Search results for: cement hydration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 876

Search results for: cement hydration

816 Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack

Authors: Talakokula Visalakshi

Abstract:

Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material.

Keywords: fly ash, geo polymer, geopolymer concrete, construction material

Procedia PDF Downloads 464
815 Comparison of Physico-Mechanical Properties of Superplasticizer Stabilized Graphene Oxide and Carbon Nanotubes Reinforced Cement Nanocomposites

Authors: Ramanjit Kaur, N. C. Kothiyal

Abstract:

The present study compares the improved mechanical strength of cement mortar nanocomposites (CNCs) using polycarboxylate superplasticizer (PCE-SP) stabilized graphene oxide or functionalized carbon nanotubes (SP-GO and SP-FCNT) as reinforcing agents. So, in the present study, GO, and FCNT have been sterically stabilized via superplasticizer. The obtained results have shown that a dosage of 0.02 wt% of SP-GO and 0.08 wt% of SP-FCNTs showed an improvement in compressive strength by 23.2% and 16.5%, respectively. On the other hand, incorporation of 0.04% SP-GO and SP-FCNT resulted in an enhanced split tensile strength of 38.5% and 35.8%, respectively, as compared to the control sample at 90 days of curing. Mercury Intrusion Porosimetry (MIP) observations presented a decline in the porosity of 0.02% SP-GO-CNCs and 0.08% SP-FCNT-CNCs by 25% and 31% in comparison to the control sample. The improved hydration of CNCs contributing to the enhancement of physicomechanical strength has also been shown by SEM and XRD studies.

Keywords: graphene oxide, functionalized CNTs, steric stabilization, microstructure, crystalline behavior, pore structure refinement

Procedia PDF Downloads 77
814 Stabilization of Medical Waste Incineration Fly Ash in Cement Mortar Matrix

Authors: Tanvir Ahmed, Musfira Rahman, Rumpa Chowdhury

Abstract:

We performed laboratory experiments to assess the suitability of using medical waste incineration fly ash in cement as a construction material based on the engineering properties of fly ash-cement matrix and the leaching potential of toxic heavy metals from the stabilized mix. Fly ash-cement samples were prepared with different proportions of fly ash (0%, 5%, 10%, 15% and 20% by weight) in the laboratory controlled conditions. The solidified matrix exhibited a compressive strength from 3950 to 4980 psi when fly ash is mixed in varying proportions. The 28-day compressive strength has been found to decrease with the increase in fly ash content, but it meets the minimum requirement of compressive strength for cement-mortar. Soundness test results for cement-mortar mixes having up to 15% fly ash. Final and initial setting times of cement have been found to generally increase with fly ash content. Water requirement (for normal consistency) also increased with the increase in fly ash content in cement. Based on physical properties of the cement-mortar matrix it is recommended that up to 10% (by weight) medical waste incineration fly ash can be incorporated for producing cement-mortar of optimum quality. Leaching behaviours of several targeted heavy metals (As, Cu, Ni, Cd, Pb, Hg and Zn) were analyzed using Toxicity Characteristics Leaching Procedure (TCLP) on fly ash and solidified fly ash-cement matrix. It was found that the leached concentrations of As, Cu, Cd, Pb and Zn were reduced by 80.13%, 89.47%, 33.33% and 23.9% respectively for 10% fly ash incorporated cement-mortar matrix compared to that of original fly ash. The leached concentrations of heavy metals were from the matrix were far below the EPA land disposal limits. These results suggest that the solidified fly ash incorporated cement-mortar matrix can effectively confine and immobilize the heavy metals contained in the fly ash.

Keywords: cement-mortar, fly ash, leaching, waste management

Procedia PDF Downloads 142
813 The Use of Secondary Crystallization in Cement-Based Composites

Authors: Nikol Žižková, Šárka Keprdová, Rostislav Drochytka

Abstract:

The paper focuses on the study of the properties of cement-based composites produced using secondary crystallization (crystalline additive). In this study, cement mortar made with secondary crystallization was exposed to an aggressive environment and the influence of secondary crystallization on the degradation of the cementitious composite was investigated. The results indicate that the crystalline additive contributed to increasing the resistance of the cement-based composite to the attack of the selected environments (sodium sulphate solution and ammonium chloride solution).

