Search results for: ceramic properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8954

Search results for: ceramic properties

8954 Technological Properties and Characterization of Ceramic Slurries Based on Yttrium Iii Oxide for Shell Moulds Preparation

Authors: D. Jakubowska, M. Malek, P. Wisniewski, J. Mizera, K. J. Kurzydlowski

Abstract:

The goal of this study was to analyze the technological properties of ceramic slurries based on Ytttria (Y2O3) for fabrication “prime coat” in ceramic shell moulds for investment casting process. The Yttria with two different granulation of (200# and 325#) in ratio-65%-35% by weight were used for preparation the ceramic slurries. Solid phase was 77 wt.%. The experiment was carried out for 96h. Main technological properties like: viscosity, pH, plate weight test, and density were measured every 24h. Additionally, dynamic viscosity was performed after 96h of test. For further material characterization SEM observations, Zeta potential, XRD measurements were done. Those research showed that Yttria ceramic slurries had very promising properties and there are perspective for future fabrication.

Keywords: ceramic slurries, mechanizal properties, viscosity, fabrication

Procedia PDF Downloads 508
8953 Red Clay Properties and Application for Ceramic Production

Authors: Ruedee Niyomrath

Abstract:

This research aimed at surveying the local red clay raw material sources in Samut Songkram province, Thailand to test the physical and chemical properties of the local red clay, including to find the approach to develop the local red clay properties for ceramic production. The findings of this research would be brought to apply in the ceramic production industry of the country all at the upstream level which was the community in the raw material source, at the mid water level which was the ceramic producer and at the downstream level which was the distributor and the consumer as well as the community producer who would apply them to their identity and need of the community business.

Keywords: chemical properties of red clay, physical properties of red clay, ceramic production, red clay product

Procedia PDF Downloads 417
8952 Impact of the Xanthan Gum on Rheological Properties of Ceramic Slip

Authors: Souad Hassene Daouadji, Larbi Hammadi, Abdelkrim Hazzab

Abstract:

The slips intended for the manufacture of ceramics must have rheological properties well-defined in order to bring together the qualities required for the casting step (good fluidity for feeding the molds easily settles while generating a regular settling of the dough and for the dehydration phase of the dough in the mold a setting time relatively short is required to have a sufficient refinement which allows demolding both easy and fast). Many additives haveadded in slip of ceramic in order to improve their rheological properties. In this study, we investigated the impact of xanthan gumon rheological properties of ceramic Slip. The modified Cross model is used to fit the stationary flow curves of ceramic slip at different concentration of xanthan added. The thixotropic behavior studied of mixture ceramic slip-xanthan gumat constant temperature is analyzed by using a structural kinetic model (SKM) in order to account for time dependent effect.

Keywords: ceramic slip, xanthan gum, modified cross model, thixotropy, viscosity

Procedia PDF Downloads 155
8951 Exploring Mechanical Properties of Additive Manufacturing Ceramic Components Across Techniques and Materials

Authors: Venkatesan Sundaramoorthy

Abstract:

The field of ceramics has undergone a remarkable transformation with the advent of additive manufacturing technologies. This comprehensive review explores the mechanical properties of additively manufactured ceramic components, focusing on key materials such as Alumina, Zirconia, and Silicon Carbide. The study delves into various authors' review technology into the various additive manufacturing techniques, including Stereolithography, Powder Bed Fusion, and Binder Jetting, highlighting their advantages and challenges. It provides a detailed analysis of the mechanical properties of these ceramics, offering insights into their hardness, strength, fracture toughness, and thermal conductivity. Factors affecting mechanical properties, such as microstructure and post-processing, are thoroughly examined. Recent advancements and future directions in 3D-printed ceramics are discussed, showcasing the potential for further optimization and innovation. This review underscores the profound implications of additive manufacturing for ceramics in industries such as aerospace, healthcare, and electronics, ushering in a new era of engineering and design possibilities for ceramic components.

Keywords: mechanical properties, additive manufacturing, ceramic materials, PBF

Procedia PDF Downloads 39
8950 High Performance Ceramic-Based Phthalonitrile Micro and Nanocomposites

Authors: M. Derradji, W. B. Liu

Abstract:

The current work discusses the effects of adding various types of ceramic fillers on the curing behavior, thermal, mechanical, anticorrosion, and UV shielding properties of the bisphenol-A based phthalonitrile resins. The effects of different ceramic filler contents and sizes as well as their surface treatments are also discussed in terms of their impact on the morphology and mechanisms of enhancement. The synergistic effect obtained by these combinations extends the use of the phthalonitrile resins to more exigent applications such as aerospace and military. The presented results reveal the significant advantages that can be obtained from the preparation of hybrid materials based on phthalonitrile resins and open the way for further research in the field.

