Search results for: Xiang Zhang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1044

Search results for: Xiang Zhang

924 Electronic/Optoelectronic Property Tuning in Two-Dimensional Transition Metal Dichalcogenides via High Pressure

Authors: Juan Xia, Jiaxu Yan, Ze Xiang Shen

Abstract:

The tuneable interlayer interactions in two-dimensional (2D) transition metal dichlcogenides (TMDs) offer an exciting platform for exploring new physics and applications by material variety, thickness, stacking sequence, electromagnetic filed, and stress/strain. Compared with the five methods mentioned above, high pressure is a clean and powerful tool to induce dramatic changes in lattice parameters and physical properties for 2D TMD materials. For instance, high pressure can strengthen the van der Waals interactions along c-axis and shorten the covalent bonds in atomic plane, leading to the typical first-order structural transition (2Hc to 2Ha for MoS2), or metallization. In particular, in the case of WTe₂, its unique symmetry endows the significant anisotropy and the corresponding unexpected properties including the giant magnetoresistance, pressure-induced superconductivity and Weyl semimetal states. Upon increasing pressure, the Raman peaks for WTe₂ at ~120 cm⁻¹, are gradually red-shifted and totally suppressed above 10 GPa, attributed to the possible structural instability of orthorhombic Td phase under high pressure and phase transition to a new monoclinic T' phase with inversion symmetry. Distinct electronic structures near Fermi level between the Td and T' phases may pave a feasible way to achieve the Weyl state tuning in one material without doping.

Keywords: 2D TMDs, electronic property, high pressure, first-principles calculations

Procedia PDF Downloads 208
923 The Droplet Generation and Flow in the T-Shape Microchannel with the Side Wall Fluctuation

Authors: Yan Pang, Xiang Wang, Zhaomiao Liu

Abstract:

Droplet microfluidics, in which nanoliter to picoliter droplets acted as individual compartments, are common to a diverse array of applications such as analytical chemistry, tissue engineering, microbiology and drug discovery. The droplet generation in a simplified two dimension T-shape microchannel with the main channel width of 50 μm and the side channel width of 25 μm, is simulated to investigate effects of the forced fluctuation of the side wall on the droplet generation and flow. The periodic fluctuations are applied on a length of the side wall in the main channel of the T-junction with the deformation shape of the double-clamped beam acted by the uniform force, which varies with the flow time and fluctuation periods, forms and positions. The fluctuations under most of the conditions expand the distribution range of the droplet size but have a little effect on the average size, while the shape of the fixed side wall changes the average droplet size chiefly. Droplet sizes show a periodic pattern along the relative time when the fluctuation is forced on the side wall near the T-junction. The droplet emerging frequency is not varied by the fluctuation of the side wall under the same flow rate and geometry conditions. When the fluctuation period is similar with the droplet emerging period, the droplet size shows a nice stability as the no fluctuation case.

Keywords: droplet generation, droplet size, flow flied, forced fluctuation

Procedia PDF Downloads 260
922 Subjective Well-being, Beliefs, and Lifestyles of First Year University Students in the UK

Authors: Kaili C. Zhang

Abstract:

Mental well-being is an integral part of university students’ overall well-being and has been a matter of increasing concern in the UK. This study addressed the impact of university experience on students by investigating the changes students experience in their beliefs, lifestyles, and well-being during their first year of study, as well as the factors contributing to such changes. Using a longitudinal two-wave mixed method design, this project identified importantfactors that contribute to or inhibit these changes. Implications for universities across the UK are discussed.

Keywords: subjective well-being, beliefs, lifestyles, university students

Procedia PDF Downloads 168
921 Mathematical Model and Algorithm for the Berth and Yard Resource Allocation at Seaports

Authors: Ming Liu, Zhihui Sun, Xiaoning Zhang

Abstract:

This paper studies a deterministic container transportation problem, jointly optimizing the berth allocation, quay crane assignment and yard storage allocation at container ports. The problem is formulated as an integer program to coordinate the decisions. Because of the large scale, it is then transformed into a set partitioning formulation, and a framework of branchand- price algorithm is provided to solve it.

Keywords: branch-and-price, container terminal, joint scheduling, maritime logistics

Procedia PDF Downloads 263
920 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus

Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen

Abstract:

The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.

Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay

Procedia PDF Downloads 251
919 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm

Authors: Xiang Jianhong, Wang Cong, Wang Linyu

Abstract:

With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.

Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal

Procedia PDF Downloads 103
918 Review of Current Literature on Use of Prazosin for Treatment of Post-Traumatic Stress Disorder Related Sleep Disturbances in Child and Adolescent Population

Authors: Davit Khachatryan, Shuo Xiang

Abstract:

Numerous published studies on the use of prazosin in the treatment of PTSD-related sleep disturbances in adult population have resulted in updates to the recommendation for prazosin for nightmares that showed its strength of evidence elevated from C to B in the US Department of Veterans Affairs clinical practice guideline. In addition, the American Academy of Sleep Medicine clinical practice guideline gave prazosin a level-A recommendation for the treatment of PTSD-associated nightmares. The aim of this review is to summarize the available literature for prazosin use for nightmares and other sleep disturbances in children and adolescents with PTSD. Method: A comprehensive search for studies on prazosin use for sleep disturbances in child and adolescent population with PTSD has been performed. We looked at MEDLINE, EMBASE, PsycINFO, CINAHL, AMED, Scopus, Web of Science, and Cochrane CENTRAL databases. Results: Compared to adult population with similar psychopathology, the available literature in child and adolescent population is scarce. Despite increased interest in prazosin in the management of PTSD, only six studies investigating this medication in children and adolescents have been published. Conclusion: A large randomized control trial on this topic is needed for more definite evidence on the efficacy and safety of prazosin in the treatment of nightmares in children and adolescents with PTSD.

Keywords: guidelines, prazosin, PTSD, sleep disturbance

Procedia PDF Downloads 360
917 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 131
916 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 259
915 Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence

Authors: Y. Jin, N. Zhang, X. Luo, W. Zhang

Abstract:

China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public.

Keywords: cost efficiency, eco-feedback, low energy residence, thermal comfort

Procedia PDF Downloads 232
914 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials

Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay

Procedia PDF Downloads 428
913 Hydrodynamics of Undulating Ribbon-fin and Its Application in Bionic Underwater Robot

Authors: Zhang Jun, Zhai Shucheng, Bai Yaqiang, Zhang Guoping

Abstract:

The Gymnarchus Niioticus fish(GNF) cruises generally with high efficiency by undulating ribbon-fin propulsion while keeping its body for straight line. The swing amplitude of GNF fins is usually in 60° to 90°, and in normal state the amplitude is close to 90°, only in the control of hovering or swimming at very low speed, the amplitude is smaller (about 60°). It provides inspiration for underwater robot design. In the paper, the unsteady flow of undulating ribbon-fin propulsion is numerical simulated by the dynamic grid technique including spring-based smoothing model and local grid remeshing to adapt to the fin surface significantly deforming, and the swing amplitude of fin ray reaches 850. The numerical simulation method is validated by thrust experiments. The spatial vortex structure and its evolution with phase angle is analyzed. The propulsion mechanism is investigated by comprehensive analysis of the hydrodynamics, vortex structure, and pressure distribution on the fin surface. The numerical results indicates that there are mainly three kinds of vortexes, i.e. streamwise vortex, crescent vortex and toroidal vortex. The intensity of streamwise vortex is the strongest among all kinds of vortexes. Streamwise vortexes and crescent vortexes all alternately distribute on the two sides of mid-sagittal plane. Inside the crescent vortexes is high-speed flow, while outside is low-speed flow. The crescent vortexes mainly induce high-speed axial jet, which produces the primary thrust. This is hydrodynamic mechanism undulating ribbon-fin propulsion. The streamwise vortexes mainly induce the vertical jet, which generates the primary heave force. The effect on hydrodynamics of main geometry and movement parameters including wave length, amplitude and advanced coefficients is investigated. A bionic underwater robot with bilateral undulating ribbon-fins is designed, and its navigation performance and maneuverability are measured.

