Search results for: cell adhesion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3877

Search results for: cell adhesion

3517 Analysis of Osmotin as Transcription Factor/Cell Signaling Modulator Using Bioinformatic Tools

Authors: Usha Kiran, M. Z. Abdin

Abstract:

Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. It provides plants protection from pathogens, hence placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported in plants including transgenic tomato and strawberry conferring tolerance against both biotic and abiotic stresses. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin induced proline accumulation could be due to its involvement as transcription factor and/or cell signal pathway modulator in proline biosynthesis. The present investigation was therefore, undertaken to analyze the osmotin protein as transcription factor /cell signalling modulator using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNA-binding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. We, however, found evidence implicating osmotin in cell signaling. With these results, we concluded that osmotin is not a transcription factor but regulating proline biosynthesis and accumulation through cell signaling during abiotic stresses.

Keywords: osmotin, cell signaling modulator, bioinformatic tools, protein

Procedia PDF Downloads 241
3516 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 242
3515 Improving Alginate Bioink by Recombinant Spider-Silk Biopolymer

Authors: Dean Robinson, Miriam Gublebank, Ella Sklan, Tali Tavor Re'em

Abstract:

Alginate, a natural linear polysaccharide polymer extracted from brown seaweed, is extensively applied due to its biocompatibility, all- aqueous ease of handling, and relatively low costs. Alginate easily forms a hydrogel when crosslinked with a divalent ion, such as calcium. However, Alginate hydrogel holds low mechanical properties and is cell-inert. To overcome these drawbacks and to improve alginate as a bio-ink for bioprinting, we produced a new alginate matrix combined with spider silk, one of the most resilient, elastic, strong materials known to men. Recombinant spider silk biopolymer has a sponge-like structure and is known to be biocompatible and non-immunogenic. Our results indicated that combining synthetic spider-silk into bio-printed cell-seeded alginate hydrogels resulted in improved properties compared to alginate: improved mechanical properties of the matrix, achieving a tunable gel viscosity and high printability, alongside prolonged and higher cell viability in culture, probably due to the improved cell-matrix interactions. The new bio-ink was then used for bilayer bioprinting of epithelial and stromal endometrial cells. Such a co-culture model will be used for the formation of the complex endometrial tissue for studying the embryo implantation process.

Keywords: cell culture, tissue engineering, spider silk, alginate, bioprinting

Procedia PDF Downloads 158
3514 Surface Display of Lipase on Yarrowia lipolytica Cells

Authors: Evgeniya Y. Yuzbasheva, Tigran V. Yuzbashev, Natalia I. Perkovskaya, Elizaveta B. Mostova

Abstract:

Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively.

Keywords: biodiesel, cell-surface display, lipase, whole-cell biocatalyst

Procedia PDF Downloads 462
3513 Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)

Authors: He Yuhai, Ahmad Ziad Bin Sulaiman

Abstract:

Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction.

Keywords: ultrasound, enzymatic, extraction, Eurycoma longifolia

Procedia PDF Downloads 393
3512 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 501
3511 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films

Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost

Abstract:

In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.

Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate

Procedia PDF Downloads 89
3510 Cytotoxic Activity of Extracts from Hibiscus sabdariffa Leaves against Women’s Cancer Cell Lines

Authors: Patsorn Worawattananutai, Srisopa Ruangnoo, Arunporn Itharat

Abstract:

Hibiscus sabdariffa (HS) leaves are vegetables which are extensively used as blood tonic and laxatives in Thai traditional medicine. They are popularly used as healthy sour soup for prevention of chronic diseases such as cancer. Therefore, the cytotoxic activity of different extracts of fresh and dried Hibiscus sabdariffa leaves were investigated via the sulforhodamine B (SRB) assay against three types of women’s cancer cell lines, namely the human cervical adenocarcinoma cell line (HeLa), the human ovarian adenocarcinoma cell line (SKOV-3), and the human breast adenocarcinoma cell line (MCF-7). Extraction methods were squeezing, boiling with water and maceration with 95% or 50% ethanol. The 95% ethanolic extracts of Hibiscus sabdariffa dry leaves (HSDE95) showed the highest cytotoxicity against all types of women’s cancer cell lines with the IC50 values in range 7.51±0.33 to 12.13±1.85 µg/ml. Its IC50 values against SKOV-3, HeLa and MCF-7 were 7.51±0.33, 9.44±1.41 and 12.13±1.85 µg/ml, respectively. In these results, this extract can be classified as “active” according to the NCI guideline which indicated that IC50 values of the active cytotoxic plant extracts have to be beneath 20 µg/ml. Thus, HSDE95 was concluded to be a potent cytotoxic drug for all women’s cancer cells. This extract should be further investigated to isolate active compounds against women’s cancer cells.