Keywords: mechanical properties, particle reinforced composites, polymer matrix composites (PMCs), thermal properties

Procedia PDF Downloads 124
8949 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System

Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna

Abstract:

In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.

Keywords: ceramic, composite material, sintering, corundum

Procedia PDF Downloads 273
8948 Reducing the Chemical Activity of Ceramic Casting Molds for Producing Decorated Glass Moulds

Authors: Nilgun Kuskonmaz

Abstract:

Ceramic molding can produce castings with fine detail, smooth surface and high degree of dimensional accuracy. All these features are the key factors for producing decorated glass moulds. In the ceramic mold casting process, the fundamental parameters affecting the mold-metal reactions are the composition and the properties of the refractory materials used in the production of ceramic mold. As a result of the reactions taking place between the liquid metal and mold surface, it is not possible to achieve a perfect surface quality, a fine surface detail and maintain a high standard dimensional tolerances. The present research examines the effects of the binder composition on the structural and physical properties of the zircon ceramic mold. In the experiment, the ceramic slurry was prepared by mixing the refractory powders (zircon(ZrSiO4), mullit(3Al2O32SiO2) and alumina (Al2O3)) with the low alkaline silica (ethyl silicate (C8H20O4Si)) and acidic type gelling material suitable binder and gelling agent. This was followed by pouring that ceramic slurry on to a silicon pattern. After being gelled, the mold was removed from the silicon pattern and dried. Then, the ceramic mold was subjected to the reaction sintering at 1600°C for 2 hours in the furnace. The stainless steel (SS) was cast into the sintered ceramic mold. At the end of this process it was observed that the surface quality of decorated glass mold.

Keywords: ceramic mold, stainless steel casting, decorated glass mold

Procedia PDF Downloads 239
8947 Experimental Investigation on High Performance Concrete with Silica Fume and Ceramic Waste

Authors: P. Vinayagam, A. Madhanagopal

Abstract:

This experimental investigation focuses on the study of the strength of concrete with ceramic waste as coarse aggregate. It is not a new concept of using alternate materials for aggregates. Pottery and ceramics have been an important part of human culture for thousands of years. The ceramic waste from ceramic and construction industries is a major contribution to construction demolition waste (CDW), representing a serious environmental, technical, and economical problem of today’s society. The major sources of ceramic waste are ceramic industry, building construction and building demolition. In ceramic industries, a significant part of the losses in the manufacturing of ceramic elements is not returned to the production process. In building construction, ceramic waste is produced during transportation to the building site, on the execution of several construction elements and on subsequent works. This waste is regionally deposited in dumping grounds, without any separation or reuse. In this study an attempt has been made to find the suitability of the ceramic industrial wastes as a possible replacement for conventional crushed stone coarse aggregate in high performance concrete. In this study, glazed stoneware pipe waste was used as coarse aggregates. In this investigation, physical properties of ceramic waste coarse aggregates were studied. Experiments were carried out to determine the strength of high performance concrete with silica fume and ceramic stoneware pipe waste coarse aggregate of 10%, 20%, 30%, 40% and 50% different replacement ratios in comparison with those of corresponding conventional concrete mixes.

Keywords: ceramic waste, coarse aggregate replacement, glazed stoneware pipe waste, silica fume

Procedia PDF Downloads 261
8946 The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles

Authors: Lucie Vodova, Radomir Sokolar, Jitka Hroudova

Abstract:

Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste.

Keywords: ceramic tiles, class C fly ash, calcite waste, calcium oxide, anorthite

Procedia PDF Downloads 224
8945 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh

Abstract:

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability

Procedia PDF Downloads 217
8944 Utilization of Solid Waste Materials to Produce Glass-Ceramic Tiles

Authors: Sonjida Mustafia

Abstract:

Glass-ceramic is a material that contains both the properties of glass and ceramic within. They always contain a residual glassy phase and one or more embedded crystalline phases. Ceramic tiles are very popular in the world because of their high structural strength, low absorption, increased hygiene, and hot and cold insulation. Glass-ceramic materials are used to produce marble-like floor and wall tiles. There are a huge amount of waste materials like rice husk ash (RHA), waste iron, waste glass, and other industrial solid waste in Bangladesh, which can be used to produce glass-ceramic floor and wall tiles. The raw materials (rice husk ash, waste glass, and k-feldspar) are a mixture, and the mixture is melted to form glass frit at 1175°C. The frits are grained to require fine particle size. The powder is moistened in 7-8% water with sodium silicate. The green glass-ceramic tiles were fired at different temperatures (800–1100°C) for a soaking time of 1 hour to form glass-ceramic tiles and to study the sintering-crystallization process. The results reveal that the modulus of rupture increases with increasing sintering temperature and reaches the highest value (95.25Mpa) at 925°C. Glossiness and linear shrinkage increase with increasing temperature.

