was improved (strength on compression R28=47,5 mPa of admixture instead of R28=35,8 mPa), as well as the mass water absorption (W=3,37 % of admixture instead of W=1,41 %), volume water absorption (W=1,41 % of admixture instead of W=0,59 %), water tightness (R14=37,9 mPa instead R14=28,7 mPa) and water-resistance (B=18 instead B=12). The basic parameters of concrete with admixture was improved in comparison with basic concrete.

Keywords: structural materials, hydraulic concrete, low-deformable, water absorption for mass, water absorption for volume

Procedia PDF Downloads 291
175 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India

Authors: Priyanka Mondal, Santosh K. Sarkar

Abstract:

The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.

Keywords: pollution assessment, sediment contamination, sediment quality, trace elements

Procedia PDF Downloads 237
174 Modification Of Rubber Swab Tool With Brush To Reduce Rubber Swab Fraction Fishing Time

Authors: T. R. Hidayat, G. Irawan, F. Kurniawan, E. H. I. Prasetya, Suharto, T. F. Ridwan, A. Pitoyo, A. Juniantoro, R. T. Hidayat

Abstract:

Swab activities is an activity to lift fluid from inside the well with the use of a sand line that aims to find out fluid influx after conducting perforation or to reduce the level of fluid as an effort to get the difference between formation pressure with hydrostatic pressure in the well for underbalanced perforation. During the swab activity, problems occur frequent problems occur with the rubber swab. The rubber swab often breaks and becomes a fish inside the well. This rubber swab fishing activity caused the rig operation takes longer, the swab result data becomes too late and create potential losses of well operation for the company. The average time needed for fishing the fractions of rubber swab plus swab work is 42 hours. Innovation made for such problems is to modify the rubber swab tool. The rubber swab tool is modified by provided a series of brushes at the end part of the tool with a thread of connection in order to improve work safety, so when the rubber swab breaks, the broken swab will be lifted by the brush underneath; therefore, it reduces the loss time for rubber swab fishing. This tool has been applied, it and is proven that with this rubber swab tool modification, the rig operation becomes more efficient because it does not carry out the rubber swab fishing activity. The fish fractions of the rubber swab are lifted up to the surface. Therefore, it saves the fuel cost, and well production potentials are obtained. The average time to do swab work after the application of this modified tool is 8 hours.

Keywords: rubber swab, modifikasi swab, brush, fishing rubber swab, saving cost

Procedia PDF Downloads 140
173 Fatigue Life Estimation of Spiral Welded Waterworks Pipelines

Authors: Suk Woo Hong, Chang Sung Seok, Jae Mean Koo

Abstract:

Recently, the welding is widely used in modern industry for joining the structures. However, the waterworks pipes are exposed to the fatigue load by cars, earthquake and etc because of being buried underground. Moreover, the residual stress exists in weld zone by welding process and it is well known that the fatigue life of welded structures is degraded by residual stress. Due to such reasons, the crack can occur in the weld zone of pipeline. In this case, The ground subsidence or sinkhole can occur, if the soil and sand are washed down by fluid leaked from the crack of water pipe. These problems can lead to property damage and endangering lives. For these reasons, the estimation of fatigue characteristics for water pipeline weld zone is needed. Therefore, in this study, for fatigue characteristics estimation of spiral welded waterworks pipe, ASTM standard specimens and Curved Plate specimens were collected from the spiral welded waterworks pipe and the fatigue tests were performed. The S-N curves of each specimen were estimated, and then the fatigue life of weldment Curved Plate specimen was predicted by theoretical and analytical methods. After that, the weldment Curved Plate specimens were collected from the pipe and verification fatigue tests were performed. Finally, it was verified that the predicted S-N curve of weldment Curved Plate specimen was good agreement with fatigue test data.

