Search results for: assignment problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7168

Search results for: assignment problem

7078 Number Sense Proficiency and Problem Solving Performance of Grade Seven Students

Authors: Laissa Mae Francisco, John Rolex Ingreso, Anna Krizel Menguito, Criselda Robrigado, Rej Maegan Tuazon

Abstract:

This study aims to determine and describe the existing relationship between number sense proficiency and problem-solving performance of grade seven students from Victorino Mapa High School, Manila. A paper pencil exam containing of 50-item number sense test and 5-item problem-solving test which measures their number sense proficiency and problem-solving performance adapted from McIntosh, Reys, and Bana were used as the research instruments. The data obtained from this study were interpreted and analyzed using the Pearson – Product Moment Coefficient of Correlation to determine the relationship between the two variables. It was found out that students who were low in number sense proficiency tend to be the students with poor problem-solving performance and students with medium number sense proficiency are most likely to have an average problem-solving performance. Likewise, students with high number sense proficiency are those who do excellently in problem-solving performance.

Keywords: number sense, performance, problem solving, proficiency

Procedia PDF Downloads 397
7077 Incorporating Polya’s Problem Solving Process: A Polytechnic Mathematics Module Case Study

Authors: Pei Chin Lim

Abstract:

School of Mathematics and Science of Singapore Polytechnic offers a Basic Mathematics module to students who did not pass GCE O-Level Additional Mathematics. These students are weaker in Mathematics. In particular, they struggle with word problems and tend to leave them blank in tests and examinations. In order to improve students’ problem-solving skills, the school redesigned the Basic Mathematics module to incorporate Polya’s problem-solving methodology. During tutorial lessons, students have to work through learning activities designed to raise their metacognitive awareness by following Polya’s problem-solving process. To assess the effectiveness of the redesign, students’ working for a challenging word problem in the mid-semester test were analyzed. Sixty-five percent of students attempted to understand the problem by making sketches. Twenty-eight percent of students went on to devise a plan and implement it. Only five percent of the students still left the question blank. These preliminary results suggest that with regular exposure to an explicit and systematic problem-solving approach, weak students’ problem-solving skills can potentially be improved.

Keywords: mathematics education, metacognition, problem solving, weak students

Procedia PDF Downloads 134
7076 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 192
7075 A New Graph Theoretic Problem with Ample Practical Applications

Authors: Mehmet Hakan Karaata

Abstract:

In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.

Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring

Procedia PDF Downloads 357
7074 Teaching and Learning Physics via GPS and WikiS

Authors: Hashini E. Mohottala

Abstract:

We report the combine use of Wikispaces (WikiS) and Group Problem Solving (GPS) sessions conducted in the introductory level physics classes. As a part of this new teaching tool, some essay type problems were posted on the WikiS in weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but the steps. Wikispace is used as a platform for students to meet online and create discussions. Each week students were further evaluated on problem solving skills opening up more opportunity for peer interaction through GPS. Each group was given a different problem to solve and the answers were graded. Students developed a set of skills in decision-making, problem solving, communication, negotiation, critical and independent thinking and teamwork through the combination of WikiS and GPS.

Keywords: group problem solving (GPS), wikispace (WikiS), physics education, learning

Procedia PDF Downloads 388
7073 Comparative Analysis of Two Different Ant Colony Optimization Algorithm for Solving Travelling Salesman Problem

Authors: Sourabh Joshi, Tarun Sharma, Anurag Sharma

Abstract:

Ant Colony Optimization is heuristic Algorithm which has been proven a successful technique applied on number of combinatorial optimization problems. Two variants of Ant Colony Optimization algorithm named Ant System and Max-Min Ant System are implemented in MATLAB to solve travelling Salesman Problem and the results are compared. In, this paper both systems are analyzed by solving the some Travelling Salesman Problem and depict which system solve the problem better in term of cost and time.

