Search results for: Wing L. Aw
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 268

Search results for: Wing L. Aw

88 The Securitization of the European Migrant Crisis (2015-2016): Applying the Insights of the Copenhagen School of Security Studies to a Comparative Analysis of Refugee Policies in Bulgaria and Hungary

Authors: Tatiana Rizova

Abstract:

The migrant crisis, which peaked in 2015-2016, posed an unprecedented challenge to the European Union’s (EU) newest member states, including Bulgaria and Hungary. Their governments had to formulate sound migration policies with expediency and sensitivity to the needs of millions of people fleeing violent conflicts in the Middle East and failed states in North Africa. Political leaders in post-communist countries had to carefully coordinate with other EU member states on joint policies and solutions while minimizing the risk of alienating their increasingly anti-migrant domestic constituents. Post-communist member states’ governments chose distinct policy responses to the crisis, which were dictated by factors such as their governments’ partisan stances on migration, their views of the European Union, and the decision to frame the crisis as a security or a humanitarian issue. This paper explores how two Bulgarian governments (Boyko Borisov’s second and third government formed during the 43rd and 44th Bulgarian National Assembly, respectively) navigated the processes of EU migration policy making and managing the expectations of their electorates. Based on a comparative analysis of refugee policies in Bulgaria and Hungary during the height of the crisis (2015-2016) and a temporal analysis of refugee policies in Bulgaria (2015-2018), the paper advances the following conclusions. Drawing on insights of the Copenhagen school of security studies, the paper argues that cultural concerns dominated domestic debates in both Bulgaria and Hungary; both governments framed the issue predominantly as a matter of security rather than humanitarian disaster. Regardless of the similarities in issue framing, however, the two governments sought different paths of tackling the crisis. While the Bulgarian government demonstrated its willingness to comply with EU decisions (such as the proposal for mandatory quotas for refugee relocation), the Hungarian government defied EU directives and became a leading voice of dissent inside the EU. The current Bulgarian government (April 2017 - present) appears to be committed to complying with EU decisions and accepts the strategy of EU burden-sharing, while the Hungarian government has continually snubbed the EU’s appeals for cooperation despite the risk of hefty financial penalties. Hungary’s refugee policies have been influenced by the parliamentary representation of the far right-wing party Movement for a Better Hungary (Jobbik), which has encouraged the majority party (FIDESZ) to adopt harsher anti-migrant rhetoric and more hostile policies toward refugees. Bulgaria’s current government is a coalition of the center-right Citizens for a European Development of Bulgaria (GERB) and its far right-wing junior partners – the United Patriots (comprised of three nationalist political parties). The parliamentary presence of Jobbik in Hungary’s parliament has magnified the anti-migrant stance, rhetoric, and policies of Mr. Orbán’s Civic Alliance; we have yet to observe a substantial increase in the anti-migrant rhetoric and policies in Bulgaria’s case. Analyzing responses to the migrant/refugee crisis is a critical opportunity to understand how issues of cultural identity and belonging, inclusion and exclusion, regional integration and disintegration are debated and molded into policy in Europe’s youngest member states in the broader EU context.

Keywords: Copenhagen School, migrant crisis, refugees, security

Procedia PDF Downloads 98
87 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: adaptive differentiators, second order sliding modes, dynamic adaptation of the gains, microsoft flight simulator, Zlin-142, MQ-1 predator

Procedia PDF Downloads 393
86 A Computational Fluid Dynamics Study of Turbulence Flow and Parameterization of an Aerofoil

Authors: Mohamed Z. M. Duwahir, Shian Gao

Abstract:

