Search results for: architectural modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4487

Search results for: architectural modeling

4127 3D Geological Modeling and Engineering Geological Characterization of Shallow Subsurface Soil and Rock of Addis Ababa, Ethiopia

Authors: Biruk Wolde, Atalay Ayele, Yonatan Garkabo, Trufat Hailmariam, Zemenu Germewu

Abstract:

A comprehensive three-dimensional (3D) geological modeling and engineering geological characterization of shallow subsurface soils and rocks are essential for a wide range of geotechnical and seismological engineering applications, particularly in urban environments. The spatial distribution and geological variation of the shallow subsurface of Addis Ababa city have not been studied so far in terms of geological and geotechnical modeling. This study aims at the construction of a 3D geological model, as well as provides awareness into the engineering geological characteristics of shallow subsurface soil and rock of Addis Ababa city. The 3D geological model was constructed by using more than 1500 geotechnical boreholes, well-drilling data, and geological maps. A well-known geostatistical kriging 3D interpolation algorithm was applied to visualize the spatial distribution and geological variation of the shallow subsurface. Due to the complex nature of geological formations, vertical and lateral variation of the geological profiles horizons-solid command has been selected via the Groundwater Modelling System (GMS) graphical user interface software. For the engineering geological characterization of typical soils and rocks, both index and engineering laboratory tests have been used. The geotechnical properties of soil and rocks vary from place to place due to the uneven nature of subsurface formations observed in the study areas. The constructed model ascertains the thickness, extent, and 3D distribution of the important geological units of the city. This study is the first comprehensive research work on 3D geological modeling and subsurface characterization of soils and rocks in Addis Ababa city, and the outcomes will be important for further future research on subsurface conditions in the city. Furthermore, these findings provide a reference for developing a geo-database for the city.

Keywords: 3d geological modeling, addis ababa, engineering geology, geostatistics, horizons-solid

Procedia PDF Downloads 58
4126 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining

Procedia PDF Downloads 149
4125 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 46
4124 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin

Authors: Hillary Mwongyera

Abstract:

The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.

Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring

Procedia PDF Downloads 504
4123 Media Façades in the Wild: Some Lessons

Authors: Hai-Ning Liang, Xiaowei Dai, Nancy Diniz, Charles Fleming, Woon Kian Chong

Abstract:

Media displays in public areas are becoming increasingly pervasive—they are used in many settings, come in different sizes, serve different purposes, and have varied degrees of interactivity. In this paper, we aim to provide a survey of how these displays, often named media façades, are used in the wild in a city in China which is undergoing a rapid growth. This survey is intended to raise greater awareness and discussion about the use and effect of these displays in public areas. Through this survey, we have been able to distill some lessons of what is good, bad, and ugly about some current examples of media displays used in a city that is transitioning into becoming a modern one and one that is located in one of the fastest growing areas in Asia. With this research, we hope that we can provide technology designers and architects with some general principles that can help them integrate these types of technologies into their architectural creations.

Keywords: large displays, media façades, interaction design, architectural displays

Procedia PDF Downloads 369
4122 Evolution of Design through Documentation of Architecture Design Processes

Authors: Maniyarasan Rajendran

Abstract:

Every design has a process, and every architect deals in the ways best known to them. The design translation from the concept to completion change in accordance with their design philosophies, their tools, availability of resources, and at times the clients and the context of the design as well. The approach to understanding the design process requires formalisation of the design intents. The design process is characterised by change, with the time and the technology. The design flow is just indicative and never exhaustive. The knowledge and experience of stakeholders remain limited to the part they played in the project, and their ability to remember, and is through the Photographs. These artefacts, when circulated can hardly tell what the project is. They can never tell the narrative behind. In due course, the design processes are lost. The Design junctions are lost in the journey. Photographs acted as major source materials, along with its importance in architectural revivalism in the 19th century. From the history, we understand that it has been photographs, that act as the dominant source of evidence. The idea of recording is also followed with the idea of getting inspired from the records and documents. The design concept, the architectural firms’ philosophies, the materials used, the special needs, the numerous ‘Trial-and-error’ methods, design methodology, experience of failures and success levels, and the knowledge acquired, etc., and the various other aspects and methods go through in every project, and they deserve/ought to be recorded. The knowledge can be preserved and passed through generations, by documenting the design processes involved. This paper explores the idea of a process documentation as a tool of self-reflection, creation of architectural firm’ repository, and these implications proceed with the design evolution of the team.