Keywords: secondary crystallization, cement-based composites, durability, degradation of the cementitious composite

Procedia PDF Downloads 373
812 Characteristics of Clayey Subgrade Soil Mixed with Cement Stabilizer

Authors: Manju, Praveen Aggarwal

Abstract:

Clayey soil is considered weakest subgrade soil from civil engineering point of view under moist condition. These swelling soils attract and absorb water and losses their strength. Certain inherent properties of these clayey soils need modification for their bulk use in the construction of highways/runways pavements and embankments, etc. In this paper, results of clayey subgrade modified with cement stabilizer is presented. Investigation includes evaluation of specific gravity, Atterberg’s limits, grain size distribution, maximum dry density, optimum moisture content and CBR value of the clayey soil and cement treated clayey soil. A series of proctor compaction and CBR tests (un-soaked and soaked) are carried out on clayey soil and clayey soil mixed with cement stabilizer in 2%, 4% & 6% percentages to the dry weight of soil. In CBR test, under soaked condition best results are obtained with 6% of cement. However, the difference between the CBR value by addition of 4% and 6% cement is not much. Therefore from economical consideration addition of 4% cement gives the best result after soaking period of 90 days.

Keywords: clayey soil, cement, maximum dry density, optimum moisture content, California bearing ratio

Procedia PDF Downloads 311
811 Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth

Authors: Bouzidi Yassine

Abstract:

This experimental work was aimed to characterize the porosity of the concrete cover zone using the capillary absorption test, and establish the links between open porosity characterized by the initial absorption, the compressive strength and carbonation depth. Eight formulations of workability similar made from ordinary Portland cement (CEM I 42.5) and a compound cement (CEM II/B 42.5) four of each type are studied. The results allow us to highlight the effect of the cement type. Indeed, concretes-based cement CEM II/B 42.5 carbonatent approximately faster than concretes-based cement CEM I 42.5. This effect is attributed in part to the lower content of portlandite Ca(OH)2 of concretes-based cement CEM II/B 42.5, but also the impact of the cement type on the open porosity of the cover concrete. The open porosity of concretes-based cement CEM I 42.5 is lower than that of concretes-based cement CEM II/B 42.5. The carbonation depth is a decreasing function of the compressive strength at 28 days and increases with the initial absorption. Through the results obtained, correlations between the quantity of water absorbed in 1 h, the carbonation depth at 180 days and the compressive strength at 28 days were performed in an acceptable manner.

Keywords: initial absorption, cover concrete, compressive strength, carbonation depth

Procedia PDF Downloads 308
810 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 323
809 The Use of Electrical Resistivity Measurement, Cracking Test and Ansys Simulation to Predict Concrete Hydration Behavior and Crack Tendency

Authors: Samaila Bawa Muazu

Abstract:

Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.

Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, setting time, simulation

Procedia PDF Downloads 186
808 Peat Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA)

Authors: Mohd. Khaidir Abu Talib, Noriyuki Yasufuku, Ryohei Ishikura

Abstract:

It is well recognized that peat can impede the proper hydration of cement because of high organic content, presence of humic acid and less solid particles. That means the large amount of cement is required in order to neutralize the acids or otherwise the process of the peat stabilization remains retarded. Nevertheless, adding a great quantity of cement into the peat is absolutely an unfriendly and uneconomical solution. Sugarcane production is world number one commodities and produced a lot of bagasse. Bagasse is burnt to generate power required for diverse activities in the factory and leave bagasse ash as a waste. Increasing concern of disposal of bagasse residual creates interest to explore the potential application of this material. The objective of this study is to develop alternative binders that are environment friendly and contribute towards sustainable management by utilizing sugarcane bagasse ash (SCBA) in the stabilization of peat soil. Alongside SCBA, Ordinary Portland Cement (OPC), calcium chloride (CaCl2) and silica sand (K7) were used as additives to stabilize the peat that sampled from Hokkaido, Japan. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5) partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS) and discovered greater than untreated soil (P) and UCS of peat-cement (PC) specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading during curing, OPC dosage and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC dosage of 300 kg/m3 and K7 dosage of 500 kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5 mixture, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve minimum strength target. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

