Search results for: automotive and mechanical engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6509

Search results for: automotive and mechanical engineering

6449 Development of A MG-Gd-Er-Zn-Zr Alloy with Ultrahigh Strength and Ductility via Extrusion, Pre-Deformation, and Two-Stage Aging

Authors: Linyue Jia, Wenbo Du, Zhaohui Wang, Ke Liu, Shubo Li

Abstract:

Due to the great potential for weight reduction in aerospace and automotive industries, magnesium-rare earth (Mg-RE) based alloys with outstanding mechanical performance have been widely investigated for decades. However, magnesium alloys are still restricted in engineering applications because of their lower strength and ductility. Hence, there are large spaces and challenges in achieving high-performance Mg alloys. This work reports an Mg-Gd-Er-Zn-Zr alloy with ultrahigh strength and good ductility developed via hot extrusion, pre-deformation, and two-stage aging. The extruded alloy comprises fine dynamically recrystallized (DRXed) grains and coarse worked grains with a large aspect ratio. Pre-deformation has little effect on the microstructure and macro-texture and serves primarily to introduce a large number of dislocations, resulting in strain hardening and higher precipitation strengthening during subsequent aging due to more nucleation sites. As a result, the alloy exhibits a yield strength (YS) of 506 MPa, an ultimate tensile strength (UTS) of 549 MPa, and elongation (EL) of 8.2% at room temperature, showing superior strength-ductility balance than the other wrought Mg-RE alloys previously reported. The current study proposes a combination of pre-deformation and two-stage aging to further improve the mechanical properties of wrought Mg alloys for engineering applications.

Keywords: magnesium alloys, mechanical properties, microstructure, pre-deformation, two-stage aging

Procedia PDF Downloads 132
6448 Design and Analysis of a Laminated Composite Automotive Drive Shaft

Authors: Hossein Kh. Bisheh, Nan Wu

Abstract:

Advanced composite materials have a great importance in engineering structures due to their high specific modulus and strength and low weight. These materials can be used in design and fabrication of automotive drive shafts to reduce the weight of the structure. Hence, an optimum design of a composite drive shaft satisfying the design criteria, can be an appropriate substitution of metallic drive shafts. The aim of this study is to design and analyze a composite automotive drive shaft with high specific strength and low weight satisfying the design criteria. Tsai-Wu criterion is chosen as the failure criterion. Various designs with different lay-ups and materials are investigated based on the design requirements and finally, an optimum design satisfying the design criteria is chosen based on the weight and cost considerations. The results of this study indicate that if the weight is the main concern, a shaft made of Carbon/Epoxy can be a good option, and if the cost is a more important parameter, a hybrid shaft made of aluminum and Carbon/Epoxy can be considered.

Keywords: Bending natural frequency, Composite drive shaft, Peak torque, Torsional buckling

Procedia PDF Downloads 201
6447 Multi-Pass Shape Drawing Process Design for Manufacturing of Automotive Reinforcing Agent with Closed Cross-Section Shape using Finite Element Method Analysis

Authors: Mok-Tan Ahn, Hyeok Choi, Joon-Hong Park

Abstract:

Multi-stage drawing process is an important technique for forming a shape that cannot be molded in a single process. multi-stage drawing process in number of passes and the shape of the die are an important factor influencing the productivity and moldability of the product. The number and shape of the multi-path in the mold of the drawing process is very influencing the productivity and moldability of the product. Half angle of the die and mandrel affects the drawing force and it also affects the completion of the final shape. Thus reducing the number of pass and the die shape optimization are necessary to improve the formability of the billet. The purpose of this study, Analyzing the load on the die through the FEM analysis and in consideration of the formability of the material presents a die model.

