Search results for: carbon emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4036

Search results for: carbon emission

1036 The Effect of Traffic on Harmful Metals and Metalloids in the Street Dust and Surface Soil from Urban Areas of Tehran, Iran: Levels, Distribution and Chemical Partitioning Based on Single and Sequential Extraction Procedures

Authors: Hossein Arfaeinia, Ahmad Jonidi Jafari, Sina Dobaradaran, Sadegh Niazi, Mojtaba Ehsanifar, Amir Zahedi

Abstract:

Street dust and surface soil samples were collected from very heavy, heavy, medium and low traffic areas and natural site in Tehran, Iran. These samples were analyzed for some physical–chemical features, total and chemical speciation of selected metals and metalloids (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni, and V) to study the effect of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon (OC) values were similar in soil and dust samples from similar traffic areas. The traffic increases EC contents in dust/soil matrixes but has no effect on concentrations of metals and metalloids in soil samples. Rises in metal and metalloids levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of acid soluble fraction and Fe and Mn oxides associated fractions of Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals and metalloids except Cd is mainly affected by physicochemical features in soil, although total metals and metalloids affected the speciation in dust samples (except chromium and nickel).

Keywords: street dust, surface soil, traffic, metals, metalloids, chemical speciation

Procedia PDF Downloads 229
1035 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH

Authors: Barzin Rajabloo, Martin Desilets

Abstract:

First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.

Keywords: carbon dioxide, electrochemical reduction, methanol, modeling

Procedia PDF Downloads 85
1034 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application

Authors: Syali Pradhan, Neetu Jha

Abstract:

The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.

Keywords: marigold, flower waste, energy storage, cathode, supercapacitor

Procedia PDF Downloads 43
1033 Gis-Based Water Pollution Assesment of Buriganga River, Bangladesh

Authors: Nur-E-Jannat Tinu

Abstract:

Water is absolutely vital not only for the survival of human beings but also for plants, animals, and all other living organisms. Water bodies, such as lakes, rivers, ponds, and estuaries, are the source of water supply in domestic, industrial, agriculture, and aquaculture purposes. The Buriganga River flows through the south and west of Dhaka city. The water quality of this river has become a matter of concern due to anthropogenic intervention of vital pollutants such as industrial effluents, urban sewage, and solid wastes in this area. Buriganga River is at risk to contamination from untreated municipal wastes, industrial discharges, runoff from organic and inorganic fertilizers, pesticides, insecticides, and oil emission around the river. The residential and commercial establishments along the river discharge wastewater either directly into the river or through drains and canals into the river. However, several regulatory measures and policies have been enforced by the Government to protect the river Buriganga from pollution, in most cases to no affect. Water quality assessment reveals that the water is also not appropriate for irrigation purposes. The physical parameters (pH, TDS, EC, Temperature, DO, COD, BOD) indicated that the water is too poor to be useable for agricultural, drinking, or other purposes. Chemical concentrations showed significant seasonal variations with high-level concentrations during the monsoon season, presumably due to extreme seasonal surface runoff. A comparative study of Electrical Conductivity (EC) and Total Dissolved Solids (TDS) indicated a considerable increase over the last five years A change in trend was observed from 2020 June-July, probably due to monsoon and post-monsoon. EC values decreased from 775 to 665 mmho/cm during this period. DO increased significantly from the mid-post-monsoon months to the early monsoon period. The pH value of river water is strongly alkaline, ranging between 6.5 and 7.79. This indicates that ecological organic compounds cause the water to become alkaline after the monsoon and monsoon seasons. As the water pollution level is very high, an effective remediation and pollution control plan should be considered.