Keywords: architecture, design, documentation, records

Procedia PDF Downloads 341
4121 A Technical Solution for Micro Mixture with Micro Fluidic Oscillator in Chemistry

Authors: Brahim Dennai, Abdelhak Bentaleb, Rachid Khelfaoui, Asma Abdenbi

Abstract:

The diffusion flux given by the Fick’s law characterizethe mixing rate. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet low. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 99 % within a typical mixing chamber of 0.20 mm diameter inlet and 2.0 mm distance of nozzle - spliter. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in microsystem for application in chemistry.

Keywords: micro oscillator, modeling, micro mixture, diffusion, size effect, chemical equation

Procedia PDF Downloads 398
4120 Analytical Modeling of Drain Current for DNA Biomolecule Detection in Double-Gate Tunnel Field-Effect Transistor Biosensor

Authors: Ashwani Kumar

Abstract:

Abstract- This study presents an analytical modeling approach for analyzing the drain current behavior in Tunnel Field-Effect Transistor (TFET) biosensors used for the detection of DNA biomolecules. The proposed model focuses on elucidating the relationship between the drain current and the presence of DNA biomolecules, taking into account the impact of various device parameters and biomolecule characteristics. Through comprehensive analysis, the model offers insights into the underlying mechanisms governing the sensing performance of TFET biosensors, aiding in the optimization of device design and operation. A non-local tunneling model is incorporated with other essential models to accurately trace the simulation and modeled data. An experimental validation of the model is provided, demonstrating its efficacy in accurately predicting the drain current response to DNA biomolecule detection. The sensitivity attained from the analytical model is compared and contrasted with the ongoing research work in this area.

Keywords: biosensor, double-gate TFET, DNA detection, drain current modeling, sensitivity

Procedia PDF Downloads 29
4119 Construction of a Supply Chain Model Using the PREVA Method: The Case of Innovative Sargasso Recovery Projects in Ther Lesser Antilles

Authors: Maurice Bilioniere, Katie Lanneau

Abstract:

Suddenly appeared in 2011, invasions of sargasso seaweeds Fluitans and Natans are a climatic hazard which causes many problems in the Caribbean. Faced with the growth and frequency of the phenomenon of massive sargasso stranding on their coasts, the French West Indies are moving towards the path of industrial recovery. In this context of innovative projects, we will analyze the necessary requirements for the management and performance of the supply chain, taking into account the observed volatility of the sargasso input. Our prospective approach will consist in studying the theoretical framework of modeling a hybrid supply chain by coupling the discreet event simulation (DES) with a valuation of the process costs according to the "activity-based costing" method (ABC). The PREVA approach (PRocess EVAluation) chosen for our modeling has the advantage of evaluating the financial flows of the logistic process using an analytical model chained with an action model for the evaluation or optimization of physical flows.

Keywords: sargasso, PREVA modeling, supply chain, ABC method, discreet event simulation (DES)

Procedia PDF Downloads 151
4118 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 76
4117 Modeling of Crack Growth in Railway Axles under Static Loading

Authors: Zellagui Redouane, Bellaouar Ahmed, Lachi Mohammed

Abstract:

The railway axles are the essential parts in the bogie of train, and its failure creates a big problem in the railway transport; during the work of this parts we noticed a premature deterioration. The aim has been presented a predictive model allowing the identification of the probable causes that are the cause of these premature deterioration. The results are employed for predicting fatigue crack growth in the railway axle, Also we want to present the variation value of stress intensity factor in different positions of elliptical crack tip. The modeling of axle in performed by the SOLID WORKS software and imported into ANSYS.

Keywords: crack growth, static load, railway axle, lifetime

Procedia PDF Downloads 327
4116 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 52
4115 Modeling User Context Using CEAR Diagram

Authors: Ravindra Dastikop, G. S. Thyagaraju, U. P. Kulkarni

Abstract:

Even though the number of context aware applications is increasing day by day along with the users, till today there is no generic programming paradigm for context aware applications. This situation could be remedied by design and developing the appropriate context modeling and programming paradigm for context aware applications. In this paper, we are proposing the static context model and metrics for validating the expressiveness and understandability of the model. The proposed context modeling is a way of describing a situation of user using context entities , attributes and relationships .The model which is an extended and hybrid version of ER model, ontology model and Graphical model is specifically meant for expressing and understanding the user situation in context aware environment. The model is useful for understanding context aware problems, preparing documentation and designing programs and databases. The model makes use of context entity attributes relationship (CEAR) diagram for representation of association between the context entities and attributes. We have identified a new set of graphical notations for improving the expressiveness and understandability of context from the end user perspective .