Keywords: automotive reinforcing agent, multi-pass shape drawing, automotive parts, FEM analysis

Procedia PDF Downloads 427
6446 A Study on Automotive Attack Database and Data Flow Diagram for Concretization of HEAVENS: A Car Security Model

Authors: Se-Han Lee, Kwang-Woo Go, Gwang-Hyun Ahn, Hee-Sung Park, Cheol-Kyu Han, Jun-Bo Shim, Geun-Chul Kang, Hyun-Jung Lee

Abstract:

In recent years, with the advent of smart cars and the expansion of the market, the announcement of 'Adventures in Automotive Networks and Control Units' at the DEFCON21 conference in 2013 revealed that cars are not safe from hacking. As a result, the HEAVENS model considering not only the functional safety of the vehicle but also the security has been suggested. However, the HEAVENS model only presents a simple process, and there are no detailed procedures and activities for each process, making it difficult to apply it to the actual vehicle security vulnerability check. In this paper, we propose an automated attack database that systematically summarizes attack vectors, attack types, and vulnerable vehicle models to prepare for various car hacking attacks, and data flow diagrams that can detect various vulnerabilities and suggest a way to materialize the HEAVENS model.

Keywords: automotive security, HEAVENS, car hacking, security model, information security

Procedia PDF Downloads 323
6445 Influence of Dry-Film Lubricants on Bond Strength and Corrosion Behaviour of 6xxx Aluminium Alloy Adhesive Joints for Automotive Industry

Authors: Ralph Gruber, Martina Hafner, Theresia Greunz, Christian Reisecker, David Stifter

Abstract:

The application of dry lubricant on aluminium for automotive industry is indispensable for a high-quality forming behaviour. To provide a short production time those forming aids will not be removed during the joining step. The aim of this study was the characterization of the influence of dry lubricants on the bond strength and the corrosion resistance of an 6xxx aluminium alloy for automotive applications. For this purpose, samples with a well-defined surface were lubricated with 1 g/m² dry lubricant and joined with a commercial thermosetting 1K-epoxy structural adhesive. The bond strength was characterized by means of lap shear test. To evaluate the corrosion resistance of the adhered aluminium samples an immersion test in 5 w% NaCl-solution was used. Based on fracture pattern analysis, the corrosion behaviour could be described. Dissolved corrosion products were examined using ICP-MS and NMR. By means of SEM/EDX the elementary composition of precipitated solids was determined. The results showed a dry lubricant independent bond strength for standard testing conditions. However, a significant effect of the forming aid, regarding the corrosion resistance of adhered aluminium samples against corrosive infiltration of the metal-adhesive-interface, was observed

Keywords: aluminium alloys, dry film lubricants, automotive industry, adhesive bonding, corrosion

Procedia PDF Downloads 73
6444 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites

Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira

Abstract:

The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.

Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites

Procedia PDF Downloads 159
6443 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine

Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade

Abstract:

The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.

Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft

Procedia PDF Downloads 446
6442 The Supply Chain Operation Reference Model Adaptation in the Developing Countries: An Empirical Study on the Egyptian Automotive Sector

Authors: Alaa Osman, Sara Elgazzar, Breksal Elmiligy

Abstract:

The Supply Chain Operation Reference (SCOR) model is considered one of the most widely implemented supply chain performance measurement systems (SCPMSs). Several studies have been proposed on the SCOR model adaptation in developed countries context; while there is a limited availability of previous work on the SCPMSs application generally and the SCOR model specifically in developing nations. This paper presents a research agenda on the SCOR model adaptation in the developing countries. It aims at investigating the challenges of adapting the SCOR model to manage and measure supply chain performance in developing countries. The research will exemplify the system in the Egyptian automotive sector to gain a comprehensive understanding of how the application of the SCOR model can affect the performance of automotive companies in Egypt, with a necessary understanding of challenges and obstacles faced the adaptation of the model in the Egyptian supply chain context. An empirical study was conducted on the Egyptian automotive sector in three companies considering three different classes: BMW, Hyundai and Brilliance. First, in-depth interviews were carried out to gain an insight into the implementation and the relevance of the concepts of supply chain management and performance measurement in the Egyptian automotive industry. Then, a formal survey was designed based on the SCOR model five main processes (plan, source, make, deliver and return) and best practices to investigate the challenges and obstacles faced the adaptation of the SCOR model in the Egyptian automotive supply chain. Finally, based on the survey results, the appropriate best practices for each process were identified in order to overcome the SCOR model adaptation challenges. The results showed that the implementation of the SCOR model faced different challenges and unavailability of the required enablers. The survey highlighted the low integration of end-to-end supply chain, lacks commitment for the innovative ideas and technologies, financial constraints and lack of practical training and support as the main challenges faced the adaptation of the SCOR model in the Egyptian automotive supply chain. The research provides an original contribution to knowledge by proposing a procedure to identify challenges encountered during the process of SCOR model adoption which can pave a way for further research in the area of SCPMSs adaptation, particularly in the developing countries. The research can help managers and organizations to identify obstacles and difficulties of the SCOR model adaptation, subsequently this can facilitate measuring the improved performance or changes in the organizational performance.

