Search results for: carbon monoxide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2988

Search results for: carbon monoxide

2898 Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose

Authors: M. Z. Shazana, R. Rosazley, M. A. Izzati, A. W. Fareezal, I. Rushdan, A. B. Suriani, S. Zakaria

Abstract:

There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well.

Keywords: carbon nanotube (CNT), nanofibrillated cellulose (NFC), mechanical properties, electrical conductivity

Procedia PDF Downloads 297
2897 Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions

Authors: Jean-Philippe Gagnon, Benjamin Saute, Stéphane Boubanga-Tombet

Abstract:

Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution.

Keywords: infrared, multispectral, fire, broadband, gas temperature, IR camera

Procedia PDF Downloads 100
2896 Methyl Red Adsorption and Photodegradation on TiO₂ Modified Mesoporous Carbon Photocatalyst

Authors: Seyyed Ershad Moradi, Javad Khodaveisi, Atefeh Nasrollahpour

Abstract:

In this study, the highly ordered mesoporous carbon molecular sieve with high surface area and pore volume have been synthesized and modified by TiO₂ doping. The titanium oxide modified mesoporous carbon (Ti-OMC) was characterized by scanning electron microscope (SEM), BET surface area, DRS also XRD analysis (low and wide angle). Degradation experiments were conducted in batch mode with the variables such as amount of contact time, initial solution concentration, and solution pH. The optimal conditions for the degradation of methyl red (MR) were 100 mg/L dye concentration, pH of 7, and 0.12 mg/L of TiO₂ modified mesoporous carbon photocatalyst dosage.

Keywords: mesoporous carbon, photodegradation, surface modification, titanium oxide

Procedia PDF Downloads 164
2895 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint

Authors: Melike Yaylacı, Tuğba Bilgin

Abstract:

Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.

Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters

Procedia PDF Downloads 62
2894 Effect of Cap and Trade Policies for Carbon Emission Reduction on Delhi Households

Authors: Vikram Singh

Abstract:

This paper aims to take into account carbon tax or cap-and-trade legislation to manage Delhi carbon emissions after a post-Kyoto treaty. This report estimated the influence of the carbon taxes or rebate/compensation cost at the household level. Here, the three possible scenarios will help to comprehend the difference between a straightforward compensation/rebate, and two clearly denoting progressive formula. The straightforward compensation is basically minimizing the regressive applications that will bears on cost. On the other hand, both the progressive formula will generate extra revenue, which will help for feasibility of more efficient, vehicles, appliances and buildings in the low-income household. For the hypothetical case of carbon price $40/tonne, low-income household for both urban and rural region could experience price burden up to 5% and 9% on their income as compared to 3% and 7% for high-income household respectively. The survey report also shown that carbon emission due low-income household are primarily by the substantive requirement like housing and transportation whereas almost 40% emission due to high-income household are by luxurious and non-essential items. The equal distribution of revenue cum incentives will not completely overcome high-income household’s investment in inessential items. However, it will merely help in investing their income in energy efficient and less carbon intensive items. Therefore, the rebate distribution on per capita basis instead on per households will benefit more especially large families at low-income group.

Keywords: household emission, carbon credit, carbon intensity, green house gas emission, carbon generation based insentives

Procedia PDF Downloads 408
2893 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel

Procedia PDF Downloads 517
2892 Payment of Carbon Offsetting: A Case Study in Dharan, Nepal

Authors: Mana Shrestha, Dhruba Khatri, Pralhad Kunwor

Abstract:

The objective of the study was to explore the vehicle owners’ willingness to pay (WTP) for offsetting carbon that could eventually facilitate local governmental institutions to take further step in environmental conservation. Contingent valuation method was used to find out how much amount people were willing to pay for the carbon service they are getting from providers. Open ended questionnaire was carried out with 181 respondents randomly. The result shows different mean willingness to pay amount depending upon demographic variations like education, occupation, sex and residence but the occupation and the educational status significantly affected the WTP of respondent. Total WTP amount was calculated as 650 NRS.