Keywords: Ant Colony Optimization, Travelling Salesman Problem, Ant System, Max-Min Ant System

Procedia PDF Downloads 447
7072 On the Application of Heuristics of the Traveling Salesman Problem for the Task of Restoring the DNA Matrix

Authors: Boris Melnikov, Dmitrii Chaikovskii, Elena Melnikova

Abstract:

The traveling salesman problem (TSP) is a well-known optimization problem that seeks to find the shortest possible route that visits a set of points and returns to the starting point. In this paper, we apply some heuristics of the TSP for the task of restoring the DNA matrix. This restoration problem is often considered in biocybernetics. For it, we must recover the matrix of distances between DNA sequences if not all the elements of the matrix under consideration are known at the input. We consider the possibility of using this method in the testing of distance calculation algorithms between a pair of DNAs to restore the partially filled matrix.

Keywords: optimization problems, DNA matrix, partially filled matrix, traveling salesman problem, heuristic algorithms

Procedia PDF Downloads 120
7071 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.

Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target

Procedia PDF Downloads 113
7070 Optimization of Maritime Platform Transport Problem of Solid, Special and Dangerous Waste

Authors: Ocotlán Díaz-Parra, Jorge A. Ruiz-Vanoye, Alejandro Fuentes-Penna, Beatriz Bernabe-Loranca, Patricia Ambrocio-Cruz, José J. Hernández-Flores

Abstract:

The Maritime Platform Transport Problem of Solid, Special and Dangerous Waste consist of to minimize the monetary value of carry different types of waste from one location to another location using ships. We offer a novel mathematical, the characterization of the problem and the use CPLEX to find the optimal values to solve the Solid, Special and Hazardous Waste Transportation Problem of offshore platforms instances of Mexican state-owned petroleum company (PEMEX). The set of instances used are WTPLib real instances and the tool CPLEX solver to solve the MPTPSSDW problem.

Keywords: oil platform, transport problem, waste, solid waste

Procedia PDF Downloads 441
7069 An Improved Approach to Solve Two-Level Hierarchical Time Minimization Transportation Problem

Authors: Kalpana Dahiya

Abstract:

This paper discusses a two-level hierarchical time minimization transportation problem, which is an important class of transportation problems arising in industries. This problem has been studied by various researchers, and a number of polynomial time iterative algorithms are available to find its solution. All the existing algorithms, though efficient, have some shortcomings. The current study proposes an alternate solution algorithm for the problem that is more efficient in terms of computational time than the existing algorithms. The results justifying the underlying theory of the proposed algorithm are given. Further, a detailed comparison of the computational behaviour of all the algorithms for randomly generated instances of this problem of different sizes validates the efficiency of the proposed algorithm.

Keywords: global optimization, hierarchical optimization, transportation problem, concave minimization

Procedia PDF Downloads 121
7068 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 80
7067 Educating the Education Student: Technology as the Link between Theory and Praxis

Authors: Rochelle Botha-Marais

Abstract:

When lecturing future educators in South Africa, praxis is an indispensable aspect that is often neglected. Without properly understanding how the theory taught in lecture halls relates to their future position as educators, we can not expect these students to be fully equipped future teachers. To enable education students at the Vaal Campus of the North West University - who have the Afrikaans language as major - to discover the link between theory and practice, the author created an assignment on phonetics in which the use of technology was incorporated. In the past, students had to submit an assignment or worksheet and they did not get the opportunity to apply their newly found knowledge in a practical manner. For potential future teachers, this application is essential. This paper will demonstrate how technology is used in the second year Afrikaans education module to promote student engagement and self-directed learning. Students were introduced to innovative new technologies alongside more familiar applications to shape a 21st century learning environment where students can think, communicate, solve problems, collaborate and take responsibility for their own teaching and learning. The paper will also reflect on student feedback pertaining the use and efficiency of technology in the Afrikaans module and the possible impact thereof on their own teaching and learning landscape. The aim of this paper is to showcase how technology can be used to maximize the students learning experience and equip future education students with the tools and knowledge to introduce technology-enhanced learning in their own teaching practice.