Keywords: spiral welded pipe, prediction fatigue life, endurance limit modifying factors, residual stress

Procedia PDF Downloads 268
172 Analysis of Shallow Foundation Using Conventional and Finite Element Approach

Authors: Sultan Al Shafian, Mozaher Ul Kabir, Khondoker Istiak Ahmad, Masnun Abrar, Mahfuza Khanum, Hossain M. Shahin

Abstract:

For structural evaluation of shallow foundation, the modulus of subgrade reaction is one of the most widely used and accepted parameter for its ease of calculations. To determine this parameter, one of the most common field method is Plate Load test method. In this field test method, the subgrade modulus is considered for a specific location and according to its application, it is assumed that the displacement occurred in one place does not affect other adjacent locations. For this kind of assumptions, the modulus of subgrade reaction sometimes forced the engineers to overdesign the underground structure, which eventually results in increasing the cost of the construction and sometimes failure of the structure. In the present study, the settlement of a shallow foundation has been analyzed using both conventional and numerical analysis. Around 25 plate load tests were conducted on a sand fill site in Bangladesh to determine the Modulus of Subgrade reaction of ground which is later used to design a shallow foundation considering different depth. After the collection of the field data, the field condition was appropriately simulated in a finite element software. Finally results obtained from both the conventional and numerical approach has been compared. A significant difference has been observed in the case of settlement while comparing the results. A proper correlation has also been proposed at the end of this research work between the two methods of in order to provide the most efficient way to calculate the subgrade modulus of the ground for designing the shallow foundation.

Keywords: modulus of subgrade reaction, shallow foundation, finite element analysis, settlement, plate load test

Procedia PDF Downloads 159
171 Sea-Level Rise and Shoreline Retreat in Tainan Coast

Authors: Wen-Juinn Chen, Yi-Phei Chou, Jou-Han Wang

Abstract:

Tainan coast is suffering from beach erosion, wave overtopping, and lowland flooding; though most of the shoreline has been protected by seawalls, they still threatened by sea level rise. For coastal resources developing, coastal land utilization, and to draft an appropriate mitigate strategy. Firstly; we must assess the impact of beach erosion under a different scenario of climate change. Here, we have used the meteorological data since 1898 to 2012 to prove that the Tainan area did suffer the impact of climate change. The result shows the temperature has been raised to about 1.7 degrees since 1989. Also, we analyzed the tidal data near the Tainan coast (Anpin site and Junjunn site), it shows sea level rising with a rate about 4.1~4.8 mm/year, this phenomenon will have serious impacts on Tainan coastal area, especially it will worsen coastal erosion. So we have used Bruun rule to calculate the shoreline retreated rate at every two decade period since 2012. Wave data and bottom sand diameter D50 were used to calculate the closure depth that will be used in Bruun formula and the active length of the profile is computed by the beach slope and Dean's equilibrium concept. After analysis, we found that in 2020, the shoreline will be retreated about 3.0 to 12 meters. The maximum retreat is happening at Chigu coast. In 2060, average shoreline retreated distance is 22m, but at Chigu and Tsenwen, shoreline may be backward retreat about 70m and will be reached about 130m at 2100, this will cause a lot of coastal land loss to the sea, protect and mitigate project must be quickly performed.

Keywords: sea level rise, shoreline, coastal erosion, climate change

Procedia PDF Downloads 379
170 Geophysical Exploration of Aquifer Zones by (Ves) Method at Ayma-Kharagpur, District Paschim Midnapore, West Bengal

Authors: Mayank Sharma

Abstract:

Groundwater has been a matter of great concern in the past years due to the depletion in the water table. This has resulted from the over-exploitation of groundwater resources. Sub-surface exploration of groundwater is a great way to identify the groundwater potential of an area. Thus, in order to meet the water needs for irrigation in the study area, there was a need for a tube well to be installed. Therefore, a Geophysical investigation was carried out to find the most suitable point of drilling and sinking of tube well that encounters an aquifer. Hence, an electrical resistivity survey of geophysical exploration was used to know the aquifer zones of the area. The Vertical Electrical Sounding (VES) method was employed to know the subsurface geology of the area. Seven vertical electrical soundings using Schlumberger electrode array were carried out, having the maximum AB electrode separation of 700m at selected points in Ayma, Kharagpur-1 block of Paschim Midnapore district, West Bengal. The VES was done using an IGIS DDR3 Resistivity meter up to an approximate depth of 160-180m. The data was interpreted, processed and analyzed. Based on all the interpretations using the direct method, the geology of the area at the points of sounding was interpreted. It was established that two deeper clay-sand sections exist in the area at a depth of 50-70m (having resistivity range of 40-60ohm-m) and 70-160m (having resistivity range of 25-35ohm-m). These aquifers will provide a high yield of water which would be sufficient for the desired irrigation in the study area.

Keywords: VES method, Schlumberger method, electrical resistivity survey, geophysical exploration

Procedia PDF Downloads 164
169 The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study

Authors: C. Paglia, C. Mosca

Abstract:

Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground.