Keywords: user context, context entity, context entity attributes, situation, sensors, devices, relationships, actors, expressiveness, understandability

Procedia PDF Downloads 317
4114 Modeling in the Middle School: Eighth-Grade Students’ Construction of the Summer Job Problem

Authors: Neslihan Sahin Celik, Ali Eraslan

Abstract:

Mathematical model and modeling are one of the topics that have been intensively discussed in recent years. In line with the results of the PISA studies, researchers in many countries have begun to question how much students in school-education system are prepared to solve the real-world problems they encounter in their future professional lives. As a result, many mathematics educators have begun to emphasize the importance of new skills and understanding such as constructing, Hypothesizing, Describing, manipulating, predicting, working together for complex and multifaceted problems for success in beyond the school. When students increasingly face this kind of situations in their daily life, it is important to make sure that students have enough experience to work together and interpret mathematical situations that enable them to think in different ways and share their ideas with their peers. Thus, model eliciting activities are one of main tools that help students to gain experiences and the new skills required. This research study was carried on the town center of a big city located in the Black Sea region in Turkey. The participants were eighth-grade students in a middle school. After a six-week preliminary study, three students in an eighth-grade classroom were selected using criterion sampling technique and placed in a focus group. The focus group of three students was videotaped as they worked on a model eliciting activity, the Summer Job Problem. The conversation of the group was transcribed, examined with students’ written work and then qualitatively analyzed through the lens of Blum’s (1996) modeling processing cycle. The study results showed that eighth grade students can successfully work with the model eliciting, develop a model based on the two parameters and review the whole process. On the other hand, they had difficulties to relate parameters to each other and take all parameters into account to establish the model.

Keywords: middle school, modeling, mathematical modeling, summer job problem

Procedia PDF Downloads 317
4113 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion

Procedia PDF Downloads 188
4112 Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)

Authors: Uroš Durlević, Ivan Novković, Nina Čegar, Stefanija Stojković

Abstract:

Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches.

Keywords: GIS, FAHP, Šar Mountains, snow avalanches, environmental protection

Procedia PDF Downloads 61
4111 Hydrological Modeling and Climate Change Impact Assessment Using HBV Model, A Case Study of Karnali River Basin of Nepal

Authors: Sagar Shiwakoti, Narendra Man Shakya

Abstract:

The lumped conceptual hydrological model HBV is applied to the Karnali River Basin to estimate runoff at several gauging stations and to analyze the changes in catchment hydrology and future flood magnitude due to climate change. The performance of the model is analyzed to assess its suitability to simulate streamflow in snow fed mountainous catchments. Due to the structural complexity, the model shows difficulties in modeling low and high flows accurately at the same time. It is observed that the low flows were generally underestimated and the peaks were correctly estimated except for some sharp peaks due to isolated precipitation events. In this study, attempt has been made to evaluate the importance of snow melt discharge in the runoff regime of the basin. Quantification of contribution of snowmelt to annual, summer and winter runoff has been done. The contribution is highest at the beginning of the hot months as the accumulated snow begins to melt. Examination of this contribution under conditions of increased temperatures indicate that global warming leading to increase in average basin temperature will significantly lead to higher contributions to runoff from snowmelt. Forcing the model with the output of HadCM3 GCM and the A1B scenario downscaled to the station level show significant changes to catchment hydrology in the 2040s. It is observed that the increase in runoff is most extreme in June - July. A shift in the hydrological regime is also observed.