Keywords: peat stabilization, sugarcane bagasse ash utilization, partial cement replacement, unconfined strength

Procedia PDF Downloads 513
807 Chemical Analysis of Available Portland Cement in Libyan Market Using X-Ray Fluorescence

Authors: M. A. Elbagermia, A. I. Alajtala, M. Alkerzab

Abstract:

This study compares the quality of different brands of Portland Cement (PC) available in Libyan market. The amounts of chemical constituents like SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, and Lime Saturation Factor (LSF) were determined in accordance with Libyan (L.S.S) and Amrican (A.S.S) Standard Specifications. All the cement studies were found to be good for concrete work especially where no special property is required. The chemical and mineralogical analyses for studied clinker samples show that the dominant phases composition are C3S and C2S while the C3A and C4AF are less abundant.

Keywords: Portland cement, chemical composition, Libyan market, X-Ray fluorescence

Procedia PDF Downloads 323
806 Prediction of Concrete Hydration Behavior and Cracking Tendency Based on Electrical Resistivity Measurement, Cracking Test and ANSYS Simulation

Authors: Samaila Muazu Bawa

Abstract:

Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.

Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, ANSYS simulation

Procedia PDF Downloads 220
805 The Use of Cement Dust in the Glass Industry

Authors: Magda Kosmal, Anna A. Kuśnierz, Joanna Rybicka-Łada

Abstract:

In the case of waste glass cullet, a fully functioning recycling system for individual glass industries was developed, while recycling of cement dust encounters a number of difficulties and is conducted to a limited extent in the packaging and flat glass industry. The aim of the project was to examine the possibility of using dust arising in cement plants in the process of melting various types of glasses. Dust management has a positive effect on the aspect of environmental protection and ecology. Sets have been designed, and the parameters of the melting process have been optimized. Glasses were obtained with the addition of selected cement dust on a laboratory scale, using DTA, XRD, SEM tests, and a gradient furnace was conducted to check the tendency to crystallization.

Keywords: cement dust, crystallization, glass, XRD, SEM

Procedia PDF Downloads 39
804 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon Nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of Multiwall Carbon Nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28, and 35 days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.

Keywords: carbon nanotubes, Portland cement, composite, compressive strength

Procedia PDF Downloads 400
803 Production Cement Mortar and Concrete by Using Nano Clay

Authors: Mohammad Ashraf, Kawther Mohamed

Abstract:

This research tackles a new kind of additions (Nano Clay) and its effect on the features of concrete and both fresh and hardened cement mortar, as well as setting an optimal percentage of adding it to achieve the desired results and obtain on a strong concrete and mortar can be used for skyscrapers. The cementations additions are mineral materials in the form of a fine powder, added to concrete or cement mortar as partly cement substitutes, which means to be added instead of an equivalent amount of cement in order to improve and enhance some features of concrete or both the newly made and hardened cementations materials.

Keywords: nano clay in structure engineering, nanotechnology in construction industry, advanced additions in concrete, special concrete for skyscrapers

Procedia PDF Downloads 299
802 Mechanical Performance of Geopolymeric Mortars Based on Natural Clay, Fly Ash and Metakaolin

Authors: W. Tahri, B. Samet, F. Pacheco-Torgal, J. L. Barroso de Aguiar, S. Baklouti

Abstract:

Infrastructure rehabilitation represents a multitrillion dollar opportunity for the construction industry. Since the majority of the existent infrastructures are Portland cement concrete based this means that concrete infrastructure rehabilitation is a hot issue to be dealt with. Geopolymers are novel inorganic binders with high potential to replace Portland cement based ones. So far very few studies in the geopolymer field have addressed the rehabilitation of deteriorated concrete structures. This paper discloses results of an investigation concerning the development geopolymeric repair mortars. The mortars are based on Tunisian natural clay plus calcium hydroxide, sodium silicate and sodium hydroxide. Results show that the geopolymeric mortar has a high compressive strength and a lower unrestrained shrinkage performance as long as partial replacement by metakaolin is carried out. The results also show that Tunisian calcined clay based mortars have hydration products with typical geopolymeric phases.