Keywords: education students, theory and practice, self-directed learning, student engagement, technology

Procedia PDF Downloads 259
7066 On Hankel Matrices Approach to Interpolation Problem in Infinite and Finite Fields

Authors: Ivan Baravy

Abstract:

Interpolation problem, as it was initially posed in terms of polynomials, is well researched. However, further mathematical developments extended it significantly. Trigonometric interpolation is widely used in Fourier analysis, while its generalized representation as exponential interpolation is applicable to such problem of mathematical physics as modelling of Ziegler-Biersack-Littmark repulsive interatomic potentials. Formulated for finite fields, this problem arises in decoding Reed--Solomon codes. This paper shows the relation between different interpretations of the problem through the class of matrices of special structure - Hankel matrices.

Keywords: Berlekamp-Massey algorithm, exponential interpolation, finite fields, Hankel matrices, Hankel polynomials

Procedia PDF Downloads 483
7065 Finite Element and Split Bregman Methods for Solving a Family of Optimal Control Problem with Partial Differential Equation Constraint

Authors: Mahmoud Lot

Abstract:

In this article, we will discuss the solution of elliptic optimal control problem. First, by using the nite element method, we obtain the discrete form of the problem. The obtained discrete problem is actually a large scale constrained optimization problem. Solving this optimization problem with traditional methods is difficult and requires a lot of CPU time and memory. But split Bergman method converts the constrained problem to an unconstrained, and hence it saves time and memory requirement. Then we use the split Bregman method for solving this problem, and examples show the speed and accuracy of split Bregman methods for solving these types of problems. We also use the SQP method for solving the examples and compare with the split Bregman method.

Keywords: Split Bregman Method, optimal control with elliptic partial differential equation constraint, finite element method

Procedia PDF Downloads 113
7064 A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan

Authors: Mohsen Ziaee

Abstract:

Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases.

Keywords: scheduling, general flow shop scheduling problem, makespan, heuristic

Procedia PDF Downloads 178
7063 Creative Thinking through Mindful Practices: A Business Class Case Study

Authors: Malavika Sundararajan

Abstract:

This study introduces the use of mindfulness techniques in the classroom to make individuals aware of how the creative thinking process works, resulting in more constructive learning and application. Case observation method was utilized within a classroom setting in a graduate class in the Business School. It entailed, briefing the student participants about the use of a template called the dots and depths map, and having them complete it for themselves, compare it to their team members and reflect on the outputs. Finally, they were debriefed about the use of the template and its value to their learning and creative application process. The major finding is the increase in awareness levels of the participants following the use of the template, leading to a subsequent pursuit of diverse knowledge and acquisition of relevant information and not jumping to solutions directly, which increased their overall creative outputs for the given assignment. The significant value of this study is that it can be applied to any classroom on any subject as a powerful mindfulness tool which increases creative problem solving through constructive knowledge building.

Keywords: connecting dots, mindful awareness, constructive knowledge building, learning creatively

Procedia PDF Downloads 118
7062 A Matheuristic Algorithm for the School Bus Routing Problem

Authors: Cagri Memis, Muzaffer Kapanoglu

Abstract:

The school bus routing problem (SBRP) is a variant of the Vehicle Routing Problem (VRP) classified as a location-allocation-routing problem. In this study, the SBRP is decomposed into two sub-problems: (1) bus route generation and (2) bus stop selection to solve large instances of the SBRP in reasonable computational times. To solve the first sub-problem, we propose a genetic algorithm to generate bus routes. Once the routes have been fixed, a sub-problem remains of allocating students to stops considering the capacity of the buses and the walkability constraints of the students. While the exact method solves small-scale problems, treating large-scale problems with the exact method becomes complex due to computational problems, a deficiency that the genetic algorithm can overcome. Results obtained from the proposed approach on 150 instances up to 250 stops show that the matheuristic algorithm provides better solutions in reasonable computational times with respect to benchmark algorithms.

Keywords: genetic algorithm, matheuristic, school bus routing problem, vehicle routing problem

Procedia PDF Downloads 40
7061 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin

Abstract:

In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.

