Search results for: Yong Chen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1418

Search results for: Yong Chen

1118 Formulation of a Stress Management Program for Human Error Prevention in Nuclear Power Plants

Authors: Hyeon-Kyo Lim, Tong-il Jang, Yong-Hee Lee

Abstract:

As for any nuclear power plant, human error is one of the most dreaded factors that may result in unexpected accidents. Thus, for accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Among lots factors, stress has been reported to have significant influence on human performance. Stress level of a person may fluctuate over time. To handle the possibility over time, robust stress management program is required, especially in nuclear power plants. Therefore, to overcome the possibility of human errors, this study aimed to develop a stress management program as a part of Fitness-for-Duty (FFD) Program for the workers in nuclear power plants. The meaning of FFD might be somewhat different by research objectives, appropriate definition of FFD was accomplished in this study with special reference to human error prevention, and diverse stress factors were elicited for management of human error susceptibility. In addition, with consideration of conventional FFD management programs, appropriate tests and interventions were introduced over the whole employment cycle including selection and screening of workers, job allocation, job rotation, and disemployment as well as Employee-Assistance-Program (EAP). The results showed that most tools mainly concentrated their weights on common organizational factors such as Demands, Supports, and Relationships in sequence, which were referred as major stress factors.

Keywords: human error, accident prevention, work performance, stress, fatigue

Procedia PDF Downloads 298
1117 Design of an Eddy Current Brake System for the Use of Roller Coasters Based on a Human Factors Engineering Approach

Authors: Adam L. Yanagihara, Yong Seok Park

Abstract:

The goal of this paper is to converge upon a design of a brake system that could be used for a roller coaster found at an amusement park. It was necessary to find what could be deemed as a “comfortable” deceleration so that passengers do not feel as if they are suddenly jerked and pressed against the restraining harnesses. A human factors engineering approach was taken in order to determine this deceleration. Using a previous study that tested the deceleration of transit vehicles, it was found that a -0.45 G deceleration would be used as a design requirement to build this system around. An adjustable linear eddy current brake using permanent magnets would be the ideal system to use in order to meet this design requirement. Anthropometric data were then used to determine a realistic weight and length of the roller coaster that the brake was being designed for. The weight and length data were then factored into magnetic brake force equations. These equations were used to determine how the brake system and the brake run layout would be designed. A final design for the brake was determined and it was found that a total of 12 brakes would be needed with a maximum braking distance of 53.6 m in order to stop a roller coaster travelling at its top speed and loaded to maximum capacity. This design is derived from theoretical calculations, but is within the realm of feasibility.

Keywords: eddy current brake, engineering design, design synthesis, human factors engineering

Procedia PDF Downloads 101
1116 Hydrothermal Energy Application Technology Using Dam Deep Water

Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong

Abstract:

Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.

Keywords: hydrothermal energy, HVAC, internet data center, free-cooling

Procedia PDF Downloads 53
1115 The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids

Authors: Muhammad Mazhar, Yong Zhu, Likang Qin

Abstract:

Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D.

Keywords: dietary fibers, intestinal microbiota, short-chain fatty acids, fermentation, type 2 diabetes

Procedia PDF Downloads 41
1114 The Investigation of Work Stress and Burnout in Nurse Anesthetists: A Cross-Sectional Study

Authors: Yen Ling Liu, Shu-Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Chia-Yu Chen

Abstract:

Purpose: Nurse anesthetists are confronting extraordinarily high job stress in their daily practice, deriving from the fast-track anesthesia care, risk of perioperative complications, routine rotating shifts, teaching programs and interactions with the surgical team in the operating room. This study investigated the influence of work stress on the burnout and turnover intention of nurse anesthetists in a regional general hospital in Southern Taiwan. Methods: This was a descriptive correlational study carried out in 66 full-time nurse anesthetists. Data was collected from March 2017 to June 2017 by in-person interview, and a self-administered structured questionnaire was completed by the interviewee. Outcome measurements included the Practice Environment Scale of the Nursing Work Index (PES-NWI), Maslach Burnout Inventory (MBI) and nursing staff turnover intention. Numerical data were analyzed by descriptive statistics, independent t test, or one-way ANOVA. Categorical data were compared using the chi-square test (x²). Datasets were computed with Pearson product-moment correlation and linear regression. Data were analyzed by using SPSS 20.0 software. Results: The average score for job burnout was 68.7916.67 (out of 100). The three major components of burnout, including emotional depletion (mean score of 26.32), depersonalization (mean score of 13.65), and personal(mean score of 24.48). These average scores suggested that these nurse anesthetists were at high risk of burnout and inversely correlated with turnover intention (t = -4.048, P < 0.05). Using linear regression model, emotional exhaustion and depersonalization were the two independent factors that predicted turnover intention in the nurse anesthetists (19.1% in total variance). Conclusion/Implications for Practice: The study identifies that the high risk of job burnout in the nurse anesthetists is not simply derived from physical overload, but most likely resulted from the additional emotional and psychological stress. The occurrence of job burnout may affect the quality of nursing work, and also influence family harmony, in turn, may increase the turnover rate. Multimodal approach is warranted to reduce work stress and job burnout in nurse anesthetists to enhance their willingness to contribute in anesthesia care.