Keywords: bionic propulsion, mobile robot, underwater robot, undulating ribbon-fins

Procedia PDF Downloads 255
912 The Coalescence Process of Droplet Pairs in Different Junctions

Authors: Xiang Wang, Yan Pang, Zhaomiao Liu

Abstract:

Droplet-based microfluidics have been studied extensively with the development of the Micro-Electro-Mechanical System (MEMS) which bears the advantages of high throughput, high efficiency, low cost and low polydispersity. Droplets, worked as versatile carriers, could provide isolated chambers as the internal dispersed phase is protected from the outside continuous phase. Droplets are used to add reagents to start or end bio-chemical reactions, to generate concentration gradients, to realize hydrate crystallization or protein analyses, while droplets coalescence acts as an important control technology. In this paper, deionized water is used as the dispersed phase, and several kinds of oil are used as the continuous phase to investigate the influence of the viscosity ratio of the two phases on the coalescence process. The microchannels are fabricated by coating a polydimethylsiloxane (PDMS) layer onto another PDMS flat plate after corona treatment. All newly made microchannels are rinsed with the continuous oil phase for hours before experiments to ensure the swelling fully developed. High-speed microscope system is used to document the serial videos with a maximum speed of 2000 frames per second. The critical capillary numbers (Ca*) of droplet pairs in various junctions are studied and compared. Ca* varies with different junctions or different liquids within the range of 0.002 to 0.01. However, droplets without extra control would have the problem of synchronism which reduces the coalescence efficiency.

Keywords: coalescence, concentration, critical capillary number, droplet pair, split

Procedia PDF Downloads 216
911 Advances in Medication Reconciliation Tools

Authors: Zixuan Liu, Xin Zhang, Kexin He

Abstract:

In the context of widespread prevalence of multiple diseases, medication safety has become a highly concerned issue affecting patient safety. Medication reconciliation plays a vital role in preventing potential medication risks. However, in medical practice, medication reconciliation faces various challenges, and there is a wide variety of medication reconciliation tools, making the selection of appropriate tools somewhat difficult. The article introduces and analyzes the currently available medication reconciliation tools, providing a reference for healthcare professionals to choose and apply the appropriate medication reconciliation tools.

Keywords: patient safety, medication reconciliation, tools, review

Procedia PDF Downloads 53
910 Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics

Authors: Hao Qu, Xiang Liu, Michael Crosby, Brian Kozak, Andreas K. Freund

Abstract:

The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation.

Keywords: neutron optics, pyrolytic graphite, mosaic spread, neutron scattering, monochromator, analyzer

Procedia PDF Downloads 115
909 Research on Pilot Sequence Design Method of Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing System Based on High Power Joint Criterion

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

For the pilot design of the sparse channel estimation model in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems, the observation matrix constructed according to the matrix cross-correlation criterion, total correlation criterion and other optimization criteria are not optimal, resulting in inaccurate channel estimation and high bit error rate at the receiver. This paper proposes a pilot design method combining high-power sum and high-power variance criteria, which can more accurately estimate the channel. First, the pilot insertion position is designed according to the high-power variance criterion under the condition of equal power. Then, according to the high power sum criterion, the pilot power allocation is converted into a cone programming problem, and the power allocation is carried out. Finally, the optimal pilot is determined by calculating the weighted sum of the high power sum and the high power variance. Compared with the traditional pilot frequency, under the same conditions, the constructed MIMO-OFDM system uses the optimal pilot frequency for channel estimation, and the communication bit error rate performance obtains a gain of 6~7dB.

Keywords: MIMO-OFDM, pilot optimization, compressed sensing, channel estimation

Procedia PDF Downloads 122
908 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product

Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu

Abstract:

The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.

Keywords: aesthetics, crease line, cropped straight leg pants, knee width

Procedia PDF Downloads 163
907 The Role of Mass Sport Guidance in the Health Service Industry of China

Authors: Qiu Jian-Rong, Li Qing-Hui, Zhan Dong, Zhang Lei

Abstract:

Facing the problem of the demand of economic restructuring and risk of social economy stagnation due to the ageing of population, the Health Service Industry will play a very important role in the structure of industry in the future. During the process, the orient of Chinese sports medicine as well as the joint with preventive medicine, and the integration with data bank and cloud computing will be involved.