Keywords: automotive sector, developing countries, SCOR model, supply chain performance

Procedia PDF Downloads 339
6441 A Finite Element Based Predictive Stone Lofting Simulation Methodology for Automotive Vehicles

Authors: Gaurav Bisht, Rahul Rathnakumar, Ravikumar Duggirala

Abstract:

Predictive simulations are one of the key focus areas in safety-critical industries such as aerospace and high-performance automotive engineering. The stone-chipping study is one such effort taken up by the industry to predict and evaluate the damage caused due to gravel impact on vehicles. This paper describes a finite elements based method that can simulate the ejection of gravel chips from a vehicle tire. The FE simulations were used to obtain the initial ejection velocity of the stones for various driving conditions using a computational contact mechanics approach. To verify the accuracy of the tire model, several parametric studies were conducted. The FE simulations resulted in stone loft velocities ranging from 0–8 m/s, regardless of tire speed. The stress on the tire at the instant of initial contact with the stone increased linearly with vehicle speed. Mesh convergence studies indicated that a highly resolved tire mesh tends to result in better momentum transfer between the tire and the stone. A fine tire mesh also showed a linearly increasing relationship between the tire forward speed and stone lofting speed, which was not observed in coarser meshes. However, it also highlighted a potential challenge, in that the ejection velocity vector of the stone seemed to be sensitive to the mesh, owing to the FE-based contact mechanical formulation of the problem.

Keywords: abaqus, contact mechanics, foreign object debris, stone chipping

Procedia PDF Downloads 243
6440 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem

Authors: Watchara Songserm, Teeradej Wuttipornpun

Abstract:

This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.

Keywords: capacitated MRP, genetic algorithm, linear programming, automotive industries, flow shop, application in industry

Procedia PDF Downloads 462
6439 Influence of Temperature and Immersion on the Behavior of a Polymer Composite

Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli

Abstract:

This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.

Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical

Procedia PDF Downloads 88
6438 Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thi Thanh Truc, Byeong-Kyu Lee

Abstract:

In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.

Keywords: automotive shredder residue, chlorinated plastics, hazardous waste, heavy metals, immobilization, separation

Procedia PDF Downloads 484
6437 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System

Authors: H. Mohit

Abstract:

In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.

Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science

Procedia PDF Downloads 230
6436 Flexural Response of Glass Fiber Reinforced Polymer Sandwich Panels with 3D Woven Honeycomb Core

Authors: Elif Kalkanli, Constantinos Soutis

Abstract:

The use of textile preform in the advanced fields including aerospace, automotive and marine has exponentially grown in recent years. These preforms offer excellent advantages such as being lightweight and low-cost, and also, their suitability for creating different fiber architectures with different materials whilst improved mechanical properties in certain aspects. In this study, a novel honeycomb core is developed by a 3Dweaving process. The assembly of the layers is achieved thanks to innovative weaving design. Polyester yarn is selected for the 3D woven honeycomb core (3DWHC). The core is used to manufacture a sandwich panel with 2x2 twill glass fiber composite face sheets. These 3DWHC sandwich panels will be tested in three-point bending. The in-plane and out-of-plane (through-the-thickness) mechanical response of the core will be examined as a function of cell size in addition to the flexural response of the sandwich panel. The failure mechanisms of the core and the sandwich skins will be reported in addition to flexural strength and stiffness. Possible engineering applications will be identified.

Keywords: 3D woven, assembly, failure modes, honeycomb sandwich panel

Procedia PDF Downloads 178
6435 Design of Local Interconnect Network Controller for Automotive Applications

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.