Keywords: rice husk ash, waste glass, glass-ceramic, modulus of rupture, glossiness, linear shrinkage, micro-structure

Procedia PDF Downloads 59
8943 A Review on the Usage of Ceramic Wastes in Concrete Production

Authors: O. Zimbili, W. Salim, M. Ndambuki

Abstract:

Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900 ⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution), the cement blend performs better, with no morphological differences between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production.

Keywords: blended, morphological, pozzolanic, waste

Procedia PDF Downloads 338
8942 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication

Procedia PDF Downloads 458
8941 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints

Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache

Abstract:

The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.

Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy

Procedia PDF Downloads 104
8940 Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications

Authors: Santiranjan Shannigrahi, Mohit Sharma, Ivan Tan Chee Kiang, Yong Anna Marie

Abstract:

Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties.

Keywords: polymer ceramic composite, processing, harsh environment, mechanical properties

Procedia PDF Downloads 361
8939 Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy

Authors: Ahmet Yonetken, Ayhan Erol

Abstract:

Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties.

Keywords: ceramic-metal composites, proporties, powder metallurgy, sintering

Procedia PDF Downloads 175
8938 Investigation the Effect of Partial Replacement of Fine Aggregates with Ceramic

Authors: Yared Assefa Demessie

Abstract:

This study may help to establish the appropriateness of ceramic waste aggregate for concrete production since it is obviously understood that the rising from continuous urbanization and industrialization development leads depletion of natural construction resource and the disposal of waste material. It can be used as base to conduct a study on the alternative readily available materials like ceramic industrial waste aggregates can lead to environmental concrete. The study assessed the fresh and hardened properties of the concrete produced by replacing part of the natural fine aggregate with an aggregate produced from ceramic industrial waste. In the study, experimental investigation was employed which involved two major tasks: material specifications and experimental evaluation of concrete were done in the laboratory. Experimental investigations such that workability, unit weight, compressive strength test, tensile strength test and flexural strength test for C-25 concrete mixes with different percentages of ceramic industrial waste aggregate after a curing period of 7 and 28 days has done and interpreted the result statically using mean, standard deviation and coefficient of variance.

Keywords: ceramic industrial waste, fresh concrete, hardened concrete, fine aggregate

Procedia PDF Downloads 31
8937 Production and Investigation of Ceramic-Metal Composite from Electroless Ni Plated AlN and Al Powders

Authors: Ahmet Yönetken

Abstract:

Al metal matrix composites reinforced with AlN have been fabricated by Tube furnace sintering at various temperatures. A uniform nickel layer on Al(%1AlN)%19Ni, Al(%2AlN)%18Ni, Al(%3AlN)%17Ni, Al(%4AlN)%16Ni, Al(%5AlN)%15Ni powders were deposited prior to sintering using electroless plating technique, allowing closer surface contact than can be achieved using conventional methods such as mechanical alloying. A composite consisting of quaternary additions, a ceramic phase, AlN, within a matrix of Al, AlN, Ni has been prepared at the temperature range between 550°C and 650°C under Ar shroud. X-Ray diffraction, SEM (Scanning Electron Microscope) density, and hardness measurements were employed to characterize the properties of the specimens. Experimental results carried out for 650°C suggest that the best properties as comprehension strength σmax and hardness 681.51(HV) were obtained at 650°C, and the tube furnace sintering of electroless Al plated (%5AlN)%15Ni powders is a promising technique to produce ceramic reinforced Al (%5AlN)%15Ni composites.