Keywords: precipitation, spatial distribution, effluent, remediation

Procedia PDF Downloads 122
1032 An Investigation of Raw Material Effects on Nano SiC Based Foam Glass Production

Authors: Aylin Sahin, Yasemin Kilic, Abdulkadir Sari, Burcu Duymaz, Mustafa Kara

Abstract:

Foam glass is an innovative material which composed of glass and carbon/carbonate based minerals; and has incomparable properties like light weight, high thermal insulation and cellular structure with sufficient rigidity. In the present study, the effects of the glass type and mineral addition on the foam glass properties were investigated. Nano sized SiC was fixed as foaming agent at the whole of the samples, mixed glass waste and sheet glass were selectively used as glass sources; finally Al₂O₃ was optionally used as mineral additive. These raw material powders were mixed homogenously, pressed at same pressure and sintered at same schedule. Finally, obtained samples were characterized based on the required properties of foam glass material, and optimum results were determined. At the end of the study, 0.049 W/mK thermal conductivity, 72 % porosity, and 0.21 kg/cm² apparent density with 2.41 MPa compressive strength values were achieved with using nano sized SiC, sheet glass and Al₂O₃ mineral additive. It can be said that the foam glass materials can be preferred as an alternative insulation material rather than polymeric based conventional insulation materials because of supplying high thermal insulation properties without containing unhealthy chemicals and burn risks.

Keywords: foam glass, foaming, silicon carbide, waste glass

Procedia PDF Downloads 335
1031 Fire Smoke Removal over Cu-Mn-Ce Oxide Catalyst with CO₂ Sorbent Addition: Co Oxidation and in-situ CO₂ Sorption

Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew

Abstract:

In a fire accident, fire smoke often poses a serious threat to human safety especially in the enclosed space such as submarine and space-crafts environment. Efficient removal of the hazardous gas products particularly a large amount of CO and CO₂ gases from these confined space is critical for the security of the staff and necessary for the post-fire environment recovery. In this work, Cu-Mn-Ce composite oxide catalysts coupled with CO₂ sorbents were prepared using wet impregnation method, solid-state impregnation method and wet/solid-state impregnation method. The as-prepared samples were tested dynamically and isothermally for CO oxidation and CO₂ sorption and further characterized by the X-ray diffraction (XRD), nitrogen adsorption and desorption, and field emission scanning electron microscopy (FE-SEM). The results showed that all the samples were able to catalyze CO into CO₂ and capture CO₂ in situ by chemisorption. Among all the samples, the sample synthesized by the wet/solid-state impregnation method showed the highest catalytic activity toward CO oxidation and the fine ability of CO₂ sorption. The sample prepared by the solid-state impregnation method showed the second CO oxidation performance, while the coupled sample using the wet impregnation method exhibited much poor CO oxidation activity. The various CO oxidation and CO₂ sorption properties of the samples might arise from the different dispersed states of the CO₂ sorbent in the CO catalyst, owing to the different preparation methods. XRD results confirmed the high-dispersed sorbent phase in the samples prepared by the wet and solid impregnation method, while that of the sample prepared by wet/solid-state impregnation method showed the larger bulk phase as indicated by the high-intensity diffraction peaks. Nitrogen adsorption and desorption results further revealed that the latter sample had a higher surface area and pore volume, which were beneficial for the CO oxidation over the catalyst. Hence, the Cu-Mn-Ce oxide catalyst coupled with CO₂ sorbent using wet/solid-state impregnation method could be a good choice for fire smoke removal in the enclosed space.

Keywords: CO oxidation, CO₂ sorption, preparation methods, smoke removal

Procedia PDF Downloads 111
1030 Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency

Authors: Amir Khaleghipour, Amirhossein Moghanian, Elhamalsadat Ghaffari

Abstract:

Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 162
1029 The Effect of Supercritical Fluid on the Extraction Efficiency of Heavy Metal from Soil

Authors: Haifa El-Sadi, Maria Elektorowicz, Reed Rushing, Ammar Badawieh, Asif Chaudry

Abstract:

Clay soils have particular properties that affect the assessment and remediation of contaminated sites. In clay soils, electro-kinetic transport of heavy metals has been carried out. The transport of these metals is predicated on maintaining a low pH throughout the cell, which, in turn, keeps the metals in the pore water phase where they are accessible to electro-kinetic transport. Supercritical fluid extraction and acid digestion were used for the analysis of heavy metals concentrations after the completion of electro-kinetic experimentation. Supercritical fluid (carbon dioxide) extraction is a new technique used to extract the heavy metal (lead, nickel, calcium and potassium) from clayey soil. The comparison between supercritical extraction and acid digestion of different metals was carried out. Supercritical fluid extraction, using ethylenediaminetetraacetic acid (EDTA) as a modifier, proved to be efficient and a safer technique than acid digestion technique in extracting metals from clayey soil. Mixing time of soil with EDTA before extracting heavy metals from clayey soil was investigated. The optimum and most practical shaking time for the extraction of lead, nickel, calcium and potassium was two hours.