Keywords: hydrological modeling, HBV light, rainfall runoff modeling, snow melt, climate change

Procedia PDF Downloads 507
4110 Comparison of Tidalites in Siliciclastics and Mixed Siliciclastic Carbonate Systems: An Outstanding Example from Proterozoic Simla Basin, Western Lesser Himalaya, India

Authors: Tithi Banerjee, Ananya Mukhopadhyay

Abstract:

The comparison of ancient tidalites recorded in both siliciclastics and carbonates has not been well documented due to a lack of suitable outcropping examples. The Proterozoic Simla Basin, Lesser Himalaya serves a unique example in this regard. An attempt has been made in the present work to differentiate sedimentary facies and architectural elements of tidalites in both siliciclastics and carbonates recorded in the Simla Basin. Lithofacies and microfacies analysis led to identification of 11 lithofacies and 4 architectural elements from the siliciclastics, 6 lithofacies and 3 architectural elements from the carbonates. The most diagnostic features for comparison of the two tidalite systems are sedimentary structures, textures, and architectural elements. The physical features such as flaser-lnticular bedding, mud/silt couplets, tidal rhythmites, tidal bundles, cross stratified successions, tidal bars, tidal channels, microbial structures are common to both the environments. The architecture of these tidalites attests to sedimentation in shallow subtidal to intertidal flat facies, affected by intermittent reworking by open marine waves/storms. The seventeen facies attributes were categorized into two major facies belts (FA1 and FA2). FA1 delineated from the lower part of the Chhaosa Formation (middle part of the Simla Basin) represents a prograding muddy pro-delta deposit whereas FA2 delineated from the upper part of the Basantpur Formation (lower part of the Simla Basin) bears the signature of an inner-mid carbonate ramp deposit. Facies distribution indicates development of highstand systems tract (HST) during sea level still stand related to normal regression. The aggradational to progradational bedsets record the history of slow rise in sea level.

Keywords: proterozoic, Simla Basin, tidalites, inner-mid carbonate ramp, prodelta, TST, HST

Procedia PDF Downloads 205
4109 Between Kenzo Tange and Fernando Távora: An ‘Affinitarian’ Architectural Regard

Authors: João Cepeda

Abstract:

In crafting their way between theory and practice, authors and artists seem to be always immersed in a never-ending process of relating epochs, objects, and images. Endless ‘affinities’ emerge from a somewhat unexplainable (and intimate) magnetic relation. It is through this ‘warburgian’ assessment that two of the most prominent twentieth-century modern architects from Japan and Portugal are put into perspective, focusing on their paths and thinking-practice, and on the research of their personal and professional archives. Moreover, this research especially aims its focus at essaying specifically on the possible ‘affinities’ between two of their most renowned architectural projects: the Kenzo Tange’s (demolished) Villa Seijo project in Tokyo (Japan) and Fernando Távora’s Tennis Pavilion design in Matosinhos (Portugal), respectively, side-by-side – through in-depth fieldwork in the sites, bibliographical and archival research, (unprecedented) material analysis, and final critical consideration.

Keywords: Tange, Távora, architecture, affinities

Procedia PDF Downloads 24
4108 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 417
4107 Time Dependent Biodistribution Modeling of 177Lu-DOTATOC Using Compartmental Analysis

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri

Abstract:

In this study, 177Lu-DOTATOC was prepared under optimized conditions (radiochemical purity: > 99%, radionuclidic purity: > 99%). The percentage of injected dose per gram (%ID/g) was calculated for organs up to 168 h post injection. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. The biodistribution data showed the significant excretion of the radioactivity from the kidneys. The adrenal and pancreas, as major expression sites for somatostatin receptor (SSTR), had significant uptake. A pharmacokinetic model of 177Lu-DOTATOC was presented by compartmental analysis which demonstrates the behavior of the complex.

Keywords: biodistribution, compartmental modeling, ¹⁷⁷Lu, Octreotide

Procedia PDF Downloads 187
4106 Turbulence Modeling of Source and Sink Flows

Authors: Israt Jahan Eshita

Abstract:

Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.

Keywords: hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow, wall y+

Procedia PDF Downloads 506
4105 An Analysis of OpenSim Graphical User Interface Effectiveness

Authors: Sina Saadati

Abstract:

OpenSim is a well-known software in biomechanical studies. There are worthy algorithms developed in this program which are used for modeling and simulation of human motions. In this research, we analyze the OpenSim application from the computer science perspective. It is important that every application have a user-friendly interface. An effective user interface can decrease the time, costs, and energy needed to learn how to use a program. In this paper, we survey the user interface of OpenSim as an important factor of the software. Finally, we infer that there are many challenges to be addressed in the development of OpenSim.