Keywords: breast adenocarcinoma, cervical adenocarcinoma, cytotoxic activity, Hibiscus sabdariffa, ovarian adenocarcinoma

Procedia PDF Downloads 568
3509 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications

Authors: Bryan D. Llenarizas, Maria Carla F. Manzano

Abstract:

The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.

Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole

Procedia PDF Downloads 44
3508 Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Xiang Chen

Abstract:

After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime.

Keywords: foul-release nanocoatings, graphene-based nanocomposite, polymer, nanofillers

Procedia PDF Downloads 108
3507 Relative Expression and Detection of MUB Adhesion Domains and Plantaricin-Like Bacteriocin among Probiotic Lactobacillus plantarum-Group Strains Isolated from Fermented Foods

Authors: Sundru Manjulata Devi, Prakash M. Halami

Abstract:

The immemorial use of fermented foods from vegetables, dairy and other biological sources are of great demand in India because of their health benefits. However, the diversity of Lactobacillus plantarum group (LPG) of vegetable origin has not been revealed yet, particularly with reference to their probiotic functionalities. In the present study, the different species of probiotic Lactobacillus plantarum group (LPG) i.e., L. plantarum subsp. plantarum MTCC 5422 (from fermented cereals), L. plantarum subsp. argentoratensis FG16 (from fermented bamboo shoot) and L. paraplantarum MTCC 9483 (from fermented gundruk) (as characterized by multiplex recA PCR assay) were considered to investigate their relative expression of MUB domains of mub gene (mucin binding protein) by Real time PCR. Initially, the allelic variation in the mub gene was assessed and found to encode three different variants (Type I, II and III). All the three types had 8, 9 and 10 MUB domains respectively (as analysed by Pfam database) and were found to be responsible for adhesion of bacteria to the host intestinal epithelial cells. These domains either get inserted or deleted during speciation or evolutionary events and lead to divergence. The reverse transcriptase qPCR analysis with mubLPF1+R1 primer pair supported variation in amplicon sizes with 300, 500 and 700 bp among different LPG strains. The relative expression of these MUB domains significantly unregulated in the presence of 1% mucin in overnight grown cultures. Simultaneously, the mub gene expressed efficiently by 7 fold in the culture L. paraplantarum MTCC 9483 with 10 MUB domains. An increase in the expression levels for L. plantarum subsp. plantarum MTCC 5422 and L. plantarum subsp. argentoratensis FG16 (MCC 2974) with 9 and 8 repetitive domains was around 4 and 2 fold, respectively. The detection and expression of an integrase (int) gene in the upstream region of mub gene reveals the excision and integration of these repetitive domains. Concurrently, an in vitro adhesion assay to mucin and exclusion of pathogens (such as Listeria monocytogenes and Micrococcus leuteus) was investigated and observed that the L. paraplantarum MTCC 9483 with more adhesion domains has more ability to adhere to mucin and inhibited the growth of pathogens. The production and expression of plantaricin-like bacteriocin (plnNC8 type) in MTCC 9483 suggests the pathogen inhibition. Hence, the expression of MUB domains can act as potential biomarkers in the screening of a novel probiotic LPG strain with adherence property. The present study provides a platform for an easy, rapid, less time consuming, low-cost methodology for the detection of potential probiotic bacteria. It was known that the traditional practices followed in the preparation of fermented bamboo shoots/gundruk/cereals of Indian foods contain different kinds of neutraceuticals for functional food and novel compounds with health promoting factors. In future, a detailed study of these food products can add more nutritive value, consumption and suitable for commercialization.