Keywords: geopolymeric mortars, infrastructure repair, compressive strength, shrinkage

Procedia PDF Downloads 301
801 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry

Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati

Abstract:

One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.

Keywords: nanofabrication, cement replacement materials, activation, concrete

Procedia PDF Downloads 582
800 Nanomechanical Properties of Coconut Shell Ash Blended Cement Mortar

Authors: Kumator Taku, Bilkisu Amartey

Abstract:

This research used Grid indentation technique to investigate the effect of the addition of Coconut Shell Ash (CSA) on the nanomechanical properties of the main phases of the hydrated cement paste. Portland cement was partially replaced with 15% CSA at a water-binder ratio of 0.5 and cubes casted and cured for 28 days after which they were polished to reduce surface roughness to the barest minimum. The result of nanoindentation shows that addition of 15% CSA to cement paste transforms portlandite to C-S-H by the pozzolanic reaction. More so, there is reduced porosity and a reduction in the volume of CH by the addition of the CSA. Even though the addition of 15% CSA does not drastically change the average values of the hardness and elastic modulus of the two phases of the C-S-H, it greatly modifies their relative proportions, leading to the production of more HD C-S-H. Overall, incorporating 15%CSA to cement mortar improves the Nanomechanical properties of the four main phases of the hydrated cement paste.

Keywords: Coconut Shell Ash, Elastic Modulus, Hardness, Nanoindentation, Porosity

Procedia PDF Downloads 103
799 Enhancement of Cement Mortar Mechanical Properties with Replacement of Seashell Powder

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

Many synthetic additives have been using for improve cement mortar and concrete characteristics, but natural additive is a friendly environment option. The quantity of (2% and 4%) seashell powder has been replaced in cement mortar, and compared with plain cement mortar in early age of 7 days. The strain gauges have been installed on beams and cube, for monitoring fluctuation of flexural and compressive strength. Main objective of this paper is to study effect of linear static force on flexural and compressive strength of modified cement mortar. The results have been indicated that the replacement of appropriate proportion of seashell powder enhances cement mortar mechanical properties. The replacement of 2% seashell causes improvement of deflection, time to failure and maximum load to failure on concrete beam and cube, the same occurs for compressive modulus elasticity. Increase replacement of seashell to 4% reduces all flexural strength, compressive strength and strain of cement mortar.

Keywords: compressive strength, flexural strength, compressive modulus elasticity, time to failure, deflection

Procedia PDF Downloads 430
798 The Flexural Strength of Fiber-Reinforced Polymer Cement Mortars Using UM Resin

Authors: Min Ho Kwon, Woo Young Jung, Hyun Su Seo

Abstract:

A Polymer Cement Mortar (PCM) has been widely used as the material of repair and restoration work for concrete structure; however a PCM usually induces an environmental pollutant. Therefore, there is a need to develop PCM which is less impact to environments. Usually, UM resin is known to be harmless to the environment. Accordingly, in this paper, the properties of the PCM using UM resin were studied. The general cement mortar and UM resin was mixed in the specified ratio. A certain percentage of PVA fibers, steel fibers and mixed fibers (PVA fiber and steel fiber) were added to enhance the flexural strength. The flexural tests were performed in order to investigate the flexural strength of each PCM. Experimental results showed that the strength of proposed PCM using UM resin is improved when they are compared with general cement mortar.