Keywords: binary cat swarm optimization, binarization methods, metaheuristic, set covering problem

Procedia PDF Downloads 367
7060 A Metaheuristic for the Layout and Scheduling Problem in a Job Shop Environment

Authors: Hernández Eva Selene, Reyna Mary Carmen, Rivera Héctor, Barragán Irving

Abstract:

We propose an approach that jointly addresses the layout of a facility and the scheduling of a sequence of jobs. In real production, these two problems are interrelated. However, they are treated separately in the literature. Our approach is an extension of the job shop problem with transportation delay, where the location of the machines is selected among possible sites. The model minimizes the makespan, using the short processing times rule with two algorithms; the first one considers all the permutations for the location of machines, and the second only a heuristic to select some specific permutations that reduces computational time. Some instances are proved and compared with literature.

Keywords: layout problem, job shop scheduling problem, concurrent scheduling and layout problem, metaheuristic

Procedia PDF Downloads 580
7059 Tabu Search to Draw Evacuation Plans in Emergency Situations

Authors: S. Nasri, H. Bouziri

Abstract:

Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.

Keywords: dynamic network flow, load dependent transit time, evacuation strategy, earliest arrival flow problem, tabu search metaheuristic

Procedia PDF Downloads 346
7058 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing

Authors: Divyesh Patel, Tanuja Srivastava

Abstract:

This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.

Keywords: discrete tomography, exactly-1-4-adjacency, simulated annealing, binary matrices

Procedia PDF Downloads 374
7057 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median

Procedia PDF Downloads 165
7056 Expert and Novice Problem-Solvers Differences: A Discourse for Effective Teaching Delivery in Physics Classrooms

Authors: Abubakar Sa’adatu Mohammed

Abstract:

This paper reports on a study of problem solving differences between expert and novice Problem solvers for effective physics teaching. Significant differences were found both at the conceptual level and at the level of critical thinking, creative thinking and reasoning. It is suggested for a successful solution of a problem, conceptual knowledge alone may not be sufficient. There is the need of the knowledge of how the conceptual knowledge should be applied (problem solving skills). It is hoped that this research might contribute to efforts of exploring ways for students to acquire a powerful conceptual toolkit based on experts like problem solvers approach for effective teaching delivery.

Keywords: conceptual knowledge, procedural knowledge, critical thinking, creative thinking, reasoning ability

Procedia PDF Downloads 265
7055 Using Signature Assignments and Rubrics in Assessing Institutional Learning Outcomes and Student Learning

Authors: Leigh Ann Wilson, Melanie Borrego

Abstract:

The purpose of institutional learning outcomes (ILOs) is to assess what students across the university know and what they do not. The issue is gathering this information in a systematic and usable way. This presentation will explain how one institution has engineered this process for both student success and maximum faculty curriculum and course design input. At Brandman University, there are three levels of learning outcomes: course, program, and institutional. Institutional Learning Outcomes (ILOs) are mapped to specific courses. Faculty course developers write the signature assignments (SAs) in alignment with the Institutional Learning Outcomes for each course. These SAs use a specific rubric that is applied consistently by every section and every instructor. Each year, the 12-member General Education Team (GET), as a part of their work, conducts the calibration and assessment of the university-wide SAs and the related rubrics for one or two of the five ILOs. GET members, who are senior faculty and administrators who represent each of the university's schools, lead the calibration meetings. Specifically, calibration is a process designed to ensure the accuracy and reliability of evaluating signature assignments by working with peer faculty to interpret rubrics and compare scoring. These calibration meetings include the full time and adjunct faculty members who teach the course to ensure consensus on the application of the rubric. Each calibration session is chaired by a GET representative as well as the course custodian/contact where the ILO signature assignment resides. The overall calibration process GET follows includes multiple steps, such as: contacting and inviting relevant faculty members to participate; organizing and hosting calibration sessions; and reviewing and discussing at least 10 samples of student work from class sections during the previous academic year, for each applicable signature assignment. Conversely, the commitment for calibration teams consist of attending two virtual meetings lasting up to three hours in duration. The first meeting focuses on interpreting the rubric, and the second meeting involves comparing scores for sample work and sharing feedback about the rubric and assignment. Next, participants are expected to follow all directions provided and participate actively, and respond to scheduling requests and other emails within 72 hours. The virtual meetings are recorded for future institutional use. Adjunct faculty are paid a small stipend after participating in both calibration meetings. Full time faculty can use this work on their annual faculty report for "internal service" credit.