Keywords: clay soil, heavy metals, supercritical fluid extraction, acid digestion

Procedia PDF Downloads 435
1028 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing

Authors: Aldona Kluczek

Abstract:

In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.

Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment

Procedia PDF Downloads 222
1027 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: heat transfer, mini channel, nanofluid, PEMFC

Procedia PDF Downloads 313
1026 Study of Petroleum Hydrocarbons Biodegradation and the Role of Biosurfactants Produced by Bacteria Isolated from the Lagoon of Mar Chica in This Process

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Petroleum hydrocarbons are serious problems and global pollutants in the environment due to their toxicity, carcinogenicity and persistent organic pollutant properties. One of the approaches to enhance biodegradation of petroleum hydrocarbons is to use biosurfactant. Biosurfactants are amphiphilic biomolecules produced as metabolic by-products from microorganisms they received considerable attention in the field of environmental remediation processes such as bioremediation. Biosurfactants have been considered as a desirable alternative to synthetic surfactants in various applications particularly in the environmental field. In comparison with their synthetic counterparts, biosurfactants have been reported to be less toxic, biodegradable and persistent. In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a HPLC/MS was used to separate and identify different biosurfactants purified.

Keywords: petroleum hydrocarbons, biosurfactants, biodegradation, lagoon marchika, emulsification index

Procedia PDF Downloads 236
1025 Preparation of Metal Containing Epoxy Polymer and Investigation of Their Properties as Fluorescent Probe

Authors: Ertuğ Yıldırım, Dile Kara, Salih Zeki Yıldız

Abstract:

Metal containing polymers (MCPs) are macro molecules usually containing metal-ligand coordination units and are a multidisciplinary research field mainly based at the interface between coordination chemistry and polymer science. The progress of this area has also been reinforced by the growth of several other closely related disciplines including macro molecular engineering, crystal engineering, organic synthesis, supra molecular chemistry and colloidal and material science. Schiff base ligands are very effective in constructing supra molecular architectures such as coordination polymers, double helical and triple helical complexes. In addition, Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions. MCPs are well-known systems in which the combinations of local parameters are possible by means of fluoro metric techniques. Generally, without incorporation of the fluorescent groups with polymers is unspecific, and it is not useful to analyze their fluorescent properties. Therefore, it is necessary to prepare a new type epoxy polymers with fluorescent groups in terms of metal sensing prop and the other photo chemical applications. In the present study metal containing polymers were prepared via poly functional monomeric Schiff base metal chelate complexes in the presence of dis functional monomers such as diglycidyl ether Bisphenol A (DGEBA). The synthesized complexes and polymers were characterized by FTIR, UV-VIS and mass spectroscopies. The preparations of epoxy polymers have been carried out at 185 °C. The prepared composites having sharp and narrow excitation/emission properties are expected to be applicable in various systems such as heat-resistant polymers and photo voltaic devices. The prepared composite is also ideal for various applications, easily prepared, safe, and maintain good fluorescence properties.

Keywords: Schiff base ligands, crystal engineering, fluorescence properties, Metal Containing Polymers (MCPs)

Procedia PDF Downloads 324
1024 Evaluation of Mechanical Properties of Welds Fabricated at a Close Proximity on Offshore Structures

Authors: T. Nakkeran, C. Dhamodharan, Win Myint Soe , Ramasamy Deverajan, M. Ganesh Babu

Abstract:

This manuscript presents the results of an experimental investigation performed to study the material and mechanical properties of two weld joints fabricated within close proximity. The experiment was designed using welded S355 D Z35 with distances between two parallel adjacent weld toes at 8 mm. These distances were less than the distance that has normally been recommended in standards, codes, and specifications. The main idea of the analysis is to determine any significant effects when welding the joints with the close proximity of 8mm using the SAW welding process of the one joint with high heat put and one joint welded with the FCAW welding process and evaluating the destructing and nondestructive testing between the welded joints. Further, we have evaluated the joints with Mechanical Testing for evaluating by performing Tensile test, bend testing, Macrostructure, Microstructure, Hardness test, and Impact testing. After evaluating the final outcome of the result, no significant changes were observed for welding the close proximity of weld of 8mm distance between the joints as compared to the specification minimum distance between the weldments of any design should be 50mm.