Keywords: anesthesia nurses, burnout, job, turnover intention

Procedia PDF Downloads 267
1113 Improving Energy Efficiency through Industrial Symbiosis: A Conceptual Framework of Energy Management in Energy-Intensive Industries

Authors: Yuanjun Chen, Yongjiang Shi

Abstract:

Rising energy prices have drawn a focus to global energy issues, and the severe pollution that has resulted from energy-intensive industrial sectors has yet to be addressed. By combining Energy Efficiency with Industrial Symbiosis, the practices of efficient energy utilization and improvement can be not only enriched at the factory level but also upgraded into “within and/or between firm level”. The academic contribution of this paper provides a conceptual framework of energy management through IS. The management of waste energy within/between firms can contribute to the reduction of energy consumption and provides a solution to the environmental issues.

Keywords: energy efficiency, energy management, industrial symbiosis, energy-intensive industry

Procedia PDF Downloads 400
1112 Single Layer Carbon Nanotubes Array as an Efficient Membrane for Desalination: A Molecular Dynamics Study

Authors: Elisa Y. M. Ang, Teng Yong Ng, Jingjie Yeo, Rongming Lin, Zishun Liu, K. R. Geethalakshmi

Abstract:

By stacking carbon nanotubes (CNT) one on top of another, single layer CNT arrays can perform water-salt separation with ultra-high permeability and selectivity. Such outer-wall CNT slit membrane is named as the transverse flow CNT membrane. By adjusting the slit size between neighboring CNTs, the membrane can be configured to sieve out different solutes, right down to the separation of monovalent salt ions from water. Molecular dynamics (MD) simulation results show that the permeability of transverse flow CNT membrane is more than two times that of conventional axial-flow CNT membranes, and orders of magnitude higher than current reverse osmosis membrane. In addition, by carrying out MD simulations with different CNT size, it was observed that the variance in desalination performance with CNT size is small. This insensitivity of the transverse flow CNT membrane’s performance to CNT size is a distinct advantage over axial flow CNT membrane designs. Not only does the membrane operate well under constant pressure desalination operation, but MD simulations further indicate that oscillatory operation can further enhance the membrane’s desalination performance, making it suitable for operation such as electrodialysis reversal. While there are still challenges that need to be overcome, particularly on the physical fabrication of such membrane, it is hope that this versatile membrane design can bring the idea of using low dimensional structures for desalination closer to reality.

Keywords: carbon nanotubes, membrane desalination, transverse flow carbon nanotube membrane, molecular dynamics

Procedia PDF Downloads 166
1111 Development of a Work-Related Stress Management Program Guaranteeing Fitness-For-Duty for Human Error Prevention

Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee

Abstract:

Human error is one of the most dreaded factors that may result in unexpected accidents, especially in nuclear power plants. For accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Out of lots factors, stress has been reported to have a significant influence on human performance. Therefore, this research aimed to develop a work-related stress management program which can guarantee Fitness-for-Duty (FFD) of the workers in nuclear power plants, especially those working in main control rooms. Major stress factors were elicited through literal surveys and classified into major categories such as demands, supports, and relationships. To manage those factors, a test and intervention program based on 4-level approaches was developed over the whole employment cycle including selection and screening of workers, job allocation, and job rotation. In addition, a managerial care program was introduced with the concept of Employee-Assistance-Program (EAP) program. Reviews on the program conducted by ex-operators in nuclear power plants showed responses in the affirmative, and suggested additional treatment to guarantee high performance of human workers, not in normal operations but also in emergency situations.