Keywords: assessment, assurance of learning, course design, institutional learning outcomes, rubrics, signature assignments

Procedia PDF Downloads 255
7054 Developing the Morphological Field of Problem Context to Assist Multi-Methodology in Operations Research

Authors: Mahnaz Hosseinzadeh, Mohammad Reza Mehregan

Abstract:

In this paper, we have developed a morphological field to assist multi- methodology (combining methodologies together in whole or part) in Operations Research (OR) for the problem contexts in Iranian organizations. So, we have attempted to identify some dimensions for problem context according to Iranian organizational problems. Then, a general morphological program is designed which helps the OR practitioner to determine the suitable OR methodology as output for any configuration of conditions in a problem context as input and to reveal the fields necessary to be improved in OR. Applying such a program would have interesting results for OR practitioners.

Keywords: hard, soft and emancipatory operations research, General Morphological Analysis (GMA), multi-methodology, problem context

Procedia PDF Downloads 274
7053 Solving Stochastic Eigenvalue Problem of Wick Type

Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati

Abstract:

In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion

Procedia PDF Downloads 325
7052 Strength of Gratitude Determining Subjective Well-Being: Evidence for Mediating Role of Problem-Solving Styles

Authors: Sarwat Sultan, Shahzad Gul

Abstract:

This study was carried out to see the mediating role of problem solving styles (sensing, intuitive, feeling, and thinking) in the predictive relationship of gratitude with subjective well-being. A sample of 454 college students aged 20-26 years old participated in this study and provided data on the measures of gratitude, problem solving styles, and subjective well-being. Results indicated the significant relationships of gratitude with subjective well-being and problem solving styles of intuitive and thinking. Results further indicated the positive link of intuitive and thinking styles with subjective well-being. Findings also provided the evidence for the significant mediating role of problem solving styles in the relationship of gratitude with subjective well-being. The implication for this study is likely to enhance the medium to long term effects of gratitude on subjective well-being among students and as well as assessing its value in promoting psychological health and problem solving strategies among students.

Keywords: gratitude, subjective well-being, problem solving styles, college students

Procedia PDF Downloads 396
7051 An Approximation Algorithm for the Non Orthogonal Cutting Problem

Authors: R. Ouafi, F. Ouafi

Abstract:

We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern.

Keywords: combinatorial optimization, cutting problem, heuristic

Procedia PDF Downloads 518
7050 Decision Support System for Solving Multi-Objective Routing Problem

Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal

Abstract:

This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.

Keywords: bus scheduling problem, decision support system, genetic algorithm, shortest path

Procedia PDF Downloads 372
7049 Qualitative Study Method on Case Assignment Adopted by Singapore Medical Social Workers

Authors: Joleen L. H. Lee, K. F. Yen, Janette W. P. Ng, D. Woon, Mandy M. Y. Lau, Ivan M. H. Woo, S. N. Goh

Abstract:

Case assignment systems are created to meet a need for equity in work distribution and better match between medical social workers' (MSWs) competencies and patients' problems. However, there is no known study that has explored how MSWs in Singapore assign cases to achieve equity in work distribution. Focus group discussions were conducted with MSWs from public hospitals to understand their perception on equitable workload and case allocation. Three approaches to case allocation were found. First is the point system where points are allocated to cases based on a checklist of presenting issues identified most of the time by non-MSWs. Intensity of case is taken into consideration, but allocation of points is often subject to variation in appreciation of roles of MSWs by the source of referral. Second is the round robin system, where all MSWs are allocated cases based on a roster. This approach resulted in perceived equity due to element of luck, but it does not match case complexity with competencies of MSWs. Third approach is unit-based allocation, where MSWs are assigned to attend to cases from specific unit. This approach helps facilitate specialization among MSWs but may result in MSWs having difficulty providing transdisciplinary care due to narrow set of knowledge and skills. Trade-offs resulted across existing approaches for case allocation by MSWs. Conversations are needed among Singapore MSWs to decide on a case allocation system that comes with trade-offs that are acceptable for patients and other key stakeholders of the care delivery system.

Keywords: case allocation, equity, medical social worker, work distribution

Procedia PDF Downloads 95