Keywords: polymer cement mortar, UM resin, compressive strength, PVA fiber, steel fiber

Procedia PDF Downloads 311
797 The Influence of Silica on the Properties of Cementitious Composites

Authors: Eva Stefanovska, Estefania Cuenca, Aleksandra Momirov, Monika Fidanchevska, Liberato Ferrara, Emilija Fidanchevski

Abstract:

Silica is used in construction materials as a part of natural raw materials or as an additive in powder form (micro and nano dimensions). SiO₂ particles in cement act as centers of nucleation, as a filler or as pozzolan material. In this regard, silica improves the microstructure of cementitious composites, increases the mechanical properties, and finally also results into improved durability of the final products. Improved properties of cementitious composites may lead to better structural efficiency, which, together with increased durability, results into increased sustainability signature of structures made with this kind of materials. The aim of the present work was to investigate the influence of silica on the properties of cement. Fly ash (as received and mechanically activated) and synthetized silica (sol-gel method using TEOS as precursor) was used in the investigation as source of silica. Four types of cement mixtures were investigated (reference cement paste, cement paste with addition of 15wt.% as-received fly ash, cement paste with 15 wt.% mechanically activated fly ash and cement paste with 14wt.% mechanically activated fly ash and 1 wt.% silica). The influence of silica on setting time and mechanical properties (2, 7 and 28 days) was followed. As a matter of fact it will be shown that cement paste with composition 85 wt. % cement, 14 wt.% mechanically activated fly ash and 1 wt. % SiO₂ obtained by the sol-gel method was the best performing one, with increased compressive and flexure strength by 9 and 10 % respectively, as compared to the reference mixture. Acknowledgements: 'COST Action CA15202, www.sarcos.eng.cam.ac.uk'

Keywords: cement, fly ash, mechanical properties, silica, sol-gel

Procedia PDF Downloads 119
796 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 105
795 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal

Abstract:

The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength

Procedia PDF Downloads 277
794 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as blast-furnace slag and limestone, to replace cement clinker is a promising method to reduce the carbon emissions from cement production. To efficiently use slag and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. The Portland cement (PC) was prepared by grinding 95% clinker + 5% gypsum. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., NO.1 fine slag, medium PC, and coarse limestone; NO.2 fine limestone, medium PC, and coarse slag; NO.3. fine PC, medium slag, and coarse limestone. The binder contents in the ternary cements were (a) 50 % PC, 40 % slag, and 10 % limestone (called high cement group) or (b) 35 % PC, 55 % slag, and 10 % limestone (called low cement group). The pure PC and binary cement with 50% slag and 50% PC prepared with the same binders as the ternary cement were considered as reference cements. All these cements were used to investigate the mortar performance in terms of workability, strength at 2, 7, 28, and 90 days, carbonation resistance, and non-steady state chloride migration resistance at 28 and 56 days. Results show that blending medium PC with fine slag could exhibit comparable performance to blending fine PC with medium/coarse slag in binary cement. For the three ternary cements in the high cement group, ternary cement with fine limestone (NO.2) shows the lowest strength, carbonation, and chloride migration performance. Ternary cements with fine slag (NO.1) and with fine PC (NO.3) show the highest flexural strength at early and late ages, respectively. In addition, compared with ternary cement with fine PC (NO.3), ternary cement with fine slag (NO.1) has a similar carbonation resistance and a better chloride migration resistance. For the low cement group, three ternary cements have a similar flexural and compressive strength before 7 days. After 28 days, ternary cement with fine limestone (NO.2) shows the highest flexural strength while fine PC (NO.3) has the highest compressive strength. In addition, ternary cement with fine slag (NO.1) shows a better chloride migration resistance but a lower carbonation resistance compared with the other two ternary cements. Moreover, the durability performance of ternary cement with fine PC (NO.3) is better than that of fine limestone (NO.2).

Keywords: limestone, particle size distribution, slag, ternary cement

Procedia PDF Downloads 97
793 Effect of Nanofibers on the Behavior of Cement Mortar and Concrete

Authors: Mostafa Osman, Ata El-Kareim Shoeib

Abstract:

The main objective of this paper is study the influence of carbon nano-tubes fibers and nano silica fibers on the characteristic compressive strength and flexural strength on concrete and cement mortar. Twelve tested specimens were tested with square section its dimensions (40*40*160) mm, divided into four groups. The first and second group studied the effect of carbon nano-tubes (CNTs) fiber with different percentage equal to 0.0, 0.11 %, 0.22 %, and 0.33 % by weight of cement and effect of nano-silica (nS) fibers with different percentages equal to 0.0, 1.0 %, 2.0 %, and 3.0 % by weight of cement on the cement mortar. The third and fourth groups studied the effect of CNTs fiber with different percentage equal to 0.0 %, 0.11 %, and 0.22 % by weight of cement, and effect of nS fibers with different percentages were equal to 0.0 %, 1.0%, and 2.0 % by weight of cement on the concrete. The compressive strength and flexural strength at 7, 28, and 90 days is determined. From analysis of tested results concluded that the nano-fiber is more effective when used with cement mortar than that of used with concrete because of increasing the surface area, decreasing the pore and the collection of nano-fiber. And also by adding nano-fiber the improvement of flexural strength of concrete and cement mortar is more than improvement of compressive strength.