Keywords: community forest, carbon offset, Kyoto, REDD WTP

Procedia PDF Downloads 280
2891 Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors

Authors: Vivek Kumar, Alexander M. Zaitsev

Abstract:

A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films.

Keywords: chemical sensor, carbon nanofilm, graphitization of diamond, plasma etching, Raman spectroscopy, atomic force microscopy

Procedia PDF Downloads 420
2890 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species

Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu

Abstract:

Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.

Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species

Procedia PDF Downloads 331
2889 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry

Authors: Prudvi Paresi, Fatemeh Javidan

Abstract:

In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.

Keywords: carbon accounting, small-scale construction, signage industry, construction materials

Procedia PDF Downloads 84
2888 Dynamics of Soil Carbon and Nitrogen Contents and Stocks along a Salinity Gradient

Authors: Qingqing Zhao, Junhong Bai

Abstract:

To investigate the effects of salinity on dynamics of soil carbon and nitrogen contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68±4.25 ms/cm) > T (5.89±3.17 ms/cm) > S (3.19±1.01 ms/cm) > P (2.26±0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), soil microbial biomass carbon (MBC), soil total nitrogen (TC) and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD), soil microbial biomass carbon density (MBCD), soil nitrogen density (TCD) and soil microbial biomass nitrogen density (MBND) were calculated at four sites. The results showed that the mean concentrations of TC, SOC, MBC, TN and MBN showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD, MBCD, TND and MBND exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56. 51. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC, SOC and MBC at four sampling sites were significantly negatively correlated with salinity (P < 0.01 or P < 0.05), indicating that salinity could inhibit soil carbon accumulation. However, no significant relationship was observed between TN, MBN and salinity (P > 0.05).

Keywords: carbon content and stock, nitrogen content and stock, salinity, coastal wetland

Procedia PDF Downloads 280
2887 Integrating Carbon Footprint into Supply Chain Management of Manufacturing Companies: Sri Lanka

Authors: Shirekha Layangani, Suneth Dharmaparakrama

Abstract:

When the manufacturing industry is concerned the Environment Management System (EMS) is a common term. Currently most organizations have obtained the environmental standard certification, ISO 14001. In the Sri Lankan context even though the organizations adopt Environmental Management, a very limited number of companies tend to calculate their Carbon Footprints. This research discusses the demotivating factors of manufacturing organizations in Sri Lanka to integrate calculation of carbon footprint into their supply chains. Further it also identifies the benefits that manufacturing organizations can gain by implementing calculation of carbon footprint. The manufacturing companies listed under “ISO 14001” certification were considered in this study in order to investigate the problems mentioned above. 100% enumeration was used when the surveys were carried out. In order to gather essential data two surveys were designed to be done among manufacturing organizations that are currently engaged in calculating their carbon footprint and the organizations that have not. The survey among the first set of manufacturing organizations revealed the benefits the organizations were able to gain by implementing calculation of carbon footprint. The latter set organizations revealed the demotivating factors that have influenced not to integrate calculation of carbon footprint into their supply chains. This paper has summarized the results obtained by the surveys and segregated depending on the market share of the manufacturing organizations. Further it has indicated the benefits that can be obtained by implementing carbon footprint calculation, depending on the market share of the manufacturing entity. Finally the research gives suggestions to manufacturing organizations on applicability of adopting carbon footprint calculation depending on the benefits that can be obtained.

Keywords: carbon footprint, environmental management systems (EMS), benefits of carbon footprint, ISO14001

Procedia PDF Downloads 346
2886 Green Supply Chain Design: A Mathematical Modeling Approach

Authors: Nusrat T. Chowdhury

Abstract:

Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.

Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade

Procedia PDF Downloads 196
2885 Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS

Authors: T. V. Dinh, I. Y. Choi, J. W. Ahn, Y. H. Oh, G. Bo, J. Y. Lee, J. C. Kim

Abstract:

A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument.