Keywords: human error, work performance, work stress, Fitness-For-Duty (FFD), Employee Assistance Program (EAP)

Procedia PDF Downloads 380
1110 The Impact of Character Strengths on Employee Well-Being: The Mediating Effect of Work-Family Relationship

Authors: Jing Wang, Yong Wang

Abstract:

For organizational development, employee well-being is critical and has been influenced deeply by character strengths. Therefore, investigating the relationship between character strengths and employee well-being and its inner mechanism is crucial. In this study, we explored the features of Chinese employees' character strengths, studied the relationship between character strengths and employees' subjective well-being, work well-being and psychological well-being respectively, and examined the mediating effect of work-family relationship (both enrichment and conflict). An online survey was conducted. The results showed that: (1) The top five character strengths of Chinese employees were gratitude, citizenship, kindness, appreciation of beauty and excellence, justice, while the bottom five ones were creativity, authenticity, bravery, spirituality, open-mindedness. (2) Subjective well-being was significantly correlated to courage, humanity, transcendence and justice. Work well-being was significantly correlated to wisdom, courage, humanity, justice and transcendence. Psychological well-being was significantly correlated to all the above five character strengths and temperance. (3) Wisdom and humanity influenced Chinese employees’ subjective well-being through work-family enrichment. Justice enhanced psychological well-being via work-family enrichment; meanwhile, it also played a positive role in subjective well-being, work well-being, and psychological well-being by decreasing the family-work conflict. At the end of this paper, some theoretical and practical contributions to organizational management were further discussed.

Keywords: character strengths, work-family conflict, work-family enrichment, employee well-being, work well-being

Procedia PDF Downloads 364
1109 An Open-Label Phase I Clinical Study: Safety, Tolerability and Pharmacodynamics of Mutant Collagenase Injection in Adults for Localized Fat Reduction

Authors: Yong Cang

Abstract:

RJV001 is a subcutaneous injection containing mutated recombinant Collagenase H (ColH), leading to disruption of collagen matrix in adipose tissue and programmed cell death of adipocytes. Here we reported our clinical investigation of the safety, tolerance and pharmacodynamics of localized RJV001 injection into healthy human abdominal fat tissues (NCT04821648, Arizona Research Center). Investigate the safety, tolerance and clinical pharmacodynamics of subcutaneous RJV001 in humans. In the dose-escalating study, 18 subjects completed the study, 100% female, 78% white, with a mean age of 42[±9.9]. All three tested dose (0.05, 0.075 and 0.15 mg/injection), up to 30 injections, were safe and well-tolerated. Bruising and tenderness to palpation, mild to moderate, were the most frequent local skin reactions but nearly all resolved within 30 days. Additionally, physician-monitored ultrasound measurement showed that a reduction in abdominal fat tissue thickness was consistently observed in Cohort C (0.075, 0.15 mg/injection, 30injections), with a mean reduction of 7.37 [± 2.020] mm. Based on this clinical study, RJV001 has been advanced to phase II clinical studies. In the dose-escalating study, subcutaneously administered RJV001 was safe and well-tolerated in healthy adults up to 0.15 mg/injection, 30 injections. Fat reduction and adipocytolysis were observed by ultrasound measurements and histological analysis for exploratory purposes.

Keywords: fat reduction, mutant collagenase, clinical trial, subcutaneous injection

Procedia PDF Downloads 80
1108 Comparison of Cardiovascular and Metabolic Responses Following In-Water and On-Land Jump in Postmenopausal Women

Authors: Kuei-Yu Chien, Nai-Wen Kan, Wan-Chun Wu, Guo-Dong Ma, Shu-Chen Chen

Abstract:

Purpose: The purpose of this study was to investigate the responses of systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), rating of perceived exertion (RPE) and lactate following continued high-intensity interval exercise in water and on land. The results of studies can be an exercise program design reference for health care and fitness professionals. Method: A total of 20 volunteer postmenopausal women was included in this study. The inclusion criteria were: duration of menopause > 1 year; and sedentary lifestyle, defined as engaging in moderate-intensity exercise less than three times per week, or less than 20 minutes per day. Participants need to visit experimental place three times. The first time visiting, body composition was performed and participant filled out the questionnaire. Participants were assigned randomly to the exercise environment (water or land) in second and third time visiting. Water exercise testing was under water of trochanter level. In continuing jump testing, each movement consisted 10-second maximum volunteer jump for two sets. 50% heart rate reserve dynamic resting (walking or running) for one minute was within each set. SBP, DBP, HR, RPE of whole body/thigh (RPEW/RPET) and lactate were performed at pre and post testing. HR, RPEW, and RPET were monitored after 1, 2, and 10 min of exercise testing. SBP and DBP were performed after 10 and 30 min of exercise testing. Results: The responses of SBP and DBP after exercise testing in water were higher than those on land. Lactate levels after exercise testing in water were lower than those on land. The responses of RPET were lower than those on land post exercise 1 and 2 minutes. The heart rate recovery in water was faster than those on land at post exercise 5 minutes. Conclusion: This study showed water interval jump exercise induces higher cardiovascular responses with lower RPE responses and lactate levels than on-land jumps exercise in postmenopausal women. Fatigue is one of the major reasons to obstruct exercise behavior. Jump exercise could enhance cardiorespiratory fitness, the lower-extremity power, strength, and bone mass. There are several health benefits to the middle to older adults. This study showed that water interval jumping could be more relaxed and not tried to reach the same land-based cardiorespiratory exercise intensity.

Keywords: interval exercise, power, recovery, fatigue

Procedia PDF Downloads 384
1107 Genome-Wide Functional Analysis of Phosphatase in Cryptococcus neoformans

Authors: Jae-Hyung Jin, Kyung-Tae Lee, Yee-Seul So, Eunji Jeong, Yeonseon Lee, Dongpil Lee, Dong-Gi Lee, Yong-Sun Bahn

Abstract:

Cryptococcus neoformans causes cryptococcal meningoencephalitis mainly in immunocompromised patients as well as immunocompetent people. But therapeutic options are limited to treat cryptococcosis. Some signaling pathways including cyclic AMP pathway, MAPK pathway, and calcineurin pathway play a central role in the regulation of the growth, differentiation, and virulence of C. neoformans. To understand signaling networks regulating the virulence of C. neoformans, we selected the 114 putative phosphatase genes, one of the major components of signaling networks, in the genome of C. neoformans. We identified putative phosphatases based on annotation in C. neoformans var. grubii genome database provided by the Broad Institute and National Center for Biotechnology Information (NCBI) and performed a BLAST search of phosphatases of Saccharomyces cerevisiae, Aspergillus nidulans, Candida albicans and Fusarium graminearum to Cryptococcus neoformans. We classified putative phosphatases into 14 groups based on InterPro phosphatase domain annotation. Here, we constructed 170 signature-tagged gene-deletion strains through homologous recombination methods for 91 putative phosphatases. We examined their phenotypic traits under 30 different in vitro conditions, including growth, differentiation, stress response, antifungal resistance and virulence-factor production.

Keywords: human fungal pathogen, phosphatase, deletion library, functional genomics

Procedia PDF Downloads 334
1106 Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant

Authors: J. R. Wang, S. W. Chen, Y. Chiang, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih

Abstract:

In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.

Keywords: PWR, HABIT, Habitability, Maanshan

Procedia PDF Downloads 417
1105 Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant

Authors: Y. Chiang, W. Y. Li, J. R. Wang, S. W. Chen, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih

Abstract:

In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity studies (stability classification, wind speed and control room intake rate) were performed in this study.

Keywords: BWR, HABIT, habitability, Kuosheng

Procedia PDF Downloads 461
1104 Strategic Alliances of US Engineering and Construction Companies in China

Authors: Zonggui Chen, Yuhong Wang, Yun Le

Abstract:

U.S. engineering and construction companies have increased their presence in China. A strategy for them to enter and operate in China is to forge strategic alliances with local firms. Managing the differences in motives and cultures and using proper controls are essential for a productive strategic alliance. Based on literature and in-depth interviews, this paper examines the differences in motives and cultures within Sino–U.S. strategic alliances and the impacts of the differences on control mechanisms. This paper not only contributes to a better understanding of cross-border strategic alliances in construction, but also facilitates the operation of the alliances.

Keywords: strategic alliance, Chinese construction industry, motives, cultural differences

Procedia PDF Downloads 297
1103 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2

Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen

Abstract:

Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.

Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel

Procedia PDF Downloads 121
1102 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques

Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang

Abstract:

Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.

Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE

Procedia PDF Downloads 489
1101 Preparation of Poly(Acrylic Acid) Functionalized Magnetic Graphene Oxide Composite and Its Application for Pb(II) Removal

Authors: Yu Wang, Xibang Chen, Maolin Zhai, Jing Peng, Jiuqiang Li

Abstract:

Poly(acrylic acid) (PAA) functionalized magnetic graphene oxide (GO) composite was synthesized through a two-step process. Magnetic Fe₃O₄/GO was first prepared by a facile hydrothermal method. A radiation-induced grafting technique was used to graft PAA to Fe₃O₄/GO to obtain the Fe₃O₄/GO-g-PAA subsequently. The characteristics results of FTIR, Raman, XRD, SEM, TEM, and VSM showed that Fe₃O₄/GO-g-PAA was successfully prepared. The Fe₃O₄/GO-g-PAA composites were used as sorbents for the removal of Pb(II) ions, and the maximum adsorption capacity for Pb(II) was 176.92 mg/g.

Keywords: Fe₃O₄, graphene oxide, magnetic, Pb(II) removal, radiation-induced

Procedia PDF Downloads 119
1100 Production of Fish Hydrolyzates by Single and Multiple Protease Treatments under Medium High Pressure of 300 MPa

Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chong-Tai Kim

Abstract:

It has been reported that some enzymes such as trypsin and Alcalase 2.4L are tolerant to a medium high pressure of 300 MPa and preparation of protein hydrolyzates under 300 MPa was advantageous with regard to hydrolysis rate and thus production yield compared with the counterpart under ambient pressure.1,2) In this study, nine fish comprising halibut, soft shell clam and carp were hydrolyzed using Flavourzyme 500MG only, and the combination of Flavourzyme 500 mg, Alcalase 2.4 L, Marugoto E, and Protamex under 300 MPa. Then, the effects of single and multiple protease treatments were determined with respect to contents of soluble solid (SS) and soluble nitrogen, sensory attributes, electrophoretic profiles, and HPLC peak patterns of the fish hydrolyzates (FHs) from various species. The contents of SS of the FHs were quite species-specific and the hydrolyzates of halibut showed the highest SS contents. At this point, multiple protease treatment increased SS content conspicuously in all fish tested. The contents of total soluble nitrogen and TCA-soluble nitrogen were well correlated with those of SS irrespective of fish species and methods of enzyme treatment. Also, it was noticed that multiple protease treatment improved sensory attributes of the FHs considerably. Electropherograms of the FHs showed fast migrating peptide bands that had the molecular masses mostly lower than 1 kDa and this was confirmed by peptide patterns from HPLC analysis for some FHs that had good sensory quality.

Keywords: production, fish hydrolyzates, protease treatments, high pressure

Procedia PDF Downloads 252
1099 Developing a Model – an Application of Fuzzy Analytic Network Process Techniques for Hostels

Authors: Pin-Ju Juan, Peng-Yu Juan, Yi-Shan Chen

Abstract:

The main purpose of this paper is to present a fuzzy Analytic Network Process (ANP) model for the hostel organizational performance selection. In this article, we created 39 criteria for selecting hostel organizational performance acquired from literature's review and experts method practical investigations, and the methods of fuzzy analytic network process are used to consolidate decision-makers’ assessments about criteria weightings. Finally, we selected organizational performance of a hostel in Taiwan to determine the effectiveness of the proposed evaluation model in this paper.

Keywords: Fuzzy ANP, hostel, organizational performance, strategy management

Procedia PDF Downloads 157
1098 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes

Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee

Abstract:

Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.

Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing

Procedia PDF Downloads 225
1097 Acceleration of DNA Hybridization Using Electroosmotic Flow

Authors: Yun-Hsiang Wang, Huai-Yi Chen, Kin Fong Lei

Abstract:

Deoxyribonucleic acid (DNA) hybridization is a common technique used in genetic assay widely. However, the hybridization ratio and rate are usually limited by the diffusion effect. Here, microfluidic electrode platform producing electroosmosis generated by alternating current signal has been proposed to enhance the hybridization ratio and rate. The electrode was made of aurum fabricated by microfabrication technique. Thiol-modified oligo probe was immobilized on the electrode for specific capture of target, which is modified by fluorescent tag. Alternative electroosmosis can induce local microfluidic vortexes to accelerate DNA hybridization. This study provides a strategy to enhance the rate of DNA hybridization in the genetic assay.

Keywords: DNA hybridization, electroosmosis, electrical enhancement, hybridization ratio

Procedia PDF Downloads 358
1096 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.