Keywords: local interconnect network, controller, transceiver, processor

Procedia PDF Downloads 256
6434 A Solution for Production Facility Assignment: An Automotive Subcontract Case

Authors: Cihan Çetinkaya, Eren Özceylan, Kerem Elibal

Abstract:

This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters.

Keywords: automotive subcontract, facility assignment, logistic costs, multi-objective models

Procedia PDF Downloads 338
6433 Predictability of Supply Chain in Indian Automobile Division

Authors: Dharamvir Mangal

Abstract:

Supply chain management has increasingly become an inevitable challenge to most companies to continuously survive and prosper in the global chain-based competitive environment. The current challenges of the Indian automotive world, their implications on supply chain are summarized and analyzed in this paper. In this competitive era of ‘LPG’ i.e. Liberalization, Privatization and Globalization, modern marketing systems, introduction of products with short life cycles, and the discriminating expectations of customers have enforced business enterprises to invest in and focus attention on their Supply Chains (SCs) in order to meet out the level of customer’s satisfaction and to survive in the competitive market. In fact, many of trends in the auto industry are reinforcing the need to redefine supply chain strategies layouts, and operations etc. Many manufacturing operations are designed to maximize throughput and lower costs with modest considerations for the crash on inventory levels and distribution capabilities. To improve profitability and efficiency, automotive players are seeking ways to achieve operational excellence, reduce operating cost and enhance customer service through efficient supply chain management.

Keywords: automotive industry, supply chain, challenges, market potential

Procedia PDF Downloads 306
6432 Creation of Processes for a Safety Element Out of Context for an Actuator Circuit Control Module

Authors: Hassan Noun, Christian Urban-Seelmann, Mohamed Abdelfattah, Guillaume Zeller, Rajesh G., Iryna Mozgova, Roland Lachmayer

Abstract:

Several modules in automotive are usually modified and adapted for various project-specific applications. Due to a standardized safety concept, high reusability is accessible. A safety element out of context (SEooC) according to ISO 26262 can be a suitable approach. Based on the same safety concept and analysis, common modules can reach high usability. For developing according to a module out of context, an appropriate and detailed development approach is required. This paper shows how to derive these development processes for platform modules. Therefore, the detailed approach to the safety element out of context is derived. The aim is to create a detailed workflow for all phases of the development and integration of any kind of system modules. As an application example, an automotive project for an actuator control module is considered.

Keywords: functional safety, engineering processes, system engineering, electronic engineering

Procedia PDF Downloads 117
6431 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting

Procedia PDF Downloads 306
6430 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50 mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300 m/min cutting speed and 1140 mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded K-Type thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: composites, trimming, thermal damage, surface quality

Procedia PDF Downloads 303
6429 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix

Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin

Abstract:

Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.

Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization

Procedia PDF Downloads 169
6428 Analysis of Brake System for Vehicle Off-Road

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, José Ubiragi de Lima Mendes

Abstract:

In elapsing of the years it elaborates automobile it is developing automobiles more and more modern that, every year, the vehicles recently of the assembly lines, practically they push for the past produced models there is very little time. Those innovations didn't also pass unperceived in 0respect the safety of the vehicles. It is in this development apprenticeship the brakes systems equipped more and more with resources sophisticated. In that way, before of that context, this research tried to project a brake system for a vehicle off-road and to analyze your acting as the brakes efficiency: distances traveled and time, concluding with possible improvements in the system.

Keywords: brakes system, off-road, vehicle acting, automotive and mechanical engineering

Procedia PDF Downloads 451
6427 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications

Authors: Júlio Cesar Lopes de Oliveira, Carlos Henrique Gonçalves Treviso

Abstract:

The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.

Keywords: DC-DC power converters, converters, power conversion, pulse width modulation converters

Procedia PDF Downloads 342
6426 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application

Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah

Abstract:

Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.