The main objective of this project was to introduce and test a new scheme for parameterization of subsonic aerofoil, using a function called Shape Function. Python programming was used to create a user interactive environment for geometry generation of aerofoil using NACA and Shape Function methodologies. Two aerofoils, NACA 0012 and NACA 1412, were generated using this function. Testing the accuracy of the Shape Function scheme was done by Linear Square Fitting using Python and CFD modelling the aerofoil in Fluent. NACA 0012 (symmetrical aerofoil) was better approximated using Shape Function than NACA 1412 (cambered aerofoil). The second part of the project involved comparing two turbulent models, k-ε and Spalart-Allmaras (SA), in Fluent by modelling the aerofoils NACA 0012 and NACA 1412 in conditions of Reynolds number of 3 × 106. It was shown that SA modelling is better for aerodynamic purpose. The experimental coefficient of lift (Cl) and coefficient of drag (Cd) were compared with empirical wind tunnel data for a range of angle of attack (AOA). As a further step, this project involved drawing and meshing 3D wings in Gambit. The 3D wing flow was solved and compared with 2D aerofoil section experimental results and wind tunnel data.

Keywords: CFD simulation, shape function, turbulent modelling, aerofoil

Procedia PDF Downloads 330
85 Current and Future Global Distribution of Drosophila suzukii

Authors: Yousef Naserzadeh, Niloufar Mahmoudi

Abstract:

The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly native to South East Asia, has recently invaded Europe, North- and South America and is spreading rapidly. Species distribution modeling has been widely employed to indicate probable areas of invasion and to guide management strategies. Drosophila sp. is native to Asia, but since 2015, it has invaded almost every country in the world, including Africa, Australia, India, and most recently, the Americas. The growth of this species of Drosophila suzukii has been rapidly multiplying and spreading in the last decade. In fact, we examine and model the potential geographical distribution of D. suzukii for both present and future scenarios. Finally, we determine the environmental variables that affect its distribution, as well as assess the risk of encroachment on protected areas. D.suzukii has the potential to expand its occurrence, especially on continents that have already been invaded. The predictive models obtained in this study indicate potential regions that could be at risk of invasion by D. suzukii, including protected areas. These results are important and can assist in the establishment of management plans to avoid the possible harm caused by biological invasions.

Keywords: climate change, Drosophila suzukii, environmental variables, host preference, host plant, nutrition

Procedia PDF Downloads 54
84 Aerodynamic Design Optimization of Ferrari F430 Flying Car with Enhanced Takeoff Performance

Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, Abhimanyu Pugazhandhi, V. R. Sanal Kumar

Abstract:

The designer of any flying car has the major concern on the creation of upward force with low takeoff velocity, with minimum drag, coupled with better stability and control warranting its overall high performance both in road and air. In this paper, 3D numerical simulations of external flow of a Ferrari F430 fitted with different NACA series rectangular wings have been carried out for finding the best aerodynamic design option in road and air. The principle that allows a car to rise off the ground by creating lift using deployable wings with desirable lifting characteristics is the main theme of our paper. Additionally, the car body is streamlined in accordance with the speed range. Further, the rounded and tapered shape of the top of the car is designed to slice through the air and minimize the wind resistance. The 3D SST k-ω turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies, we have conjectured that Ferrari F430 can be converted into a lucrative flying car with best fit NACA wing through a proper aerodynamic design optimization.

Keywords: aerodynamics of flying car, air taxi, Ferrari F430, roadable airplane

Procedia PDF Downloads 182
83 Biologiacal and Morphological Aspects of the Sweet Potato Bug, Physomerus grossipes F. (Heteroptera: Coreidae)

Authors: J. Name, S. Bumroongsook

Abstract:

The laboratory and field studies was conducted at King Monkut’s Institute of Technology Ladkrabang to determine biological and morphological aspects of a sweet potato bug ( Physomerus grossipes F.)(Heteroptera). It belongs to the family Coreidae. This insect lays eggs underside of leaves or on the stem of water convolvulus ( Ipomoea aquatic Forsk ) naturally grown in asiatic pennywort plantations. Male and female adults, aged 12-16 day, are known to have multiple mating. Its copulatory position was observed as end to end position which was lasted as long as for 9-60 hours. Groups of eggs were attached to parts of host plants. The egg normally hatches in 16.00-17.50 days(mean 16.63±0.53days). They have 5 nymphal stages and pass through 5 molts before reaching maturity as follows:the first instar 3.83-4.25 days(mean 4.09±0.13 days), the second instar 15.25-27.63 days(mean 20.86± 3.24 days), the third nymphs instar 15.25-27.63 days(mean 20.86±4.42 days), the fourth nymphs 7.29-14.25 days(mean 10.42±2.64 day) and the fifth nymphs 12.58-18.00 days(mean 14.88±1.53 days).These nymphs tend to stay together and suck plant sap from stolons and stems of water convolvulus. The fifth nymps are morphologically similar to adults and they have small wing pads. Adult bugs have full grown wings which cover the abdomen. Total developmental time from egg to adult takes about 104-123 days.