Keywords: analyzer, CEMS, monitoring, NDIR, TMS

Procedia PDF Downloads 226
2884 Driving Forces of Net Carbon Emissions in a Tropical Dry Forest, Oaxaca, México

Authors: Rogelio Omar Corona-Núñez, Alma Mendoza-Ponce

Abstract:

The Tropical Dry Forest not only is one of the most important tropical ecosystems in terms of area, but also it is one of the most degraded ecosystems. However, little is known about the degradation impacts on carbon stocks, therefore in carbon emissions. There are different studies which explain its deforestation dynamics, but there is still a lack of understanding of how they correlate to carbon losses. Recently different authors have built current biomass maps for the tropics and Mexico. However, it is not clear how well they predict at the local scale, and how they can be used to estimate carbon emissions. This study quantifies the forest net carbon losses by comparing the potential carbon stocks and the different current biomass maps in the Southern Pacific coast in Oaxaca, Mexico. The results show important differences in the current biomass estimates with not a clear agreement. However, by the aggregation of the information, it is possible to infer the general patterns of biomass distribution and it can identify the driving forces of the carbon emissions. This study estimated that currently ~44% of the potential carbon stock estimated for the region is still present. A total of 6,764 GgC has been emitted due to deforestation and degradation of the forest at a rate of above ground biomass loss of 66.4 Mg ha-1. Which, ~62% of the total carbon emissions can be regarded as being due to forest degradation. Most of carbon losses were identified in places suitable for agriculture, close to rural areas and to roads while the lowest losses were accounted in places with high water stress and within the boundaries of the National Protected Area. Moreover, places not suitable for agriculture, but close to the coast showed carbon losses as a result of urban settlements.

Keywords: above ground biomass, deforestation, degradation, driving forces, tropical deciduous forest

Procedia PDF Downloads 151
2883 Inoculation of Aerospace Grade Mg-Al-Zn-Mn Cast Magnesium Alloy with Carbon Nanopowder

Authors: Spartak Makovskyi, Volodymir Klochykhin, Valery Zakharchenko, Konstantyn Balushok, Eduard Tsyvirko, Anatoly Shalomeyev

Abstract:

A highly efficient, cost-effective grain refinement technique for ML5 magnesium alloy with a commercially pure carbon nanopowder has been proposed. An experimental casting of testing specimens with incremental additions of a carbon nanopowder (0.001 - 0.1 wt.% ) was performed. It has been found that the carbon nanoparticle inoculation of the alloy structure is efficient in a narrow concentration range. The additions of 0.005-0.01 wt. % the grain refiner in the alloy resulted in a maximum increase of ductility properties (appr. Twofold) and improved tensile strength. However, further expansion of the grain refiner content led to the deterioration of the alloy's mechanical properties. In particular, the introduction of 0.1 wt.% of the nanocarbon and more caused internal defects in the metal. The carbon nanoparticle inoculation is a promising way of improving the properties of the Mg-Al-Zn alloys for critical lightweight aerospace applications on an industrial scale.

Keywords: carbon nanopowder, inoculation, melt, tensile strength

Procedia PDF Downloads 175
2882 Carbon Nanocomposites : Structure, Characterization and Environmental Application

Authors: Bensacia Nabila, Hadj-Ziane Amel, Sefah Karima

Abstract:

Carbon nanocomposites have received more attention in the last years in view of their special properties such as low density, high specific surface area, and thermal and mechanical stability. Taking into account the importance of these materials, many studies aimed at improving the synthesis process have been conducted. However, the presence of impurities could affect significantly the properties of these materials, and the characterization of these compounds is an important challenge to assure the quality of the new carbon nanocomposites. The present study aims to develop a new recyclable decontaminating material for dyes removal. This new material consists of an active element based on carbon nanotubes wrapped in a microcapsule of iron oxide. The adsorbent is characterized by Transmission electron microscopy, X-ray diffraction and the surface area was measured by the BET method.