Keywords: biomechanics, computer engineering, graphical user interface, modeling and simulation, interface effectiveness

Procedia PDF Downloads 57
4104 Teaching Timber: The Role of the Architectural Student and Studio Course within an Interdisciplinary Research Project

Authors: Catherine Sunter, Marius Nygaard, Lars Hamran, Børre Skodvin, Ute Groba

Abstract:

Globally, the construction and operation of buildings contribute up to 30% of annual green house gas emissions. In addition, the building sector is responsible for approximately a third of global waste. In this context, the utilization of renewable resources in buildings, especially materials that store carbon, will play a significant role in the growing city. These are two reasons for introducing wood as a building material with a growing relevance. A third is the potential economic value in countries with a forest industry that is not currently used to capacity. In 2013, a four-year interdisciplinary research project titled “Wood Be Better” was created, with the principle goal to produce and publicise knowledge that would facilitate increased use of wood in buildings in urban areas. The research team consisted of architects, engineers, wood technologists and mycologists, both from research institutions and industrial organisations. Five structured work packages were included in the initial research proposal. Work package 2 was titled “Design-based research” and proposed using architecture master courses as laboratories for systematic architectural exploration. The aim was twofold: to provide students with an interdisciplinary team of experts from consultancies and producers, as well as teachers and researchers, that could offer the latest information on wood technologies; whilst at the same time having the studio course test the effects of the use of wood on the functional, technical and tectonic quality within different architectural projects on an urban scale, providing results that could be fed back into the research material. The aim of this article is to examine the successes and failures of this pedagogical approach in an architecture school, as well as the opportunities for greater integration between academic research projects, industry experts and studio courses in the future. This will be done through a set of qualitative interviews with researchers, teaching staff and students of the studio courses held each semester since spring 2013. These will investigate the value of the various experts of the course; the different themes of each course; the response to the urban scale, architectural form and construction detail; the effect of working with the goals of a research project; and the value of the studio projects to the research. In addition, six sample projects will be presented as case studies. These will show how the projects related to the research and could be collected and further analysed, innovative solutions that were developed during the course, different architectural expressions that were enabled by timber, and how projects were used as an interdisciplinary testing ground for integrated architectural and engineering solutions between the participating institutions. The conclusion will reflect on the original intentions of the studio courses, the opportunities and challenges faced by students, researchers and teachers, the educational implications, and on the transparent and inclusive discourse between the architectural researcher, the architecture student and the interdisciplinary experts.

Keywords: architecture, interdisciplinary, research, studio, students, wood

Procedia PDF Downloads 283
4103 Atmospheric Dispersion Modeling for a Hypothetical Accidental Release from the 3 MW TRIGA Research Reactor of Bangladesh

Authors: G. R. Khan, Sadia Mahjabin, A. S. Mollah, M. R. Mawla

Abstract:

Atmospheric dispersion modeling is significant for any nuclear facilities in the country to predict the impact of radiological doses on environment as well as human health. That is why to ensure safety of workers and population at plant site; Atmospheric dispersion modeling and radiation dose calculations were carried out for a hypothetical accidental release of airborne radionuclide from the 3 MW TRIGA research reactor of Savar, Bangladesh. It is designed with reactor core which consists of 100 fuel elements(1.82245 cm in diameter and 38.1 cm in length), arranged in an annular corefor steady-state and square wave power level of 3 MW (thermal) and for pulsing with maximum power level of 860MWth.The fuel is in the form of a uniform mixture of 20% uranium and 80% zirconium hydride. Total effective doses (TEDs) to the public at various downwind distances were evaluated with a health physics computer code “HotSpot” developed by Lawrence Livermore National Laboratory, USA. The doses were estimated at different Pasquill stability classes (categories A-F) with site-specific averaged meteorological conditions. The meteorological data, such as, average wind speed, frequency distribution of wind direction, etc. have also been analyzed based on the data collected near the reactor site. The results of effective doses obtained remain within the recommended maximum effective dose.

Keywords: accidental release, dispersion modeling, total effective dose, TRIGA

Procedia PDF Downloads 109
4102 High Performance Nanomaterials for Sustainable and Modern Façade Application

Authors: Farrin Ghorbanalavi, Nihal Arıoğlu

Abstract:

The concept of enhancing mechanical /thermal/physical properties of architectural materials is being practiced for over five decades. In comparison with other approaches, the current nanotechnology era equally attracted the structural scientists, engineers, and industries. It simply promises that using building blocks with dimensions in the nano size range makes it possible to design and develop new multi-functional materials. This research focuses on understanding the effects of nanotechnology on the building facade and new facade concepts based on the new possibilities of nanotechnology. Mentioned factors are very prosperous for the comfort as well as sustainability of the building itself. Furthermore, the study suggests that the potential for energy conservation and reduced waste, toxicity, non-renewable resource consumption, and carbon emissions through the architectural applications of nanotechnologies significant. More clearly, it provides us the information about what does the future hold for surface structures.