Keywords: carbon nano-tubes (CNTs) fibres, nano-silica (nS) fibres, compressive strength, flexural strength

Procedia PDF Downloads 290
792 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer

Authors: K. Benyounes, A. Benmounah

Abstract:

Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.

Keywords: rheology, cement grout, bentonite, superplasticizer, viscosity, yield stress

Procedia PDF Downloads 333
791 Cement Matrix Obtained with Recycled Aggregates and Micro/Nanosilica Admixtures

Authors: C. Mazilu, D. P. Georgescu, A. Apostu, R. Deju

Abstract:

Cement mortars and concretes are some of the most used construction materials in the world, global cement production being expected to grow to approx. 5 billion tons, until 2030. But, cement is an energy intensive material, the cement industry being responsible for cca. 7% of the world's CO2 emissions. Also, natural aggregates represent non-renewable resources, exhaustible, which must be used efficiently. A way to reduce the negative impact on the environment is the use of additional hydraulically active materials, as a partial substitute for cement in mortars and concretes and/or the use of recycled concrete aggregates (RCA) for the recovery of construction waste, according to EU Directive 2018/851. One of the most effective active hydraulic admixtures is microsilica and more recently, with the technological development on a nanometric scale, nanosilica. Studies carried out in recent years have shown that the introduction of SiO2 nanoparticles into cement matrix improves the properties, even compared to microsilica. This is due to the very small size of the nanosilica particles (<100nm) and the very large specific surface, which helps to accelerate cement hydration and acts as a nucleating agent to generate even more calcium hydrosilicate which densifies and compacts the structure. The cementitious compositions containing recycled concrete aggregates (RCA) present, in generally, inferior properties compared to those obtained with natural aggregates. Depending on the degree of replacement of natural aggregate, decreases the workability of mortars and concretes with RAC, decrease mechanical resistances and increase drying shrinkage; all being determined, in particular, by the presence to the old mortar attached to the original aggregate from the RAC, which makes its porosity high and the mixture of components to require more water for preparation. The present study aims to use micro and nanosilica for increase the performance of some mortars and concretes obtained with RCA. The research focused on two types of cementitious systems: a special mortar composition used for encapsulating Low Level radioactive Waste (LLW); a composition of structural concrete, class C30/37, with the combination of exposure classes XC4+XF1 and settlement class S4. The mortar was made with 100% recycled aggregate, 0-5 mm sort and in the case of concrete, 30% recycled aggregate was used for 4-8 and 8-16 sorts, according to EN 206, Annex E. The recycled aggregate was obtained from a specially made concrete for this study, which after 28 days was crushed with the help of a Retsch jaw crusher and further separated by sieving on granulometric sorters. The partial replacement of cement was done progressively, in the case of the mortar composition, with microsilica (3, 6, 9, 12, 15% wt.), nanosilica (0.75, 1.5, 2.25% wt.), respectively mixtures of micro and nanosilica. The optimal combination of silica, from the point of view of mechanical resistance, was later used also in the case of the concrete composition. For the chosen cementitious compositions, the influence of micro and/or nanosilica on the properties in the fresh state (workability, rheological characteristics) and hardened state (mechanical resistance, water absorption, freeze-thaw resistance, etc.) is highlighted.