Keywords: electroless nickel plating, ceramic-metal composites, powder metallurgy, sintering

Procedia PDF Downloads 218
8936 Crystallization in the TeO2 - Ta2O5 - Bi2O3 System: From Glass to Anti-Glass to Transparent Ceramic

Authors: Hasnaa Benchorfi

Abstract:

The Tellurite glasses exhibit interesting properties, notably their low melting point (700-900°C), high refractive index (≈2), high transparency in the infrared region (up to 5−6 μm), interesting linear and non-linear optical properties and high rare earth ions solubility. These properties give tellurite glasses a great interest in various optical applications. Transparent ceramics present advantages compared to glasses, such as improved mechanical, thermal and optical properties. But, the elaboration process of these ceramics requires complex sintering conditions. The full crystallization of glass into transparent ceramics is an alternative to circumvent the technical challenges related to the ceramics obtained by conventional processing. In this work, a crystallization study of a specific glass composition in the system TeO2-Ta2O5-Bi2O3 shows structural transitions from the glass to the stabilization of an unreported anti-glass phase to a transparent ceramic upon heating. An anti-glass is a material with a cationic long-range order and a disordered anion sublattice. Thus, the X-ray diffraction patterns show sharp peaks, while the Raman bands are broad and similar to those of the parent glass. The structure and microstructure of the anti-glass and corresponding ceramic were characterized by Powder X-Ray Diffraction, Electron Back Scattered Diffraction, Transmission Electron Microscopy and Raman spectroscopy. The optical properties of the Er3+-doped samples are also discussed.

Keywords: glass, congruent crystallization, anti-glass, glass-ceramic, optics

Procedia PDF Downloads 51
8935 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.

Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin

Procedia PDF Downloads 154
8934 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 325
8933 Pick and Place System for Dip Glaze Using PID Controller

Authors: Benchalak Muangmeesri

Abstract:

Glazes ceramics are ceramic materials produced through controlled crystallization of a parent glass. The great variety of compositions and the possibility of developing special micro structures with specific technological properties have allowed glass ceramic materials to be used in a wide range of applications. At the same time, glazes ceramics need to improvement in the mechanical and chemical properties of glazed. The pick and place station is equipped with a three-axis module. test piece housings placed on the vacuum are detected module picks up a test piece insert from the slide and places it on the test piece housing. Overall, glazes ceramics are compared with automatically and manually of speed and position control. The handling modules of automatic transfer are a new generation of high speed and precision then these color results from absorption and thickness than manual is also included.

Keywords: glaze, PID control, pick and place, ceramic

Procedia PDF Downloads 353
8932 Influence of Milled Waste Glass to Clay Ceramic Foam Properties Made by Direct Foaming Route

Authors: A. Shishkin, V. Mironovs, D. Goljandin, A. Korjakins

Abstract:

The goal of this work is to develop sustainable and durable ceramic cellular structures using widely available natural resources- clay and milled waste glass. Present paper describes method of obtaining clay ceramic foam (CCF) with addition of milled waste glass in 5, 7 and 10 wt% by direct foaming with high speed mixer-disperser (HSMD). For more efficient clay and waste glass milling and mixing, the high velocity disintegrator was used. The CCF with 5, 7, and 10 wt% were obtained at 900, 950, 1000 and 1050 °C firing temperature and they have demonstrated mechanical compressive strength for all 12 samples ranging from 3.8 to 14.3 MPa and porosity 76-65%. Obtained CCF has compressive strength 14.3 MPa and porosity 65.3%.

Keywords: ceramic foam, waste glass, clay foam, glass foam, open cell, direct foaming

Procedia PDF Downloads 283
8931 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite

Authors: M. Bahgat, F. M. Awan, H. A. Hanafy

Abstract:

The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.

Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties

Procedia PDF Downloads 664
8930 Phosphate Sludge Ceramics: Effects of Firing Cycle Parameters on Technological Properties and Ceramic Suitability

Authors: Mohamed Loutou, Mohamed Hajjaji, Mohamed Ait Babram, Mohammed Mansori, Rachid Hakkou, Claude Favotto

Abstract:

More than 26,4 million tons of phosphates are produced by the phosphates industries in Morocco (2010), generating huge amounts of sludge by flocculation during the ore beneficiation. They way are stored at the end of the process in open air ponds. Its accumulation and storage may have an impact on several scales such as ground water and human being. For this purpose, an efficient way to use it the field of the ceramic is proposed. The as received sludge and a clay-rich sediment have been studied in terms of chemical, mineralogical and micro-structural side using various analytical methods. Several formulations have been performed by mixing the sludge with the binder shaped in the form of granules. After being dried at 105 °C, the samples were heated in the range of 900-1200 °C. As well as the ceramic properties (firing shrinkage, water absorption, total porosity and compressive strength) the micro structure has been investigated using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The relations between properties and the operating factors were formulated using the design of experiments (DOE). Gehlenite was the only phase neo-formed in the sintering samples. SEM micrographs revealed the presence of nano metric stains. Based on RSM results, all factors had positive effects on Firing shrinkage, compressive strength and total porosity. However, they manifested opposite effects on density and water absorption.