Keywords: adhesion gene, fermented foods, MUB domains, probiotics

Procedia PDF Downloads 240
3506 The Comparison of Primary B-Cell and NKT-Cell Non-Hodgkin Lymphomas in Nasopharynx, Nasal Cavity, and Paranasal Sinuses

Authors: Jiajia Peng, Jianqing Qiu, Jianjun Ren, Yu Zhao

Abstract:

Background: We aimed to compare clinical and survival differences between B-cell (B-NHL) and NKT-cell non-Hodgkin lymphomas (NKT-NHL) located in the nasal cavity, nasopharynx and paranasal sinuses, which are always categorized as one sinonasal type. Methods: Patients diagnosed with primary B-NHL and NKT-NHL in the nasal cavity, nasopharynx, and paranasal sinuses from the SEER database were included. We identified these patients based on histological types and anatomical sites and subsequently conducted univariate and multivariate Cox regression and Kaplan–Meier analyses to examine cancer-special survival (CSS) outcomes. Results: Overall, most B-NHL cases originated from the nasopharynx, while the majority of NKT-NHL cases occurred in the nasal cavity. Notably, the CSS outcomes improved significantly in all sinonasal B-NHL cases over time, whereas no such improvement trend was observed in each sinonasal NKT-NHL type. Additionally, increasing age was linked with an elevated risk of death in B-NHL, particularly in the nasal cavity (HR:3.37), rather than in NKT-NHL. Compared with B-NHL, the adverse effect of the higher stage on CSS was more evident in NKT-NHL, particularly in its nasopharynx site (HR: 5.12). Furthermore, radiotherapy was beneficial for survival in patients with sinonasal B-NHL and NKT-NHL, except in those with NKT-NHL in the nasopharynx site. However, chemotherapy has only been beneficial for CSS in patients with B-NHL in paranasal sinuses (HR: 0.42) since 2010, rather than in other types of B-NHL or NKT-NHL. Conclusions: Although B-NHL and NKT-NHL in the nasal cavity, nasopharynx and paranasal sinuses have similar anatomical locations, their clinic demographics and prognoses are largely different and should be treated and studied as distinct diseases.

Keywords: B-cell non-Hodgkin lymphomas, NKT-cell non-Hodgkin lymphomas, nasal cavity lymphomas, nasal sinuses lymphomas, nasopharynx lymphomas

Procedia PDF Downloads 79
3505 The Inhibitory Effect of Weissella koreensis 521 Isolated from Kimchi on 3T3-L1 Adipocyte Differentiation

Authors: Kyungbae Pi, Kibeom Lee, Yongil Kim, Eun-Jung Lee

Abstract:

Abnormal adipocyte growth, in terms of increased cell numbers and increased cell differentiation, is considered to be a major pathological feature of obesity. Thus, the inhibition of preadipocyte mitogenesis and differentiation could help prevent and suppress obesity. The aim of this study was to assess whether extracts from Weissella koreensis 521 cells isolated from kimchi could exert anti-adipogenic effects in 3T3-L1 cells (fat cells). Differentiating 3T3-L1 cells were treated with W. koreensis 521 cell extracts (W. koreensis 521_CE), and cell viability was assessed by MTT assays. At concentrations below 0.2 mg/ml, W. koreensis 521_CE did not exert any cytotoxic effect in 3T3-L1 cells. However, treatment with W. koreensis 521_CE significantly inhibited adipocyte differentiation, as assessed by morphological analysis and Oil Red O staining of fat. W. koreensis 521_CE treatment (0.2 mg/ml) also reduced lipid accumulation by 24% in fully differentiated 3T3-L1 adipocytes. These findings collectively indicate that Weissella koreensis 521 may help prevent obesity.