Keywords: S355 carbon steel, weld proximity, SAW process, FCAW process, heat input, bend test, tensile test, hardness test, impact test, macro and microscopic examinations

Procedia PDF Downloads 72
1023 Preparedness for Microbial Forensics Evidence Collection on Best Practice

Authors: Victor Ananth Paramananth, Rashid Muniginin, Mahaya Abd Rahman, Siti Afifah Ismail

Abstract:

Safety issues, scene protection, and appropriate evidence collection must be handled in any bio crime scene. There will be a scene or multi-scene to be cordoned for investigation in any bio-incident or bio crime event. Evidence collection is critical in determining the type of microbial or toxin, its lethality, and its source. As a consequence, from the start of the investigation, a proper sampling method is required. The most significant challenges for the crime scene officer would be deciding where to obtain samples, the best sampling method, and the sample sizes needed. Since there could be evidence in liquid, viscous, or powder shape at a crime scene, crime scene officers have difficulty determining which tools to use for sampling. To maximize sample collection, the appropriate tools for sampling methods are necessary. This study aims to assist the crime scene officer in collecting liquid, viscous, and powder biological samples in sufficient quantity while preserving sample quality. Observational tests on sample collection using liquid, viscous, and powder samples for adequate quantity and sample quality were performed using UV light in this research. The density of the light emission varies upon the method of collection and sample types. The best tools for collecting sufficient amounts of liquid, viscous, and powdered samples can be identified by observing UV light. Instead of active microorganisms, the invisible powder is used to assess sufficient sample collection during a crime scene investigation using various collection tools. The liquid, powdered and viscous samples collected using different tools were analyzed using Fourier transform infrared - attenuate total reflection (FTIR-ATR). FTIR spectroscopy is commonly used for rapid discrimination, classification, and identification of intact microbial cells. The liquid, viscous and powdered samples collected using various tools have been successfully observed using UV light. Furthermore, FTIR-ATR analysis showed that collected samples are sufficient in quantity while preserving their quality.

Keywords: biological sample, crime scene, collection tool, UV light, forensic

Procedia PDF Downloads 171
1022 Effect of Oil Shale Alkylresorcinols on Physico-Chemical and Thermal Properties of Polycondensation Resins

Authors: Ana Jurkeviciute, Larisa Grigorieva, Ksenia Moskvinа

Abstract:

Oil shale alkylresorcinols are formed as a by-product in oil shale processing. They are unique raw material for chemical industry. Polycondensation resins obtaining is one of the worthwhile directions of oil shale alkylresorcinols use. These resins are widely applied in many branches of industry such as wood-working, metallurgic, tire, rubber products, construction etc. Possibility of resins obtaining using overall alkylresorcinols will allow to cheapen finished products on their base and to widen the range of resins offered on the market. Synthesis of polycondensation resins on the basis of alkylresorcinols was conducted by several methods in the process of investigations. In the formulations a part of resorcinol was replaced by fractions of oil shale alkylresorcinols containing different amount of 5-methylresorcinol (40-80 mass %). Some resins were modified by aromatic alkene at the stage of synthesis. Thermal stability and degradation behavior of resins were investigated by thermogravimetric analysis (TGA) method both in an inert nitrogen environment and in an oxidative environment of air. TGA integral curves were obtained and processed in dynamic mode for interval of temperatures from 25 to 830 °C. Rate of temperature rise was 5°C/min, gas flow rate - 50 ml/min. Resins power for carbonization was evaluated by carbon residue. Physical-chemical parameters of the resins were determined. Content of resorcinol and 5-methylresorcinol not reacted in the process of synthesis were determined by gas chromatography method.