Keywords: carbon nanocomposite, chitozen, elimination, dyes

Procedia PDF Downloads 289
2881 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 53
2880 Performance and Combustion Characteristics of a DI Diesel Engine Fueled with Jatropha Methyl Esters and its Blends

Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare

Abstract:

This study discusses the performance and combustion characteristics of a direct injection diesel engine fueled with Jatropha methyl ester (JME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant speed mode (1500rpm) under the full load condition of the engine on single cylinder 4-stroke CI engine. The result indicated that when the test engine was fuelled with JME, the engine performance slightly weakened, the combustion characteristics slightly changed when compared to petroleum based diesel fuel. The biodiesel caused reduction in carbon monoxide (CO), unburned hydrocarbon (HC) emissions, but they caused to increases in nitrogen oxides (NOx) emissions. The useful brake power obtained is similar to diesel fuel for all loads. Oxygen content in the exhaust is more with JME blend due to the reason that fuel itself contains oxygen. JME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.

Keywords: biodiesel, combustion, CI engine, jatropha curcas oil, performance and emission

Procedia PDF Downloads 335
2879 The Effect of Hydrogen on the Magnetic Properties of ZnO: A Density Functional Tight Binding Study

Authors: M. A. Lahmer, K. Guergouri

Abstract:

The ferromagnetic properties of carbon-doped ZnO (ZnO:CO) and hydrogenated carbon-doped ZnO (ZnO:CO+H) are investigated using the density functional tight binding (DFTB) method. Our results reveal that CO-doped ZnO is a ferromagnetic material with a magnetic moment of 1.3 μB per carbon atom. The presence of hydrogen in the material in the form of CO-H complex decreases the total magnetism of the material without suppressing ferromagnetism. However, the system in this case becomes quickly antiferromagnetic when the C-C separation distance was increased.

Keywords: ZnO, carbon, hydrogen, ferromagnetism, density functional tight binding

Procedia PDF Downloads 259
2878 Production of Natural Gas Hydrate by Using Air and Carbon Dioxide

Authors: Yun-Ho Ahn, Hyery Kang, Dong-Yeun Koh, Huen Lee

Abstract:

In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.

Keywords: air injection, carbon dioxide sequestration, hydrate production, natural gas hydrate

Procedia PDF Downloads 430
2877 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels

Authors: Ufaith Qadri, M Marouf Wani

Abstract:

In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.

Keywords: AVL Boost, emissions, microemulsions, performance, Spark Ignition (SI) engine

Procedia PDF Downloads 236
2876 White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes

Authors: Manasa Perikala, Asha Bhardwaj

Abstract:

Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots.

Keywords: carbon dots, photoluminescence, size effects on emission in CDs, surface modification of carbon dots

Procedia PDF Downloads 104
2875 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns

Procedia PDF Downloads 276
2874 Nondestructive Natural Gas Hydrate Production by Using Air and Carbon Dioxide

Authors: Ahn Yun-Ho, Hyery Kang, Koh Dong-Yeun, Huen Lee

Abstract:

In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.

Keywords: air injection, carbon dioxide sequestration, hydrate production, natural gas hydrate

Procedia PDF Downloads 547
2873 Carbon Sequestration under Hazelnut (Corylus avellana) Agroforestry and Adjacent Land Uses in the Vicinity of Black Sea, Trabzon, Turkey

Authors: Mohammed Abaoli Abafogi, Sinem Satiroglu, M. Misir

Abstract:

The current study has addressed the effect of Hazelnut (Corylus avellana) agroforestry on carbon sequestration. Eight sample plots were collected from Hazelnut (Corylus avellana) agroforestry using random sampling method. The diameter of all trees in each plot with ≥ 2cm at 1.3m DBH was measured by using a calliper. Average diameter, aboveground biomass, and carbon stock were calculated for each plot. Comparative data for natural forestland was used for C was taken from KTU, and the soil C was converted from the biomass conversion equation. Biomass carbon was significantly higher in the Natural forest (68.02Mgha⁻¹) than in the Hazelnut agroforestry (16.89Mgha⁻¹). SOC in Hazelnut agroforestry, Natural forest, and arable agricultural land were 7.70, 385.85, and 0.00 Mgha⁻¹ respectively. Biomass C, on average accounts for only 0.00% of the total C in arable agriculture, and 11.02% for the Hazelnut agroforestry while 88.05% for Natural forest. The result shows that the conversion of arable crop field to Hazelnut agroforestry can sequester a large amount of C in the soil as well as in the biomass than Arable agricultural lands.