Keywords: feature matching, k-means clustering, SIFT, RANSAC

Procedia PDF Downloads 318
1095 Signal Amplification Using Graphene Oxide in Label Free Biosensor for Pathogen Detection

Authors: Agampodi Promoda Perera, Yong Shin, Mi Kyoung Park

Abstract:

The successful detection of pathogenic bacteria in blood provides important information for early detection, diagnosis and the prevention and treatment of infectious diseases. Silicon microring resonators are refractive-index-based optical biosensors that provide highly sensitive, label-free, real-time multiplexed detection of biomolecules. We demonstrate the technique of using GO (graphene oxide) to enhance the signal output of the silicon microring optical sensor. The activated carboxylic groups in GO molecules bind directly to single stranded DNA with an amino modified 5’ end. This conjugation amplifies the shift in resonant wavelength in a real-time manner. We designed a capture probe for strain Staphylococcus aureus of 21 bp and a longer complementary target sequence of 70 bp. The mismatched target sequence we used was of Streptococcus agalactiae of 70 bp. GO is added after the complementary binding of the probe and target. GO conjugates to the unbound single stranded segment of the target and increase the wavelength shift on the silicon microring resonator. Furthermore, our results show that GO could successfully differentiate between the mismatched DNA sequences from the complementary DNA sequence. Therefore, the proposed concept could effectively enhance sensitivity of pathogen detection sensors.

Keywords: label free biosensor, pathogenic bacteria, graphene oxide, diagnosis

Procedia PDF Downloads 441
1094 Impact Characteristics of Fragile Cover Based on Numerical Simulation and Experimental Verification

Authors: Dejin Chen, Bin Lin, Xiaohui LI, Haobin Tian

Abstract:

In order to acquire stable impact performance of cover, the factors influencing the impact force of the cover were analyzed and researched. The influence of impact factors such as impact velocity, impact weight and fillet radius of warhead was studied by Orthogonal experiment. Through the range analysis and numerical simulation, the results show that the impact velocity has significant influences on impact force of cover. The impact force decreases with the increase of impact velocity and impact weight. The test results are similar to the numerical simulation. The cover broke up into four parts along the groove.

Keywords: fragile cover, numerical simulation, impact force, epoxy foam

Procedia PDF Downloads 229
1093 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach

Authors: Joseph C. Chen

Abstract:

Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.

Keywords: DMAIC, machine vision system, process capability, Taguchi Parameter Design

Procedia PDF Downloads 400
1092 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor

Authors: Ejaz Ahmed, Huang Yong

Abstract:

The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.

Keywords: CFD, combustion, gas turbine combustor, lean blowout

Procedia PDF Downloads 241
1091 The Investigation of LPG Injector Control Circuit on a Motorcycle

Authors: Bin-Wen Lan, Ying-Xin Chen, Hsueh-Cheng Yang

Abstract:

Liquefied petroleum gas is a fuel that has high octane number and low carbon number. This paper uses MSC-51 controller to investigate the effect of liquefied petroleum gas (LPG) on exhaust emissions for different engine speeds in a single cylinder, four-stroke and spark ignition engine. The results indicate that CO, CO2 and NOX exhaust emissions are lower with the use of LPG compared to the use of unleaded gasoline by using the developed controller. The open-loop in the LPG injection system was controlled by MCS-51 single chip. The results show that if a SI engine is operated with LPG fuel rather than gasoline fuel under the same conditions, significant reduction in exhaust emissions can be achieved. In summary, LPG has positive effects on main exhaust emissions such as CO, CO2 and NOX.

Keywords: LPG, control circuit, emission, MCS-51

Procedia PDF Downloads 455
1090 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs

Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen

Abstract:

This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.

Keywords: AAO, nanotube, sol-gel, anodization, hydrophilicity

Procedia PDF Downloads 321
1089 Experimental Research on the Properties Reactive Powder Concrete (RPC)

Authors: S. Yousefi Oderji, B. Chen, M. A. Yazdi, J. Yang

Abstract:

This study investigates the influence of water-binder ratio, mineral admixtures (silica fume and ground granulated blast furnace slag), and copper coated steel fiber on fluidity diameter, compressive and flexural strengths of reactive powder concrete (RPC). The test results show that the binary combination of silica fume and blast-furnace slag provided a positive influence on the mechanical properties of RPC. Although the addition of fibers reduced the workability, results indicated a higher mechanical strength in the inclusion of fibers.

Keywords: RPC, steel fiber, fluidity, mechanical properties

Procedia PDF Downloads 274