Keywords: coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites

Procedia PDF Downloads 424
6425 Different Orientations of Shape Memory Alloy Wire in Automotive Sector Product

Authors: Srishti Bhatt, Vaibhav Bhavsar, Adil Hussain, Aashay Mhaske, S. C. Bali, T. S. Srikanth

Abstract:

Shape Memory Alloys (SMA) are widely known for their unique shape recovery properties. SMA based actuation systems have high-force to weight ratio, light weight and also bio-compatible material. Which is why they are being used in different fields of aerospace, robotics, automotive and biomedical industries. However, in the automotive industry plenty of patents are available but commercially viable products are very few in market. This could be due to SMA material limitations like small stroke, direct dependability of lifecycle on stroke, pull load of the wire and high cycle time. In automotive sector, SMA being considered as an actuator which is required to have high stroke and constraint arises to accommodate a long length of wire (to compensate maximum 4 % strain as per better fatigue life cycle) not only increases complexity but also adds on the cost. More than 200 different types of actuators are used in an automobile, few of them whose efficiency can highly increase by replacing them with SMA based actuators which include latch lock mechanism, glove box, Head lamp leveling, side mirror and rear mirror leveling, tailgate opener and fuel lid cap actuator. To overcome the limitation of available space for required stroke of an actuator which leads to study the effect of different loading positions on SMA wires, different orientations of SMA wire by using pulleys and lever based systems to achieve maximum stroke. This investigation summarizes the loading under the V shape orientation the required stroke and carrying load capacity in more compact in comparison with straight orientation of wire. Similarly, the U shape orientation its showing higher load carrying capacity but reduced stroke which is aligned with concept of bundled wire method. Life-cycle of these orientations were also evaluated.

Keywords: actuators, automotive, nitinol, shape memory alloy, SMA wire orientations

Procedia PDF Downloads 59
6424 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 369
6423 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites

Authors: Jifeng Zhang , Yongpeng Lei

Abstract:

Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.

Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface

Procedia PDF Downloads 100
6422 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.

Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding

Procedia PDF Downloads 44
6421 Investigation of Mechanical and Rheological Properties of Poly (trimethylene terephthalate) (PTT)/Polyethylene Blend Using Carboxylate and Ionomer as Compatibilizers

Authors: Wuttikorn Chayapanja, Sutep Charoenpongpool, Manit Nithitanakul, Brian P. Grady

Abstract:

Poly (trimethylene terephthalate) (PTT) is a linear aromatic polyester with good strength and stiffness, good surface appearance, low shrinkage and war page, and good dimensional stability. However, it has low impact strength which is a problem in automotive application. Thus, modification of PTT with the other polymer or polymer blending is a one way to develop a new material with excellence properties. In this study, PTT/High Density Polyethylene (HDPE) blends and PTT/Linear Low Density Polyethylene (LLDPE) blends with and without compatibilizers base on maleic anhydride grafted HDPE (MAH-g-HDPE) and ethylene-methacrylic acid neutralized sodium metal (Na-EMAA) were prepared by a twin-screw extruder. The blended samples with different ratios of polymers and compatibilizers were characterized on mechanical and rheological properties. Moreover, the phase morphology and dispersion size were studied by using SEM to give better understanding of the compatibility of the blends.

Keywords: poly trimethylene terephthalate, polyethylene, compatibilizer, polymer blend

Procedia PDF Downloads 386
6420 Implementation of an Open Source ERP for SMEs in the Automotive Sector in Peru: A Case Study

Authors: Gerson E. Cornejo, Luis A. Gamarra, David S. Mauricio

Abstract:

The Enterprise Resource Planning Systems (ERP) allows the integration of all the business processes of the functional areas of the companies, in order to automate and standardize the processes, obtain accurate information and improve decision making in time real. In Peru, 79% of medium and small companies (SMEs) do not use any management software, this is because it is believed that ERPs are expensive, complex and difficult to implement. However, for more than 20 years there have been Open Source ERPs, which are more accessible and have the same benefit as proprietary ERPs, but there is little information on the implementation process. In this work is made a case of study, in order to show the implementation process of an Open Source ERP, Odoo, based on the ASAP methodology (Accelerated SAP) and applied to a company of corrective and preventive maintenance services of vehicles. The ERP allowed the SME to standardize its business processes, increase its productivity, reducing up to 40% certain processes. The study of this case shows that it is feasible and profitable to implement an Open Source ERP in SMEs in the Automotive Sector of Peru. In addition, it is shown that the ASAP methodology is adequate to carry out Open Source ERPs implementation projects.

Keywords: ASAP, automotive sector, ERP implementation, open source

Procedia PDF Downloads 302