Keywords: Weissella koreensis 521, 3T3-L1 cells, adipocyte differentiation, obesity

Procedia PDF Downloads 227
3504 Comparative Study between Mesenchymal Stem Cells and Regulatory T-Cells in Macrophage Polarization for Organ Transplant Tolerance: In Vitro Study

Authors: Vijaya Madhuri Devraj, Swarnalatha Guditi, Kiran Kumar Bokara, Gangadhar Taduri

Abstract:

Cell-based strategies may open therapeutic approaches that promote tolerance through manipulation of macrophages to increase long-term transplant survival rates and minimize side effects of the current immune suppressive regimens. The aim of the present study was, therefore, to test and compare the therapeutic potential of MSC and Tregs on macrophage polarization to develop an alternate cell-based treatment option in kidney transplantation. In the current protocol, macrophages from kidney transplant recipients with graft dysfunction were co-cultured with MSCs and Treg cells with and without cell-cell contact on transwell plates, further to quantitatively assess macrophage polarization in response to MSC and Treg treatment over time, M1 and M2 cell surface markers were used. Additionally, multiple soluble analytes were analyzed in cell supernatant by using bead-based immunoassays. Furthermore, to confirm our findings, gene expression analysis was done. MSCs induced the formation of M2 macrophages more than Tregs when macrophages M0 were cultured in transwell without cell contact. From this, we deduced the mechanism that soluble factors present in the MSCs condition media are involved in skewing of macrophages towards type 2 macrophages; similarly, in co-culture with cell-cell contact, MSCs resulted in more M2 type macrophages than Tregs. And an important finding of this study is the combination of both MSC-Treg showed significantly effective and consistent results in both with and without cell contact setups. Hence, it is suggestive to prefer MSCs over Tregs for secretome-based therapy and a combination of both for either therapy for effective transplantation outcomes. Our findings underline a key role of Tregs and MSCs in promoting macrophage polarization towards anti-inflammatory type. The study has great importance in prolongation of allograft and patient survival without any rejection by cell-based therapy, which induce self-tolerance and controlling infection.

Keywords: graft rejection, graft tolerance, macrophage polarization, mesenchymal stem cells, regulatory T cells, transplant immunology

Procedia PDF Downloads 90
3503 Effect of Far Infrared and Endothelial Cell Growth Supplement on Human Umbilical Vascular Endothelial Cells

Authors: Ming-Tzu Tsai, Jui-Ting Hsu, Chia-Chieh Lin, Feng-Tsai Chiang, Cheng-Chin Huang

Abstract:

Far infrared (FIR), an invisible and short electromagnetic waves ranges from 6-14 μm also defines as the “growth ray.” Although the mechanism of FIR is still unknown, most data have suggested that FIR could accelerate the skin microcirculation by elevating the blood flow and nitric-oxide (NO) synthesis. In this present work, the effect of FIR irradiation and endothelial cell growth supplement (ECGS) on human umbilical vascular endothelial cells (HUVECs) was evaluated. To understand whether the cell viability and NO production of HUVECs affected by NO, cells with/without ECGS were treated in the presence or absence of L-NAME, an eNOS inhibitor. For FIR exposure, FIR-emitted ceramic powders consisted of a variety of well-mixed metal oxides were developed. The results showed that L-NAME did had a strong effect on the inhibition of NO production, especially in the ECGS-treated group. However, the cell viability of each group was rarely affected in the presence of L-NAME. Cells with the incubation of ECGS showed much higher cell viability compared to the control. Moreover, NO production of HUVECs exposed to FIR irradiation was significantly inhibited in the presence of L-NAME. It suggested that NO could play a role modulating the downstream signals of HUVECs during FIR exposure.

Keywords: far-infrared irradiation (FIR), nitric oxide (NO), endothelial nitric oxide synthase (eNOS), endothelial cell growth supplement (ECGS)

Procedia PDF Downloads 403
3502 Osteogenesis in Thermo-Sensitive Hydrogel Using Mesenchymal Stem Cell Derived from Human Turbinate

Authors: A. Reum Son, Jin Seon Kwon, Seung Hun Park, Hai Bang Lee, Moon Suk Kim

Abstract:

These days, stem cell therapy is focused on for promising source of treatment in clinical human disease. As a supporter of stem cells, in situ-forming hydrogels with growth factors and cells appear to be a promising approach in tissue engineering. To examine osteogenic differentiation of hTMSCs which is one of mesenchymal stem cells in vivo in an injectable hydrogel, we use a methoxy polyethylene glycol-polycaprolactone blockcopolymer (MPEG-PCL) solution with osteogenic factors. We synthesized MPEG-PCL hydrogel and measured viscosity to check sol-gel transition. In order to demonstrate osteogenic ability of hTMSCs, we conducted in vitro osteogenesis experiment. Then, to confirm the cell cytotoxicity, we performed WST-1 with hTMSCs and MPEG-PCL. As the result of in vitro experiment, we implanted cell and hydrogel mixture into animal model and checked degree of osteogenesis with histological analysis and amount of expression genes. Through these experimental data, MPEG-PCL hydrogel has sol-gel transition in temperature change and is biocompatible with stem cells. In histological analysis and gene expression, hTMSCs are very good source of osteogenesis with hydrogel and will use it to tissue engineering as important treatment method. hTMSCs could be a good adult stem cell source for usability of isolation and high proliferation. When hTMSCs are used as cell therapy method with in situ-formed hydrogel, they may provide various benefits like a noninvasive alternative for bone tissue engineering applications.

Keywords: injectable hydrogel, stem cell, osteogenic differentiation, tissue engineering

Procedia PDF Downloads 422
3501 A Ferutinin Analogue with Enhanced Potency and Selectivity against Estrogen Receptor Positive Breast Cancer Cells in vitro

Authors: Remi Safi, Aline Hamade, Najat Bteich, Jamal El Saghir, Mona Diab Assaf, Marwan El-Sabban, Fadia Najjar

Abstract:

Estrogen is considered a risk factor for breast cancer since it promotes breast-cell proliferation. The jaesckeanadiol-3-p-hydroxyphenylpropanoate, a hemi-synthetic analogue of the natural phytoestrogen ferutinin (jaesckeanadiol-p-hydroxybenzoate), is designed to be devoid of estrogenic activity. This analogue induces a cytotoxic effect 30 times higher than that of ferutinin towards MCF-7 breast cancer cell line. We compared these two compounds with respect to their effect on proliferation, cell cycle distribution and cancer stem-like cells in the MCF-7 cell line. Treatment with ferutinin (30 μM) and its analogue (1 μM) produced a significant accumulation of cells at the pre G0/G1 cell cycle phase and triggered apoptosis. Importantly, this compound retains its anti-proliferative activity against breast cancer stem/progenitor cells that are naturally insensitive to ferutinin at the same dose. These results position ferutinin analogue as an effective compound inhibiting the proliferation of estrogen-dependent breast cancer cells and consistently targeting their stem-like cells.

Keywords: ferutinin, hemi-synthetic analogue, breast cancer, estrogen, stem/progenitor cells

Procedia PDF Downloads 160
3500 Platform Development for Vero Cell Culture on Microcarriers Using Dissociation-Reassociation Method

Authors: Thanunthon Bowornsakulwong, Charukorn Charukarn, Franck Courtes, Panit Kitsubun, Lalintip Horcharoen

Abstract:

Vero cell is a continuous cell line that is widely used for the production of viral vaccines. However, due to its adherent characteristic, scaling up strategy in large-scale production remains complicated and thus limited. Consequently, suspension-like Vero cell culture processes based on microcarriers have been introduced and employed while also providing increased surface area per volume unit. However, harvesting Vero cells from microcarriers is a huge challenge due to difficulties in cells detaching, lower recovery yield, time-consuming and dissociation agent carry-over. To overcome these problems, we developed a dissociation-association platform technology for detaching and re-attaching cells during subculturing from microcarriers to microcarriers, which will be conveniently applied to seed trains strategies in large scale bioreactors. Herein, Hillex-2 was used to culture Vero cells in serum-containing media using spinner flasks as a scale-down model. The overall confluency of cells on microcarriers was observed using inverted microscope, and the sample cells were daily detached in order to obtain the kinetics data. The metabolites consumption and by-products formation were determined by Nova Biomedical BioprofileFlex.