Keywords: arable agriculture, biomass carbon, carbon sequestration, hazelnut (Corylus avellana) agroforestry, soil organic carbon

Procedia PDF Downloads 274
2872 An Investigation on the Effect of Railway Track Elevation Project in Taichung Based on the Carbon Emissions

Authors: Kuo-Wei Hsu, Jen-Chih, Chao, Pei-Chen, Wu

Abstract:

With the rapid development of global economy, the increasing population, the highly industrialization, greenhouse gas emission and the ozone layer damage, the Global Warming happens. Facing the impact of global warming, the issue of “green transportation” began to be valued and promoted in each city. Taichung has been elected as the model of low-carbon city in Taiwan. To comply with international trends and the government policy, we tried to promote the energy saving and carbon reduction to create a “low-carbon Taichung with green life and eco-friendly economy”. To cooperate with the “green transportation” project, Taichung has promoted a number of public transports constructions and traffic policy in recent years like BRT, MRT, etc. The elevated railway is one of those important constructions. Cooperating with the green transport policy, elevated railway could help to achieve the carbon reduction for this low-carbon city. The current studies of the carbon emissions associated with railways and roads are focusing on the assessment on paving material, institutional policy and economic benefit. Except for changing the mode of transportation, elevated railways/roads also create space under the bridge. However, there is no research about the carbon emissions of the space underneath the elevated section up until now. This study investigated the effect of railway track elevation project in Taichung based on the carbon emissions and the factors that affect carbon emissions by research related theory and literature analysis. This study concluded that : railway track elevation increased the public transit, the bike lanes, the green areas and walking spaces. In the other hand it reduced the traffic congestions, the use of motorcycles as well as automobiles for carbon emissions.

Keywords: low-carbon city, green transportation, carbon emissions, Taichung, Taiwan

Procedia PDF Downloads 496
2871 Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption

Authors: H. Mokaddem, D. Miroud, N. Azouaou, F. Si-Ahmed, Z. Sadaoui

Abstract:

The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution.

Keywords: activated carbon, adsorption, cationic dyes, Algerian alfa

Procedia PDF Downloads 202
2870 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.

Keywords: CO₂ emissions, CO₂ reduction, ready-mixed concrete, environmental impact assessment

Procedia PDF Downloads 437
2869 Carbon Capture and Storage: Prospects in India

Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg

Abstract:

The demand of energy is increasing at every part of the world. Thus, use of fossil fuel is efficient which results in large liberation of carbon dioxide in atmosphere. Tons of this CO2 raises the risk of dangerous climate changes. To minimize the risk carbon capture and storage (CCS) has to be used so that the emitted carbon dioxide do not reach the atmosphere. CCS is being considered as one of the options that could have a major role to play in India.With the growing awareness towards the global warming, carbon capture and sequestration has a great importance. New technologies and theories are in use to capture CO2. This paper contains the methodology and technologies that is in use to capture carbon dioxide in India. The present scenario of CCS is also being discussed. CCS is playing a major role in enhancing recovery of oil (ERO). Both the purpose 1) minimizing percentage of carbon dioxide in atmosphere and 2) enhancing recovery of oil are fulfilled from the CCS. The CO2 is usually captured from coal based power plant and from some industrial sources and then stored in the geological formations like oil and gas reservoir and deep aquifers or in oceans. India has large reservoirs of coal which are being used for storing CO2, as coal is a good absorbent of CO2. New technologies and studies are going on for injection purposes. Government has initiated new plans for CCS as CCS is technically feasible and economically attractive. A discussion is done on new schemes that should bring up CCS plans and approaches. Stakeholders are welcomed for suitability of CCS. There is still a need to potentially capture the CO2 and avail its storage in developing country like India.

Keywords: Carbon Capture and Storage (CCS), carbon dioxide (CO2), enhance oil recovery, geological formations, stakeholders

Procedia PDF Downloads 431