Keywords: morphological aspects, sweet potato bugs (Physomerus grossipes F.), water convolvulus

Procedia PDF Downloads 290
82 The Impact of the Economic Crisis in the European Identity

Authors: Sofía Luna, Carla González Salamanca

Abstract:

The 2008 economic crisis had huge implications in Europe. In this continent, the repercussions of the crisis were not only economic but also political and institutional. The economic stress has generated changes in the perception of the citizens, their attitude and the confidence placed in the political organizations. The lost of confidence is not only present in the debtor countries but it is also present in the European economic powers like Germany and France. This research explains how the economic crisis had an impact in the identity, population’s attitude and how this generated the rise of extreme right parties. In addition, it defines the different types of attitudes and support that exist towards these political and economic institutions. The results of this investigation show that the depression beside of its economic implications, it caused institutional, social and political difficulties for the Union. Moreover, the support and attitudes of the population were severely strained because the confidence in the political organization decreased. Furthermore, a rise in the otherness sentiment was shown. In other words, the distinction between “us” and “them” increased causing repercussions in the collective European identity. Additionally, there was a spread in national identities that caused the rise of the extreme right wing parties. In conclusion, the 2008 economic crisis caused not only economic stress but also it generated a political, social and institutional crisis in Europe.

Keywords: Europe, identity, economic crisis, otherness sentiment

Procedia PDF Downloads 468
81 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search

Authors: D. S. Naumann, B. J. Evans, O. Hassan

Abstract:

This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.

Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation

Procedia PDF Downloads 305
80 Study of Exciton Binding Energy in Photovoltaic Polymers and Non-Fullerene Acceptors

Authors: Ho-Wa Li, Sai-Wing Tsang

Abstract:

The excitonic effect in organic semiconductors plays a key role in determining the electronic devices performance. Strong exciton binding energy has been regarded as the detrimental factor limiting the further improvement in organic photovoltaic cells. To the best of our knowledge, only limited reported can be found in measuring the exciton binding energy in organic photovoltaic materials. Conventional sophisticated approach using photoemission spectroscopy (UPS and IPES) would limit the wide access of the investigation. Here, we demonstrate a facile approach to study the electrical and optical quantum efficiencies of a series of conjugated photovoltaic polymer, fullerene and non-fullerene materials. Quantitative values of the exciton binding energy in those prototypical materials were obtained with concise photovoltaic device structure. And the extracted binding energies have excellent agreement with those determined by the conventional photoemission technique. More importantly, our findings can provide valuable information on the excitonic dissociation in the first excited state. Particularly, we find that the high binding energy of some non-fullerene acceptors limits the combination of polymer acceptors for efficiency exciton dissociation. The results bring insight into the engineering of excitonic effect for the development of efficient organic photovoltaic cells.

Keywords: organic photovoltaics, quantum efficiency, exciton binding energy, device physics

Procedia PDF Downloads 113
79 Effect of Installation of Long Cylindrical External Store on Performance, Stability, Control and Handling Qualities of Light Transport Aircraft

Authors: Ambuj Srivastava, Narender Singh

Abstract:

This paper presents the effect of installation of cylindrical external store on the performance, stability, control and handling qualities of light transport category aircraft. A pair of long cylindrical store was installed symmetrically on either side of the fuselage (port and starboard) ahead of the wing and below the fuselage bottom surface running below pilot and co-pilot window. The cylindrical store was installed as hanging from aircraft surface through specially designed brackets. The adjoining structure was sufficiently reinforced for bearing aerodynamic loads. The length to diameter ratio of long cylindrical store was ~20. Based on academic studies and flow simulation analysis, a considerable detrimental effect on single engine second segment climb performance was found which was later validated through extensive flight testing exercise. The methodology of progressive flight envelope opening was adopted. The certification was sought from Regional airworthiness authorities and for according approval.