Keywords: phosphate sludge, clay, ceramic properties, granule

Procedia PDF Downloads 479
8929 Stress Analysis of the Ceramics Heads with Different Sizes under the Destruction Tests

Authors: V. Fuis, P. Janicek, T. Navrat

Abstract:

The global solved problem is the calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalized ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). A special destruction device for heads destruction was designed and the solved local problem is the modification of this destructive device based on the analysis of tensile stress in the head for two different values of the depth of the conical hole in the head. The goal of device modification is a shift of the location with extreme value of 1 max from the region of head’s hole bottom to its opening. This modification will increase the credibility of the obtained material properties of bio ceramics, which will be determined from a set of head destructions using the Weibull weakest link theory.

Keywords: ceramic heads, depth of the conical hole, destruction test, material parameters, principal stress, total hip joint endoprosthesis

Procedia PDF Downloads 392
8928 Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles

Authors: Jisoo Kim, Jin-Young Choi, MinSu Lee, Sunmook Lee

Abstract:

Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship.

Keywords: bioabsorbable, bone fixation device, ceramic nanoparticles, durability assessment, nanocomposite

Procedia PDF Downloads 296
8927 Nano Ceramics Materials in Clean Rooms: Properties and Characterization

Authors: HebatAllah Tarek, Zeyad El-Sayad, Ali F. Bakr

Abstract:

Surface coating can permit the bulk materials to remain unchanged, whereas the surface functionality is engineered to afford a more required characteristic. Nano-Ceramic coatings are considered ideal coatings on materials that can significantly improve the surface properties, including anti-fouling, self-cleaning, corrosion resistance, wear resistance, anti-scratch, waterproof, anti-acid rain and anti-asphalt. Furthermore, various techniques have been utilized to fabricate a range of different ceramic coatings with more desirable properties on Nano-ceramics, which make the materials usually used in in-service environments and worth mentioning that the practical part of this study will be applied in one of the most important architectural applications due to the contamination-free conditions provided by it in the manufacturing industry. Without cleanrooms, products will become contaminated and either malfunction or infect people with bacteria. Cleanrooms are used for the manufacture of items used in computers, cars, airplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices, and foods. The aim of this study will be to examine the Nano-ceramics on porcelain and glass panels. The investigation will be included fabrications, methods, surface properties and applications in clean rooms. The unfamiliarity in this study is using Nano-ceramics in clean rooms instead of using them on metallic materials.

Keywords: nano-ceramic coating, clean rooms, porcelain, surface properties

Procedia PDF Downloads 66
8926 A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions

Authors: Tsukasa Ogawa, Mitsuhiro Okayasu

Abstract:

To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition.

Keywords: electric power generation, piezoelectric ceramic, lead zirconate titanate ceramic, loading conditions

Procedia PDF Downloads 141
8925 Enhanced Thermal Stability of Dielectric and Energy Storage Properties in 0.4BCZT-0.6BTSn Lead-Free Ceramics Elaborated by Sol-Gel Method

Authors: S. Khardazi, H. Zaitouni, A. Neqali, S. Lyubchyk, D. Mezzane, M. Amjoud, E. Choukri, S. Lyubchyk, Z. Kutnjak

Abstract:

In the present paper, structural, dielectric, ferroelectric, and energy storage properties of pure perovskite lead-free BCZT, BTSn, and BTSn-BCZT ferroelectric ceramics have been investigated. Rietveld refinement of XRD data confirms the coexistence of the rhombohedral and orthorhombic phases at room temperature in the composite BCZT–BTSn ceramic. Remarkably, an improved recoverable energy density of 137.86 mJ/cm³ and a high energy storage efficiency of 86.19 % at 80°C under a moderate applied electric field of 30 kV/cm were achieved in the designed BCZT–BTSn ceramic. Besides, the sample exhibits excellent thermal stability of the energy storage efficiency (less than 3%) in the temperature range of 70 to 130 °C under 30 kV/cm. Such results make the pb-free BCZT–BTSn ferroelectric ceramic a very promising potential matrix for energy storage capacitor applications.

Keywords: sol-gel, ferroelectrics, lead-free, perovskites, energy storage

Procedia PDF Downloads 42