Keywords: China, the health service industry, mass sport, data bank

Procedia PDF Downloads 599
906 The Intersection/Union Region Computation for Drosophila Brain Images Using Encoding Schemes Based on Multi-Core CPUs

Authors: Ming-Yang Guo, Cheng-Xian Wu, Wei-Xiang Chen, Chun-Yuan Lin, Yen-Jen Lin, Ann-Shyn Chiang

Abstract:

With more and more Drosophila Driver and Neuron images, it is an important work to find the similarity relationships among them as the functional inference. There is a general problem that how to find a Drosophila Driver image, which can cover a set of Drosophila Driver/Neuron images. In order to solve this problem, the intersection/union region for a set of images should be computed at first, then a comparison work is used to calculate the similarities between the region and other images. In this paper, three encoding schemes, namely Integer, Boolean, Decimal, are proposed to encode each image as a one-dimensional structure. Then, the intersection/union region from these images can be computed by using the compare operations, Boolean operators and lookup table method. Finally, the comparison work is done as the union region computation, and the similarity score can be calculated by the definition of Tanimoto coefficient. The above methods for the region computation are also implemented in the multi-core CPUs environment with the OpenMP. From the experimental results, in the encoding phase, the performance by the Boolean scheme is the best than that by others; in the region computation phase, the performance by Decimal is the best when the number of images is large. The speedup ratio can achieve 12 based on 16 CPUs. This work was supported by the Ministry of Science and Technology under the grant MOST 106-2221-E-182-070.

Keywords: Drosophila driver image, Drosophila neuron images, intersection/union computation, parallel processing, OpenMP

Procedia PDF Downloads 207
905 Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems

Authors: Linyu Wang, Mingjun Zhu, Jianhong Xiang, Hanyu Jiang

Abstract:

Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved.

Keywords: mmWave, massive MIMO, hybrid precoding, singular value decompositing, equivalent channel

Procedia PDF Downloads 71
904 A Review of Optomechatronic Ecosystem

Authors: Sam Zhang

Abstract:

The landscape of Opto mechatronics is viewed along the line of light vs. matter, photonics vs. semiconductors, and optics vs. mechatronics. Optomechatronics is redefined as the integration of light and matter from the atom, device, and system to the application. The markets and megatrends in Opto mechatronics are further listed. The author then focuses on Opto mechatronic technology in the semiconductor industry as an example and reviews the practical systems, characteristics, and trends. Opto mechatronics, together with photonics and semiconductor, will continue producing the computational and smart infrastructure required for the 4th industrial revolution.

Keywords: photonics, semiconductor, optomechatronics, 4th industrial revolution

Procedia PDF Downloads 90
903 Chaotic Behavior in Monetary Systems: Comparison among Different Types of Taylor Rule

Authors: Reza Moosavi Mohseni, Wenjun Zhang, Jiling Cao

Abstract:

The aim of the present study is to detect the chaotic behavior in monetary economic relevant dynamical system. The study employs three different forms of Taylor rules: current, forward, and backward looking. The result suggests the existence of the chaotic behavior in all three systems. In addition, the results strongly represent that using expectations especially rational expectation hypothesis can increase complexity of the system and leads to more chaotic behavior.

Keywords: taylor rule, monetary system, chaos theory, lyapunov exponent, GMM estimator

Procedia PDF Downloads 493
902 Cross Site Scripting (XSS) Attack and Automatic Detection Technology Research

Authors: Tao Feng, Wei-Wei Zhang, Chang-Ming Ding

Abstract:

Cross-site scripting (XSS) is one of the most popular WEB Attacking methods at present, and also one of the most risky web attacks. Because of the population of JavaScript, the scene of the cross site scripting attack is also gradually expanded. However, since the web application developers tend to only focus on functional testing and lack the awareness of the XSS, which has made the on-line web projects exist many XSS vulnerabilities. In this paper, different various techniques of XSS attack are analyzed, and a method automatically to detect it is proposed. It is easy to check the results of vulnerability detection when running it as a plug-in.