Keywords: resorcinol, oil shale alkylresorcinols, aromatic alkene, polycondensation resins, modified resins

Procedia PDF Downloads 173
1021 Development of Green Cement, Based on Partial Replacement of Clinker with Limestone Powder

Authors: Yaniv Knop, Alva Peled

Abstract:

Over the past few years there has been a growing interest in the development of Portland Composite Cement, by partial replacement of the clinker with mineral additives. The motivations to reduce the clinker content are threefold: (1) Ecological - due to lower emission of CO2 to the atmosphere; (2) Economical - due to cost reduction; and (3) Scientific\Technology – improvement of performances. Among the mineral additives being used and investigated, limestone is one of the most attractive, as it is considered natural, available, and with low cost. The goal of the research is to develop green cement, by partial replacement of the clinker with limestone powder while improving the performances of the cement paste. This work studied blended cements with three limestone powder particle diameters: smaller than, larger than, and similarly sized to the clinker particle. Blended cement with limestone consisting of one particle size distribution and limestone consisting of a combination of several particle sizes were studied and compared in terms of hydration rate, hydration degree, and water demand to achieve normal consistency. The performances of these systems were also compared with that of the original cement (without added limestone). It was found that the ability to replace an active material with an inert additive, while achieving improved performances, can be obtained by increasing the packing density of the cement-based particles. This may be achieved by replacing the clinker with limestone powders having a combination of several different particle size distributions. Mathematical and physical models were developed to simulate the setting history from initial to final setting time and to predict the packing density of blended cement with limestone having different sizes and various contents. Besides the effect of limestone, as inert additive, on the packing density of the blended cement, the influence of the limestone particle size on three different chemical reactions were studied; hydration of the cement, carbonation of the calcium hydroxide and the reactivity of the limestone with the hydration reaction products. The main results and developments will be presented.

Keywords: packing density, hydration degree, limestone, blended cement

Procedia PDF Downloads 257
1020 Application of Building Information Modelling In Analysing IGBC® Ratings (Sustainability Analyses)

Authors: Lokesh Harshe

Abstract:

The building construction sector is using 36% of global energy consumption with 39% of CO₂ emission. Professionals in the Built Environment Sector have long been aware of the industry’s contribution towards CO₂ emissions and are now moving towards more sustainable practices. As a result of this, many organizations have introduced rating systems to address the issue of global warming in the construction sector by ranking construction projects based on sustainability parameters. The pre-construction phase of any building project is the most essential time to make decisions for addressing the sustainability aspects. Traditionally, it is very difficult to collect data from different stakeholders and bring it together to form a decision based on factual data to perform sustainability analyses in the pre-construction phase. Building Information Modelling (BIM) is the solution where one single model is the result of the collaborative approach of BIM processes where all the information is shared, extracted, communicated, and stored on a single platform that everyone can access and make decisions based on real-time data. The focus of this research is on the Indian Green Rating System IGBC® with the objective of understanding IGBC® requirements and developing a framework to create the relationship between the rating processes and BIM. A Hypothetical (Architectural) model of a hostel building is developed using AutoCAD 2019 & Revit Arch. 2019, where the framework is applied to generate results on sustainability analysis using Green Building Studio (GBS) and Revit Add-ins. The results of any sustainability analysis are generated within a fraction of a minute, which is very quick in comparison with traditional sustainability analysis. This may save a considerable amount of time as well as cost. The future scope is to integrate Architectural, Structural, and MEP Models to perform accurate sustainability analyses with inputs from industry professionals working on real-life Green BIM projects.