Keywords: resin, floor, damage, durability

Procedia PDF Downloads 135
168 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia

Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa

Abstract:

Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.

Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials

Procedia PDF Downloads 151
167 Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences

Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan

Abstract:

Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.

Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies

Procedia PDF Downloads 265
166 Processing and Modeling of High-Resolution Geophysical Data for Archaeological Prospection, Nuri Area, Northern Sudan

Authors: M. Ibrahim Ali, M. El Dawi, M. A. Mohamed Ali

Abstract:

In this study, the use of magnetic gradient survey, and the geoelectrical ground methods used together to explore archaeological features in Nuri’s pyramids area. Research methods used and the procedures and methodologies have taken full right during the study. The magnetic survey method was used to search for archaeological features using (Geoscan Fluxgate Gradiometer (FM36)). The study area was divided into a number of squares (networks) exactly equal (20 * 20 meters). These squares were collected at the end of the study to give a major network for each region. Networks also divided to take the sample using nets typically equal to (0.25 * 0.50 meter), in order to give a more specific archaeological features with some small bipolar anomalies that caused by buildings built from fired bricks. This definition is important to monitor many of the archaeological features such as rooms and others. This main network gives us an integrated map displayed for easy presentation, and it also allows for all the operations required using (Geoscan Geoplot software). The parallel traverse is the main way to take readings of the magnetic survey, to get out the high-quality data. The study area is very rich in old buildings that vary from small to very large. According to the proportion of the sand dunes and the loose soil, most of these buildings are not visible from the surface. Because of the proportion of the sandy dry soil, there is no connection between the ground surface and the electrodes. We tried to get electrical readings by adding salty water to the soil, but, unfortunately, we failed to confirm the magnetic readings with electrical readings as previously planned.

Keywords: archaeological features, independent grids, magnetic gradient, Nuri pyramid

Procedia PDF Downloads 453
165 Modern Well Logs Technology to Improve Geological Model for Libyan Deep Sand Stone Reservoir

Authors: Tarek S. Duzan, Fisal Ben Ammer, Mohamed Sula

Abstract:

In some places within Sirt Basin-Libya, it has been noticed that seismic data below pre-upper cretaceous unconformity (PUK) is hopeless to resolve the large-scale structural features and is unable to fully determine reservoir delineation. Seismic artifacts (multiples) are observed in the reservoir zone (Nubian Formation) below PUK, which complicate the process of seismic interpretation. The nature of the unconformity and the structures below are still ambiguous and not fully understood which generates a significant gap in characterizing the geometry of the reservoir, the uncertainty accompanied with lack of reliable seismic data creates difficulties in building a robust geological model. High resolution dipmeter is highly useful in steeply dipping zones. This paper uses FMl and OBMl borehole images (dipmeter) to analyze the structures below the PUK unconformity from two wells drilled recently in the North Gialo field (a mature reservoir). In addition, borehole images introduce new evidences that the PUK unconformity is angular and the bedding planes within the Nubian formation (below PUK) are significantly titled. Structural dips extracted from high resolution borehole images are used to construct a new geological model by the utilization of latest software technology. Therefore, it is important to use the advance well logs technology such as FMI-HD for any future drilling and up-date the existing model in order to minimize the structural uncertainty.

Keywords: FMI (formation micro imager), OBMI (oil base mud imager), UBI (ultra sonic borehole imager), nub sandstone reservoir in North gialo

Procedia PDF Downloads 295
164 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding

Procedia PDF Downloads 297
163 Removal of Bulk Parameters and Chromophoric Fractions of Natural Organic Matter by Porous Kaolin/Fly Ash Ceramic Membrane at South African Drinking Water Treatment Plants

Authors: Samkeliso S. Ndzimandze, Welldone Moyo, Oranso T. Mahlangu, Adolph A. Muleja, Alex T. Kuvarega, Thabo T. I. Nkambule

Abstract:

The high cost of precursor materials has hindered the commercialization of ceramic membrane technology in water treatment. In this work, a ceramic membrane disc (approximately 50 mm in diameter and 4 mm thick) was prepared from low-cost starting materials, kaolin, and fly ash by pressing at 200 bar and calcining at 900 °C. The fabricated membrane was characterized for various physicochemical properties, natural organic matter (NOM) removal as well as fouling propensity using several techniques. Further, the ceramic membrane was tested on samples collected from four drinking water treatment plants in KwaZulu-Natal, South Africa (named plants 1-4). The membrane achieved 48.6%, 54.6%, 57.4%, and 76.4% bulk UV254 reduction for raw water at plants 1, 2, 3, and 4, respectively. These removal rates were comparable to UV254 reduction achieved by coagulation/flocculation steps at the respective plants. Further, the membrane outperformed sand filtration steps in plants 1-4 in removing disinfection by-product precursors (8%-32%) through size exclusion. Fluorescence excitation-emission matrices (FEEM) studies showed the removal of fluorescent NOM fractions present in the water samples by the membrane. The membrane was fabricated using an up-scalable facile method, and it has the potential for application as a polishing step to complement conventional processes in water treatment for drinking purposes.

Keywords: crossflow filtration, drinking water treatment plants, fluorescence excitation-emission matrices, ultraviolet 254 (UV₂₅₄)

Procedia PDF Downloads 10
162 Effect of Two Different Biochars on Germination and Seedlings Growth of Salad, Cress and Barley

Authors: L. Bouqbis, H.W. Koyro, M. C. Harrouni, S. Daoud, L. F. Z. Ainlhout, C. I. Kammann

Abstract:

The application of biochar to soils is becoming more and more common. Its application which is generally reported to improve the physical, chemical, and biological properties of soils, has an indirect effect on soil health and increased crop yields. However, many of the previous results are highly variable and dependent mainly on the initial soil properties, biochar characteristics, and production conditions. In this study, two biochars which are biochar II (BC II) derived from a blend of paper sludge and wheat husks and biochar 005 (BC 005) derived from sewage sludge with a KCl additive, are used, and the physical and chemical properties of BC II are characterized. To determine the potential impact of salt stress and toxic and volatile substances, the second part of this study focused on the effect biochars have on germination of salad (Lactuca sativa L.), barley (Hordeum vulgare), and cress (Lepidium sativum) respectively. Our results indicate that Biochar II showed some unique properties compared to the soil, such as high EC, high content of K, Na, Mg, and low content of heavy metals. Concerning salad and barley germination test, no negative effect of BC II and BC 005 was observed. However, a negative effect of BC 005 at 8% level was revealed. The test of the effect of volatile substances on germination of cress revealed a positive effect of BC II, while a negative effect was observed for BC 005. Moreover, the water holding capacities of biochar-sand mixtures increased with increasing biochar application. Collectively, BC II could be safely used for agriculture and could provide the potential for a better plant growth.

Keywords: biochar, phytotoxic tests, seedlings growth, water holding capacity

Procedia PDF Downloads 218
161 Experimental Study of the Dynamics of Sediments in Natural Channels in a Non-Stationary Flow Regime

Authors: Fourar Ali, Fourar Fatima Zohra

Abstract:

Knowledge of sediment characteristics is fundamental to understanding their sedimentary functioning: sedimentation, settlement, and erosion processes of cohesive sediments are controlled by complex interactions between physical, chemical, and biological factors. Sediment transport is of primary importance in river hydraulics and river engineering. Indeed, the displacement of sediments can lead to lasting modifications of the bed in terms of its elevation, slope and roughness. The protection of a bank, for example, is likely to initiate a local incision of the river bed, which, in turn, can lead to the subsidence of the bank. The flows in the natural environment occur in general with heterogeneous boundary conditions because of the distribution of the roughnesses of the fixed or mobile bottoms and of the important deformations of the free surface, especially for the flows with a weak draft considering the irregularity of the bottom. Bedforms significantly influence flow resistance. The arrangement of particles lining the bottom of the stream bed or experimental channel generates waveforms of different sizes that lead to changes in roughness and consequently spatial variability in the turbulent characteristics of the flow. The study which is focused on the laws of friction in alluvial beds, aims to analyze the characteristics of flows and materials constituting the natural channels. Experimental results were obtained by simulating these flows on a rough bottom in an experimental channel at the Hydraulics Laboratory of the University of Batna 2. The system of equations governing the problem is solved using the program named: CLIPPER.5 and ACP.