Keywords: XSS, no target attack platform, automatic detection,XSS detection

Procedia PDF Downloads 378
901 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: Study of Regeneration Heat Duty

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high-pressure carbon dioxide (CO₂) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO₂ concentration, CO₂ loading, reboiler power supply, and regeneration heat duty to choose the most efficient solution in terms of CO₂ removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on the electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that piperazine, in addition to the mixture of piperazine and monoethanolamine (MEA), demands the highest regeneration heat duty compared with other studied single and blended amine solutions, respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of the process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO₂ content in the outlet gas, rich-CO₂ loading, and regeneration heat duty.

Keywords: absorption, amine solutions, aspen HYSYS, CO₂ loading, piperazine, regeneration heat duty

Procedia PDF Downloads 153
900 Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites

Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying

Abstract:

Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability.

Keywords: butene, catalytic cracking, HZSM-5, modification

Procedia PDF Downloads 363
899 Solvent Extraction of Rb and Cs from Jarosite Slag Using t-BAMBP

Authors: Zhang Haiyan, Su Zujun, Zhao Fengqi

Abstract:

Lepidolite after extraction of Lithium by sulfate produced many jarosite slag which contains a lot of Rb and Cs.The separation and recovery of Rubidium(Rb) and Cesium(Cs) can make full of use of Lithium mica. XRF analysis showed that the slag mainly including K Rb Cs Al and etc. Fractional solvent extraction tests were carried out; the results show that using20% t-BAMBP plus 80% sulfonated kerosene, the separation of Rb and Cs can be achieved by adjusting the alkalinity. Extraction is the order of Cs Rb, ratio of Cs to Rb and ratio of Rb to K can reach above 1500 and 2500 respectively.

Keywords: cesium, jarosite slag, rubidium, solvent extraction, t-BAMBP

Procedia PDF Downloads 554
898 Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing

Authors: Yu Zhang, Kohei Inoue, Kiichi Urahama

Abstract:

We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power.

Keywords: bilateral filter, binarized-weight bilateral filter, image smoothing, image denoising, pixel sampling

Procedia PDF Downloads 450
897 Fortification of Concentrated Milk Protein Beverages with Soy Proteins: Impact of Divalent Cations and Heating Treatment on the Physical Stability

Authors: Yichao Liang, Biye Chen, Xiang Li, Steven R. Dimler

Abstract:

This study investigated the effects of adding calcium and magnesium chloride on heat and storage stability of milk protein concentrate-soy protein isolate (8:2 respectively) mixtures containing 10% w/w total protein subjected to the in-container sterilization (115 °C x 15 min). The particle size does not change when emulsions are heated at pH between 6.7 and 7.3 irrespective of the mixed protein ratio. Increasing concentration of divalent cation salts resulted in an increase in protein particle size, dry sediment formation and sediment height and a decrease in pH, heat stability and hydration in milk protein concentrate-soy protein isolate mixtures solutions on sterilization at 115°C. Fortification of divalent cation salts in milk protein concentrate-soy protein isolate mixture solutions resulted in an accelerated protein sedimentation and two unique sediment regions during accelerated storage stability testing. Moreover, the heat stability decreased upon sterilization at 115°C, with addition of MgCl₂ causing a greater increase in sedimentation velocity and compressibility than CaCl₂. Increasing pH value of protein milk concentrate-soy protein isolate mixtures solutions from 6.7 to 7.2 resulted in an increase in viscosity following the heat treatment. The study demonstrated that the type and concentration of divalent cation salts used strongly impact heat and storage stability of milk protein concentrate-soy protein isolate mixture nutritional beverages.

Keywords: divalent cation salts, heat stability, milk protein concentrate, soy protein isolate, storage stability

Procedia PDF Downloads 297
896 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 44
895 Inference for Synthetic Control Methods with Multiple Treated Units

Authors: Ziyan Zhang

Abstract:

Although the Synthetic Control Method (SCM) is now widely applied, its most commonly- used inference method, placebo test, is often problematic, especially when the treatment is not uniquely assigned. This paper discusses the problems with the placebo test under the multivariate treatment case. And, to improve the power of inferences, I further propose an Andrews-type procedure as it potentially solves some drawbacks of the placebo test. Simulations are conducted to show the Andrews’ test is often valid and powerful, compared with the placebo test.

Keywords: Synthetic Control Method, Multiple treatments, Andrews' test, placebo test

Procedia PDF Downloads 133