Keywords: sustainability analyses, BIM, green rating systems, IGBC®, LEED

Procedia PDF Downloads 24
1019 Effect of Plastic Deformation on the Carbide-Free Bainite Transformation in Medium C-Si Steel

Authors: Mufath Zorgani, Carlos Garcia-Mateo, Mohammad Jahazi

Abstract:

In this study, the influence of pre-strained austenite on the extent of isothermal bainite transformation in medium-carbon, high-silicon steel was investigated. Different amounts of deformations were applied at 600°C on the austenite right before quenching to the region, where isothermal bainitic transformation is activated. Four different temperatures of 325, 350, 375, and 400°C considering similar holding time 1800s at each temperature, were selected to investigate the extent of isothermal bainitic transformation. The results showed that the deformation-free austenite transforms to the higher volume fraction of CFB bainite when the isothermal transformation temperature reduced from 400 to 325°C, the introduction of plastic deformation in austenite prior to the formation of bainite invariably involves a delay of the same or identical isothermal treatment. On the other side, when the isothermal transformation temperature and deformation increases, the volume fraction and the plate thickness of bainite decreases and the amount of retained austenite increases. The shape of retained austenite is mostly representing blocky-shape one due to the less amount of transformed bainite. Moreover, the plate-like shape bainite cannot be resolved when the deformation amount reached 30%, and the isothermal transformation temperatures are of 375 and 400°C. The amount of retained austenite and the percentage of its transformation to martensite during the final cooling stage play a significant role in the variation of hardness level for different thermomechanical regimes.

Keywords: ausforming, carbide free bainite, dilatometry, microstructure

Procedia PDF Downloads 101
1018 Cold Stunned Sea Turtle Diet Analysis In Cape Cod Bay from 2015-2020

Authors: Lucille McWilliams

Abstract:

As water temperatures drop in November, Kemp’s Ridley, Loggerhead, and Green sea turtles cold-stun in Cape Cod Bay. The foraging ecology of these sea turtles remains an understudied area of research. In this study, we aim to assess the diet of these turtles using a multi-tissue stable isotope analysis of cold-stunned kemp’s ridley, loggerhead, and green sea turtles stranded from 2015 to 2020. Stable isotope ratios of carbon and nitrogen were measured in blood, front and rear flipper, liver, muscle, skin, and scute tissue samples. We predict an elevated level of Nitrogen isotope ratios in kemp’s ridley and loggerhead turtles compared to green turtles due to the carnivorous loggerheads and kemp ridleys’ carnivorous diet and the greens herbivorous diet. We anticipate empty stomachs due to starvation while stranded, and a variety of foraging strategies, migration patterns, and trophic positions between these species. Data collected from this study will add to the knowledge of these turtles’ prey species and aid managers in the preservation of these species as a mitigation strategy for these turtles' extinction.

Keywords: sea turtles, kemp's ridleys, greens, loggerheads, cold-stunning, diet analysis, stable isotope analysis, environmental science, marine biology

Procedia PDF Downloads 102
1017 Adequacy of Second-Generation Laryngeal Mask Airway during Prolonged Abdominal Surgery

Authors: Sukhee Park, Gaab Soo Kim

Abstract:

Purpose: We aimed to evaluate the adequacy of second-generation laryngeal mask airway use during prolonged abdominal surgery in respect of ventilation, oxygenation, postoperative pulmonary complications (PPC), and postoperative non-pulmonary complications on living donor kidney transplant (LDKT) surgery. Methods: In total, 257 recipients who underwent LDKT using either laryngeal mask airway-ProSeal (LMA-P) or endotracheal tube (ETT) were retrospectively analyzed. Arterial partial pressure of carbon dioxide (PaCO2 and ratio of arterial partial pressure of oxygen to fractional inspired oxygen (PFR) during surgery were compared between two groups. In addition, PPC including pulmonary aspiration and postoperative non-pulmonary complications including nausea, vomiting, hoarseness, vocal cord palsy, delirium, and atrial fibrillation were also compared. Results: PaCO2 and PFR during surgery were not significantly different between the two groups. PPC was also not significantly different between the two groups. Interestingly, the incidence of delirium was significantly lower in the LMA-P group than the ETT group (3.0% vs. 10.3%, P = 0.029). Conclusions: During prolonged abdominal surgery such as LDKT, second-generation laryngeal mask airway offers adequate ventilation and oxygenation and can be considered a suitable alternative to ETT.