Keywords: free surface flow, heterogeneous sand, moving bottom bed, friction coefficient, bottom roughness

Procedia PDF Downloads 51
160 Tolerance of Some Warm Season Turfgrasses to Compaction under Shade and Sunlight Conditions of Riyadh, Saudi Arabia

Authors: Mohammed A. Al-Yafrsi, Fahed A. Al-Mana

Abstract:

A study was conducted to evaluate the compaction-tolerance ability of some warm season turfgrasses under shade and sunlight conditions in Riyadh, Saudi Arabia. Hybrid bermudagrass (Cynodon dactylon): 'Tifway' and 'Tifsport', seashore paspalum (Paspalum vaginatum) and its cultivar 'Sea Isle 2000' were used. The study area was divided into two sections where one was exposed to sunlight and the other one was maintained under shade using green plastic grille (shade 70%). Turfgrasses were planted by sods in beds containing a mixture of sand, silt, and peat moss (4: 1: 1, v/v). The soil compaction was applied using a locally-made cylindrical roll (weighing 250 kg), passing four times over the growing turfgrasses for 3 days/week. The results revealed that compaction treatment led to a decrease in grass height, and it was the lowest (4.0 cm) for paspalum 'Sea Isle 2000' in February. At the shaded area, paspalum turfgrasses retained its high quality degree (4.0) in April, May, and June. In the sunlight area, the grass quality degree was the greatest (4.0) in 'Sea Isle 2000' and the lowest (3.0) in 'Tifsport'. Paspalum turfgrasses gave higher color degree (4) than bermuda grasses (2.5) in April, May, and June. The compaction also led to a decline in leaf area, fresh and dry weights of all grown turfgrasses. The grass density was high for paspalum turfgrasses indicating that their resistance to compaction was greater than bermudagrasses. It can be concluded that the best compaction and shade tolerant turfgrasses are 'Sea Isle 2000' and seashore paspalum.

Keywords: hybrid bermudagrass, seashore paspalum, soil compaction, shade area, sunlight condition

Procedia PDF Downloads 91
159 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles

Authors: Trung Le Thanh

Abstract:

Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.

Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance

Procedia PDF Downloads 39
158 Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)

Authors: E. C. Mattos, V. S. M. G. Daros, R. Dal Col, A. L. Nascimento

Abstract:

The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.

Keywords: extraneous materials, food contamination, foreign matter, surveillance

Procedia PDF Downloads 328
157 An Investigation into Why Liquefaction Charts Work: A Necessary Step toward Integrating the States of Art and Practice

Authors: Tarek Abdoun, Ricardo Dobry

Abstract:

This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss’ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1 < 160 m/s), with this strain being about 0.03 to 0.05% for earthquake magnitude, Mw ≈ 7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by over consolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1 to 0.3%. These conclusions are validated by application to case histories corresponding to Mw ≈ 7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake.

Keywords: permeability, lateral spreading, liquefaction, centrifuge modeling, shear wave velocity charts

Procedia PDF Downloads 270
156 Mudlogging, a Key Tool in Effective Well Delivery: A Case Study of Bisas Field Niger Delta, Nigeria

Authors: Segun Steven Bodunde

Abstract:

Mudlogging is the continuous analysis of rock cuttings and drilling fluids to ascertain the presence or absence of oil and gas from the formation penetrated by the drilling bit. This research highlighted a case study of Well BSS-99ST from ‘Bisas Field’, Niger Delta, with depth extending from 1950m to 3640m (Measured Depth). It was focused on identifying the lithologies encountered at specified depth intervals and to accurately delineate the targeted potential reservoir on the field and prepare the lithology and Master log. Equipment such as the Microscope, Fluoroscope, spin drier, oven, and chemicals, which includes: hydrochloric acid, chloroethene, and phenolphthalein, were used to check the cuttings for their calcareous nature, for oil show and for the presence of Cement respectively. Gas analysis was done using the gas chromatograph and the Flame Ionization Detector, which was connected to the Total Hydrocarbon Analyzer (THA). Drilling Parameters and Gas concentration logs were used alongside the lithology log to predict and accurately delineate the targeted reservoir on the field. The result showed continuous intercalation of sand and shale, with the presence of small quantities of siltstone at a depth of 2300m. The lithology log was generated using Log Plot software. The targeted reservoir was identified between 3478m to 3510m after inspection of the gas analysis, lithology log, electric logs, and the drilling parameters. Total gas of about 345 units and five Alkane Gas components were identified in the specific depth range. A comparative check with the Gamma ray log from the well further confirmed the lithologic sequence and the accurate delineation of the targeted potential reservoir using mudlogging.

Keywords: mudlogging, chromatograph, drilling fluids, calcareous

Procedia PDF Downloads 119