Keywords: dissociation-reassociation, microcarrier, scale up, Vero cell

Procedia PDF Downloads 113
3499 Wired Network Services in Mobile Phones

Authors: Subhash Reddy

Abstract:

Mobile communication in today’s world means a lot to the human kind, through this many deals are made and others are broken, within seconds. That is because of our sophisticated methods of transporting the data at very high speeds and to very long distances, within no time. That is also because we kept on changing the method of serving the connections as the no of connections kept on increasing, that has led to many methods like TDMA, CDMA, and FDMA, etc. in wireless communications. And also the areas, where the connections are provided are also divided into CELLS, which are the basic blocks for cellular communications. Along with the wireless network, providing a wired network in mobile phones would serve as a very good alternative and would divert the extra traffic of a cell, so that a CELL which is providing wireless network can operate more efficiently.

Keywords: CDMA, FDMA, TDMA, CELL

Procedia PDF Downloads 457
3498 ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell

Authors: S. Limpattayanate, M. Hunsom

Abstract:

A comparison of activity and stability of the as-formed Pt/C, Pt-Co, and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single proton exchange membrane (PEM) fuel cell, the oxygen reduction reaction (ORR) activity of the Pt-M/C electro catalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C>Pt-Co/C>Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electro chemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt-Pd/C was the most stable than the other three electrocatalysts.

Keywords: ORR activity, stability, Pt-based electrocatalysts, PEM fuel cell

Procedia PDF Downloads 421
3497 Modeling and Simulation of InAs/GaAs and GaSb/GaAS Quantum Dot Solar Cells in SILVACO TCAD

Authors: Fethi Benyettou, Abdelkader Aissat, M. A. Benammar

Abstract:

In this work, we use Silvaco TCAD software for modeling and simulations of standard GaAs solar cell, InAs/GaAs and GaSb/GaAs p-i-n quantum dot solar cell. When comparing 20-layer InAs/GaAs, GaSb/GaAs quantum dots solar cells with standard GaAs solar cell, the conversion efficiency in simulation results increased from 16.48 % to 22.6% and 16.48% to 22.42% respectively. Also, the absorption range edge of photons with low energies extended from 900 nm to 1200 nm.

Keywords: SILVACO TCAD, the quantum dot, simulation, materials engineering

Procedia PDF Downloads 455
3496 Ascidian Styela rustica Proteins’ Structural Domains Predicted to Participate in the Tunic Formation

Authors: M. I. Tyletc, O. I. Podgornya, T. G. Shaposhnikova, S. V. Shabelnikov, A. G. Mittenberg, M. A. Daugavet

Abstract:

Ascidiacea is the most numerous class of the Tunicata subtype. These chordates' distinctive feature of the anatomical structure is a tunic consisting of cellulose fibrils, protein molecules, and single cells. The mechanisms of the tunic formation are not known in detail; tunic formation could be used as the model system for studying the interaction of cells with the extracellular matrix. Our model species is the ascidian Styela rustica, which is prevalent in benthic communities of the White Sea. As previously shown, the tunic formation involves morula blood cells, which contain the major 48 kDa protein p48. P48 participation in the tunic formation was proved using antibodies against the protein. The nature of the protein and its function remains unknown. The current research aims to determine the amino acid sequence of p48, as well as to clarify its role in the tunic formation. The peptides that make up the p48 amino acid sequence were determined by mass spectrometry. A search for peptides in protein sequence databases identified sequences homologous to p48 in Styela clava, Styela plicata, and Styela canopus. Based on sequence alignment, their level of similarity was determined as 81-87%. The correspondent sequence of ascidian Styela canopus was used for further analysis. The Styela rustica p48 sequence begins with a signal peptide, which could indicate that the protein is secretory. This is consistent with experimentally obtained data: the contents of morula cells secreted in the tunic matrix. The isoelectric point of p48 is 9.77, which is consistent with the experimental results of acid electrophoresis of morula cell proteins. However, the molecular weight of the amino acid sequence of ascidian Styela canopus is 103 kDa, so p48 of Styela rustica is a shorter homolog. The search for conservative functional domains revealed the presence of two Ca-binding EGF-like domains, thrombospondin (TSP1) and tyrosinase domains. The p48 peptides determined by mass spectrometry fall into the region of the sequence corresponding to the last two domains and have amino acid substitutions as compared to Styela canopus homolog. The tyrosinase domain (pfam00264) is known to be part of the phenoloxidase enzyme, which participates in melanization processes and the immune response. The thrombospondin domain (smart00209) interacts with a wide range of proteins, and is involved in several biological processes, including coagulation, cell adhesion, modulation of intercellular and cell-matrix interactions, angiogenesis, wound healing and tissue remodeling. It can be assumed that the tyrosinase domain in p48 plays the role of the phenoloxidase enzyme, and TSP1 provides a link between the extracellular matrix and cell surface receptors, and may also be responsible for the repair of the tunic. The results obtained are consistent with experimental data on p48. The domain organization of protein suggests that p48 is an enzyme involved in the tunic tunning and is an important regulator of the organization of the extracellular matrix.