Keywords: sustainable, nano materials, façade, energy efficiency

Procedia PDF Downloads 534
4101 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 253
4100 Air Dispersion Modeling for Prediction of Accidental Emission in the Atmosphere along Northern Coast of Egypt

Authors: Moustafa Osman

Abstract:

Modeling of air pollutants from the accidental release is performed for quantifying the impact of industrial facilities into the ambient air. The mathematical methods are requiring for the prediction of the accidental scenario in probability of failure-safe mode and analysis consequences to quantify the environmental damage upon human health. The initial statement of mitigation plan is supporting implementation during production and maintenance periods. In a number of mathematical methods, the flow rate at which gaseous and liquid pollutants might be accidentally released is determined from various types in term of point, line and area sources. These emissions are integrated meteorological conditions in simplified stability parameters to compare dispersion coefficients from non-continuous air pollution plumes. The differences are reflected in concentrations levels and greenhouse effect to transport the parcel load in both urban and rural areas. This research reveals that the elevation effect nearby buildings with other structure is higher 5 times more than open terrains. These results are agreed with Sutton suggestion for dispersion coefficients in different stability classes.

Keywords: air pollutants, dispersion modeling, GIS, health effect, urban planning

Procedia PDF Downloads 337
4099 Comparative Analysis of Identity Semiotics in Iran’s Modern and Traditional House Design

Authors: Maryam Ghasemi

Abstract:

One of the most significant components that provide comfort and protection is having a shelter called a house. Even if components and regions are changed or restored to meet new functions, the house's identity must be preserved. In the contemporary era, houses are increasingly being built regardless of cultural identity. This misunderstanding caused a sense of unease. This study analyses archaic and modern architecture to find semiotic areas and qualities in the latter, using the former as a reference. This study's technique used an exploratory assessment of architectural components from both periods. The Abbasid residence and the Ekbatan architectural complex were used as case studies. The identity of Iranian architecture does not correlate with current buildings. The other part is privacy, which is a missing link between traditional and modern Iranian architecture because it is directly related to the identities of homes based on the cultures of their residents.

Keywords: housing, traditional, contemporary, privacy, semiotic

Procedia PDF Downloads 78
4098 Black-Hole Dimension: A Distinct Methodology of Understanding Time, Space and Data in Architecture

Authors: Alp Arda

Abstract:

Inspired by Nolan's ‘Interstellar’, this paper delves into speculative architecture, asking, ‘What if an architect could traverse time to study a city?’ It unveils the ‘Black-Hole Dimension,’ a groundbreaking concept that redefines urban identities beyond traditional boundaries. Moving past linear time narratives, this approach draws from the gravitational dynamics of black holes to enrich our understanding of urban and architectural progress. By envisioning cities and structures as influenced by black hole-like forces, it enables an in-depth examination of their evolution through time and space. The Black-Hole Dimension promotes a temporal exploration of architecture, treating spaces as narratives of their current state interwoven with historical layers. It advocates for viewing architectural development as a continuous, interconnected journey molded by cultural, economic, and technological shifts. This approach not only deepens our understanding of urban evolution but also empowers architects and urban planners to create designs that are both adaptable and resilient. Echoing themes from popular culture and science fiction, this methodology integrates the captivating dynamics of time and space into architectural analysis, challenging established design conventions. The Black-Hole Dimension champions a philosophy that welcomes unpredictability and complexity, thereby fostering innovation in design. In essence, the Black-Hole Dimension revolutionizes architectural thought by emphasizing space-time as a fundamental dimension. It reimagines our built environments as vibrant, evolving entities shaped by the relentless forces of time, space, and data. This groundbreaking approach heralds a future in architecture where the complexity of reality is acknowledged and embraced, leading to the creation of spaces that are both responsive to their temporal context and resilient against the unfolding tapestry of time.

Keywords: black-hole, timeline, urbanism, space and time, speculative architecture

Procedia PDF Downloads 23