Keywords: laryngeal mask airway, prolonged abdominal surgery, kidney transplantation, postoperative pulmonary complication

Procedia PDF Downloads 130
1016 Innovation Potential of Palm Kernel Shells from the Littoral Region in Cameroon

Authors: Marcelle Muriel Domkam Tchunkam, Rolin Feudjio

Abstract:

This work investigates the ultrastructure, physicochemical and thermal properties evaluation of Palm Kernel Shells (PKS). PKS Tenera waste samples were obtained from a palm oil mill in Dizangué Sub-Division, Littoral region of Cameroon, while PKS Dura waste samples were collected from the Institute of Agricultural Research for Development (IRAD) of Mbongo. A sodium hydroxide solution was used to wash the shells. They were then rinsed by demineralised water and dried in an oven at 70 °C during 72 hours. They were then grounded and sieved to obtained powders from 0.04 mm to 0.45 mm in size. Transmission Electron Microscopy (TEM) and Surface Electron Microscopy (SEM) were used to characterized powder samples. Chemical compounds and elemental constituents, as well as thermal performance were evaluated by Van Soest Method, TEM/EDXA and SEM/EDS techniques. Thermal characterization was also performed using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Our results from microstructural analysis revealed that most of the PKS material is made of particles with irregular morphology, mainly amorphous phases of carbon/oxygen with small amounts of Ca, K, and Mg. The DSC data enabled the derivation of the materials’ thermal transition phases and the relevant characteristic temperatures and physical properties. Overall, our data show that PKS have nanopores and show potential in 3D printing and membrane filtration applications.

Keywords: DSC, EDXA, palm kernel shells, SEM, TEM

Procedia PDF Downloads 94
1015 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye

Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi

Abstract:

The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.

Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma

Procedia PDF Downloads 172
1014 Carbothermic Reduction of Phosphoric Acid Extracted from Dephosphorization Slags to Produce Yellow Phosphorus

Authors: Ryoko Yoshida, Jyunpei Yoshida, Hua Fang Yu, Yasushi Sasaki, Tetsuya Nagasaka

Abstract:

Phosphorous is an important element for agriculture and industry and is a non-renewable resource. Especially, yellow phosphorus is an essential material in advanced industrial technology, but phosphorus resources were not produced in Japan at all, and all depend on imports. It has been suggested, however, that the remaining accessible reserves of phosphate ore will be depleted within 50 years. Therefore, alternative resources for phosphate ore must be found. In this research, we have developed a process that enables the production of high-purity yellow phosphorus from domestic unused phosphorus resources such as steelmaking slags. The process consists of two parts: (1) the production of crude phosphoric acid from wastes such as steelmaking slag; (2) producing high-purity yellow phosphorus by low-temperature carbothermic reduction of phosphoric acid (H3PO4). The details of the carbothermic reduction of phosphoric acid are presented in this paper. Yellow phosphorus is commercially produced by carbothermic reduction of phosphate ore in an electric arc furnace at more than 1673K. In the newly developed system, gaseous P4O10 evaporated from H3PO4 is successfully reduced to yellow phosphorus by using carbon packed bed at less than 1273K. To meet the depletion of phosphate ore, the proposed process in this study to produce yellow phosphorus by carbothermic reduction of H3PO4 that are extracted from dephosphorization slags will be one of the effective and economical solutions.

Keywords: carbothermic reduction, phosphoric acid, dephosphorization slags, yellow phosphorus

Procedia PDF Downloads 94
1013 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures

Authors: S. Mohajeri

Abstract:

Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.

Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating

Procedia PDF Downloads 229
1012 Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil

Authors: Kaustuvmani Patowary, Suresh Deka

Abstract:

Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants.

Keywords: petroleum hydrocarbon, hydrocarbon contamination, bioremediation, biosurfactant, rhamnolipid

Procedia PDF Downloads 326
1011 Corrosion Resistance Performance of Epoxy/Polyamidoamine Coating Due to Incorporation of Nano Aluminium Powder

Authors: Asiful Hossain Seikh, Mohammad Asif Alam, Ubair Abdus Samad, Jabair A. Mohammed, S. M. Al-Zahrani, El-Sayed M. Sherif

Abstract:

In this current investigation, aliphatic amine-cured diglycidyl ether of bisphenol-A (DGEBA) based epoxy coating was mixed with certain weight % hardener polyaminoamide (1:2) and was coated on carbon steel panels with and without 1% nano crystalline Al powder. The corrosion behavior of the coated samples were investigated by exposing them in the salt spray chamber, for 500 hours. According to ASTM-B-117, the bath was kept at 35 °C and 5% NaCl containing mist was sprayed at 1.3 bars pressure. Composition of coatings was confirmed using Fourier-transform infrared spectroscopy (FTIR). Electrochemical characterization of the coated samples was also performed using potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS) technique. All the experiments were done in 3.5% NaCl solution. The nano Al coated sample shows good corrosion resistance property compared to bare Al sample. In fact after salt spray exposure no pitting or local damage was observed for nano coated sample and the coating gloss was negligibly affected. The surface morphology of coated and corroded samples was studied using scanning electron microscopy (SEM).

Keywords: epoxy, nano aluminium, potentiodynamic polarization, salt spray, electrochemical impedence spectroscopy

Procedia PDF Downloads 123
1010 Impact of Air Flow Structure on Distinct Shape of Differential Pressure Devices

Authors: A. Bertašienė

Abstract:

Energy harvesting from any structure makes a challenge. Different structure of air/wind flows in industrial, environmental and residential applications emerge the real flow investigation in detail. Many of the application fields are hardly achievable to the detailed description due to the lack of up-to-date statistical data analysis. In situ measurements aim crucial investments thus the simulation methods come to implement structural analysis of the flows. Different configurations of testing environment give an overview how important is the simple structure of field in limited area on efficiency of the system operation and the energy output. Several configurations of modeled working sections in air flow test facility was implemented in CFD ANSYS environment to compare experimentally and numerically air flow development stages and forms that make effects on efficiency of devices and processes. Effective form and amount of these flows under different geometry cases define the manner of instruments/devices that measure fluid flow parameters for effective operation of any system and emission flows to define. Different fluid flow regimes were examined to show the impact of fluctuations on the development of the whole volume of the flow in specific environment. The obtained results rise the discussion on how these simulated flow fields are similar to real application ones. Experimental results have some discrepancies from simulation ones due to the models implemented to fluid flow analysis in initial stage, not developed one and due to the difficulties of models to cover transitional regimes. Recommendations are essential for energy harvesting systems in both, indoor and outdoor cases. Further investigations aim to be shifted to experimental analysis of flow under laboratory conditions using state-of-the-art techniques as flow visualization tool and later on to in situ situations that is complicated, cost and time consuming study.

Keywords: fluid flow, initial region, tube coefficient, distinct shape

Procedia PDF Downloads 313
1009 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: composite materials, adhesive bonding, bonding strength, lap joint, tensile strength

Procedia PDF Downloads 347
1008 Improving the Method for Characterizing Structural Fabrics for Shear Resistance and Formability

Authors: Dimitrios Karanatsis

Abstract:

Non-crimp fabrics (NCFs) allow for high mechanical performance of a manufacture composite component by maintaining the fibre reinforcements parallel to each other. The handling of NCFs is enabled by the stitching of the tows. Although the stitching material has negligible influence to the performance of the manufactured part, it can affect the ability of the structural fabric to shear and drape over the part’s geometry. High resistance to shearing is attributed to the high tensile strain of the stitching yarn and can cause defects in the fabric. In the current study, a correlation based on the stitch tension and shear behaviour is examined. The purpose of the research is to investigate the upper and lower limits of non-crimp fabrics manufacture and how these affect the shear behaviour of the fabrics. Experimental observations show that shear behaviour of the fabrics is significantly affected by the stitch tension, and there is a linear effect to the degree of shear they experience. It was found that the lowest possible stitch tension on the manufacturing line settings produces an NCF that exhibits very low tensile strain on it’s yarns and that has shear properties similar to a woven fabric. Moreover, the highest allowable stitch tension results in reduced formability of the fabric, as the stitch thread rearranges the fibre filaments where these become packed in a tight formation with constricted movement.

Keywords: carbon fibres, composite manufacture, shear testing, textiles

Procedia PDF Downloads 121
1007 Investigation of the Growth Kinetics of Phases in Ni–Sn System

Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul

Abstract:

Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.

Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system

Procedia PDF Downloads 277