Keywords: ascidian, p48, thrombospondin, tyrosinase, tunic, tunning

Procedia PDF Downloads 80
3495 Activity of Malate Dehydrogenase in Cell Free Extracts from S. proteamaculans, A. hydrophila, and K. pneumoniae

Authors: Mohamed M. Bumadian, D. James Gilmour

Abstract:

Three bacterial species were isolated from the River Wye (Derbyshire, England) and identified using 16S rRNA gene sequencing as Serratia proteamaculans, Aeromonas hydrophila and Klebsiella pneumoniae. Respiration rates of the strains were measured in order to determine the metabolic activity under salt stress. The highest respiration rates of all three strains were found at 0.17 M and 0.5 M NaCl and then the respiration rate decreased with increasing concentrations of NaCl. In addition, the effect of increasing concentrations of NaCl on malate dehydrogenase activity was determined using cell-free extracts of the three strains. Malate dehydrogenase activity was stimulated at NaCl concentrations up to 0.5 M, and a small level of activity remained even at 3.5 M NaCl. The pH optimum of the malate dehydrogenase in cell-free extracts of all strains was higher than pH 7.5.

Keywords: fresh water, halotolerant pathogenic bacteria, 16S rRNA gene, cell-free extracts, respiration rates, malate dehydrogenase

Procedia PDF Downloads 435
3494 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz

Abstract:

The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing the handover procedure while the user is on the move. However, the dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and handover failure because of short time of stay of the user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. Multi-tier small cells network is considered in this work. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method has decreased the candidate small cell list, unnecessary handovers, handover failure, and short time of stay cells compared to the competitive method.

Keywords: handover, HetNets, multi-attribute decision making, small cells

Procedia PDF Downloads 85
3493 Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines

Authors: Ceyda Okudu, Secil Eroglu, Khandakar A. S. M. Saadat, Sibel O. Balci

Abstract:

Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not.

Keywords: breast cancer, epigenetic, microRNAs, RNF2

Procedia PDF Downloads 151
3492 Plant Cell Culture to Produce Valuable Natural Products

Authors: Jehad Dumireih, Malak Dmirieh, Michael Wink

Abstract:

The present work is aimed to use plant cell suspension cultures of Crataegus monogyna for biosynthesis of valuable natural products by using quercetin as an inexpensive precursor. Suspension cell cultures of C. monogyna were established by using Murashige and Skoog medium (MS) supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L kinetin. Cells were harvested from the cultures and extracted by using methanol and ethyl acetate; then the extracts were used for the identification of isoquercetin by HPLC and by mass spectrometry. The incubation of the cells with 0.24 mM quercetin for one week resulted in an 16 fold increase of isoquercetin biosynthesis; the growth rate of the cells increased by 20%. Moreover, the biosynthesis of isoquercetin was enhanced by 40% when we divided the added quercetin into three portions each one with concentration 0.12 mM supplied at 3 days intervals. In addition, we didn’t find any positive effects of adding different concentrations the precursors phenylalanine (0.2 mM) and galactose to the cell cultures. In conclusion, the efficiency of the biotransformation of quercetin into isoquercetin depended on the concentration quercetin, its incubation time and the way of its administration. The results of the present work suggest that the biotechnological methods such as cell suspension cultures could be successfully used to obtain highly valuable natural product starting from inexpensive compound.