Keywords: cement, recycled concrete aggregates, micro/nanosilica, durability

Procedia PDF Downloads 35
790 A Study on the Possibility of Utilizing the Converter Slag as the Cement Admixture

Authors: Choi Woo-Seok, Kim Eun-Sup, Ha Eun-Ryong

Abstract:

Converter slag is used as a low-value product like a construction fill material and soil stabilizer unlike electric furnace slag and blast furnace slag. This study is fundamental research for utilizing the converter slag as the cement admixture. Magnetic separation was conducted for quality improvement of the converter slag, and it was classified according to into 3 types; SA: pure slag, SB: separated slag, SC: remained slag after separating. In XRF result, SB slag was Fe₂CO₃ ratio was higher, and CaO ratio was lower than SA. SC slag was Fe₂CO₃ ratio was lower, and CaO ratio was higher than SA. In compressive strength test for soil cement using SA, SB, SC as the cement admixture, SC slag was more effective in terms of 28days compressive strength than SA, SB slag. In this result, it is considered that the remained material (SC) after magnetic separation is available as the cement admixture.

Keywords: converter slag, magnetic separation, cement admixture, compressive strength

Procedia PDF Downloads 745
789 Eco-Efficient Cementitious Materials for Construction Applications in Ireland

Authors: Eva Ujaczki, Rama Krishna Chinnam, Ronan Courtney, Syed A. M. Tofail, Lisa O'Donoghue

Abstract:

Concrete is the second most widely used material in the world and is made of cement, sand, and aggregates. Cement is a hydraulic binder which reacts with water to form a solid material. In the cement manufacturing process, the right mix of minerals from mined natural rocks, e.g., limestone is melted in a kiln at 1450 °C to form a new compound, clinker. In the final stage, the clinker is milled into a fine cement powder. The principal cement types manufactured in Ireland are: 1) CEM I – Portland cement; 2) CEM II/A – Portland-fly ash cement; 3) CEM II/A – Portland-limestone cement and 4) CEM III/A – Portland-round granulated blast furnace slag (GGBS). The production of eco-efficient, blended cement (CEM II, CEM III) reduces CO₂ emission and improves energy efficiency compared to traditional cements. Blended cements are produced locally in Ireland and more than 80% of produced cement is blended. These eco-efficient, blended cements are a relatively new class of construction materials and a kind of geopolymer binders. From a terminological point of view, geopolymer cement is a binding system that is able to harden at room temperature. Geopolymers do not require calcium-silicate-hydrate gel but utilize the polycondensation of SiO₂ and Al₂O₃ precursors to achieve a superior strength level. Geopolymer materials are usually synthesized using an aluminosilicate raw material and an activating solution which is mainly composed of NaOH or KOH and Na₂SiO₃. Cement is the essential ingredient in concrete which is vital for economic growth of countries. The challenge for the global cement industry is to reach to increasing demand at the same time recognize the need for sustainable usage of resources. Therefore, in this research, we investigated the potential for Irish wastes to be used in geopolymer cement type applications through a national stakeholder workshop with the Irish construction sector and relevant stakeholders. This paper aims at summarizing Irish stakeholder’s perspective for introducing new secondary raw materials, e.g., bauxite residue or increasing the fly ash addition into cement for eco-efficient cement production.

Keywords: eco-efficient, cement, geopolymer, blending

Procedia PDF Downloads 130
788 Estimation of Opc, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method

Authors: Suresh Palla

Abstract:

This research paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by novel selective dissolution method. Types of cement samples investigated include OPC with fly ash as performance improver, OPC with slag as performance improver, PPC, PSC and Composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this novel selective dissolution method can be successfully used for estimation of OPC and SCMs contents in different types of cements.

Keywords: selective dissolution method , fly ash, ggbfs slag, edta

Procedia PDF Downloads 132
787 Biochar Affects Compressive Strength of Portland Cement Composites: A Meta-Analysis

Authors: Zhihao Zhao, Ali El-Nagger, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang

Abstract:

One strategy to reduce CO₂ emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3-13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 °C/min, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochars with small particle sizes increased the compressive strength of Portland cement composites by 2-7% compared to those without biochar addition. Biochar dosage of < 2.5% of the binder weight enhanced both compressive strengths and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We conclude that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.

Keywords: biochar, Portland cement, constructure, compressive strength, meta-analysis

Procedia PDF Downloads 32