Keywords: biosynthesis, biotransformation, Crataegus, isoquercetin

Procedia PDF Downloads 468
3491 Experimental and Characterization Studies on Micro Direct Methanol Fuel Cell

Authors: S. Muthuraja Soundrapandian, C.K. Subramaniam

Abstract:

A micro Direct Methanol Fuel Cell (DMFC) of 1 cm2 active area with selective sensor materials to sense methanol for redox, has been developed. Among different Pt alloys, Pt-Sn/C was able to produce high current density and repeatability. Membrane Elecctrode Assembly (MEA) of anode catalyst Pt-Sn/C was prepared with nafion as active membrane and Pt black as cathode catalyst. The sensor’s maximum ability to detect the trace levels of methanol in ppm has been analyzed. A compact sensor set up has also been made and the characterization studies were carried out. The acceptable value of current density was derived by the cell and the results are able to fulfill the needs of DMFC technology for the practical applications.

Keywords: DMFC, sensor, MEA, Pt-Sn

Procedia PDF Downloads 107
3490 Evaluation of Promoter Hypermethylation in Tissue and Blood of Non-Small Cell Lung Cancer Patients and Association with Survival

Authors: Ashraf Ali, Kriti Upadhyay, Puja Sohal, Anant Mohan, Randeep Guleria

Abstract:

Background: Gene silencing by aberrant promoter hypermethylation is common in lung cancer and is an initiating event in its development. Aim: To evaluate the gene promoter hypermethylation frequency in serum and tissue of lung cancer patients. Method: 95 newly diagnosed untreated advance stage lung cancer patients and 50 cancer free matched controls were studied. Bisulfite modification of tissue and serum DNA was done; modified DNA was used as a template for methylation-specific PCR analysis. Survival was assessed for one year. Results: Of 95 patients, 82% were non-small cell lung cancer (34% squamous cell carcinoma, 34% non-small cell lung cancer and 14% adenocarcinoma) and 18% were small cell lung cancer. Biopsy revealed that tissue of 89% and 75% of lung cancer patients and 85% and 52% of controls had promoter hypermethylated for MGMT (p=0.35) and p16(p<0.001) gene, respectively. In serum, 33% and 49% of lung cancer patients and 28% and 43% controls were positive for MGMT and p16 gene. No significant correlation was found between survival and clinico-pathological parameters. Conclusion: High gene promoter methylation frequency of p16 gene in tissue biopsy may be linked with early stages of carcinogenesis. Appropriate follow-up is required for confirmation of this finding.

Keywords: lung cancer, MS- PCR, methylation, molecular biology

Procedia PDF Downloads 167
3489 The Role of Txnrd2 Deficiency in Epithelial-to-Mesenchymal-Transition (EMT) and Tumor Formation in Pancreatic Cancer

Authors: Chao Wu

Abstract:

Thioredoxin reductase 2 is a mitochondrial enzyme that belongs to the cellular defense against oxidative stress. We deleted mitochondrial Txnrd2 in a KrasG12D-driven pancreatic tumor model. Despite an initial increase in precursor lesions, tumor incidence decreased significantly. We isolated cancer cell lines from these genetically engineered mice and observed an impaired proliferation and colony formation. Reactive Oxygen Species, as determined by DCF fluorescence, were increased. We detected a higher mitochondrial copy number in Txnrd2-deficient cells (KTP). However, measurement of mitochondrial bioenergetics showed no impairment of mitochondrial function and comparable O₂-consumption and extracellular acidification rates. In addition, the mitochondrial complex composition was affected in Txnrd2 deleted cell lines. To gain better insight into the role of Txnrd2, we deleted Txnrd2 in clones from parental KrasG12D cell lines using Crispr/Cas9 technology. The deletion was confirmed by western blot and activity assay. Interestingly, and in line with previous RNA expression analysis, we saw changes in EMT markers in Txnrd2 deleted cell lines and control cell lines. This might help us explain the reduced tumor incidence in KrasG12D; Txnrd2∆panc mice.

Keywords: PDAC, TXNRD2, epithelial-to-mesenchymal-transition, ROS

Procedia PDF Downloads 87
3488 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 240