Keywords: second segment climb, maximum operating speed, cruise performance (single engine and twin engine), minimum control speed, and additional trim required

Procedia PDF Downloads 196
78 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System

Authors: Ahmed Shinkafi, Craig Lawson

Abstract:

There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.

Keywords: aircraft, de-icing system, electro-thermal, in-flight icing

Procedia PDF Downloads 468
77 Investigating the Dynamic Response of the Ballast

Authors: Osama Brinji, Wing Kong Chiu, Graham Tew

Abstract:

Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.

Keywords: ballast, dynamic response, sleeper, stability

Procedia PDF Downloads 471
76 Methodology of Preliminary Design and Performance of a Axial-Flow Fan through CFD

Authors: Ramiro Gustavo Ramirez Camacho, Waldir De Oliveira, Eraldo Cruz Dos Santos, Edna Raimunda Da Silva, Tania Marie Arispe Angulo, Carlos Eduardo Alves Da Costa, Tânia Cristina Alves Dos Reis

Abstract:

It presents a preliminary design methodology of an axial fan based on the lift wing theory and the potential vortex hypothesis. The literature considers a study of acoustic and engineering expertise to model a fan with low noise. Axial fans with inadequate intake geometry, often suffer poor condition of the flow at the entrance, varying from velocity profiles spatially asymmetric to swirl floating with respect to time, this produces random forces acting on the blades. This produces broadband gust noise which in most cases triggers the tonal noise. The analysis of the axial flow fan will be conducted for the solution of the Navier-Stokes equations and models of turbulence in steady and transitory (RANS - URANS) 3-D, in order to find an efficient aerodynamic design, with low noise and suitable for industrial installation. Therefore, the process will require the use of computational optimization methods, aerodynamic design methodologies, and numerical methods as CFD- Computational Fluid Dynamics. The objective is the development of the methodology of the construction axial fan, provide of design the geometry of the blade, and evaluate aerodynamic performance

Keywords: Axial fan design, CFD, Preliminary Design, Optimization

Procedia PDF Downloads 354
75 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems

Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis

Abstract:

Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.

Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties

Procedia PDF Downloads 113
74 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 296
73 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method

Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng

Abstract:

Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.

Keywords: shot peen forming, process parameter, response surface model, numerical simulation

Procedia PDF Downloads 52
72 Increasing Efficiency, Performance and Safety of Aircraft during Takeoff and Landing by Interpreting Electromagnetism

Authors: Sambit Supriya Dash

Abstract:

Aerospace Industry has evolved over the last century and is growing by approaching towards, more fuel efficient, cheaper, simpler, convenient and safer ways of flight stages. In this paper, the accident records of aircrafts are studied and found about 71% of accidents caused on runways during Takeoff and Landing. By introducing the concept of interpreting electromagnetism, the cause of bounced touchdown and flare failure such as landing impact loads and instability could be eliminated. During Takeoff, the rate of fuel consumption is observed to be maximum. By applying concept of interpreting electromagnetism, a remarkable rate of fuel consumption is reduced, which can be used in case of emergency due to lack of fuel or in case of extended flight. A complete setup of the concept, its effects and characteristics are studied and provided with references of few popular aircrafts. By embedding series of strong and controlled electromagnets below the runway along and aside the centre line and fixed in the line of acting force through wing-fuselage aerodynamic centre. By the essence of its strength controllable nature, it can contribute to performance and fuel efficiency for aircraft. This ensures a perfect Takeoff with less fuel consumption followed by safe cruise stage, which in turn ensures a short and safe landing, eliminating the till known failures, due to bounced touchdowns and flare failure.

Keywords: efficiency, elctromagnetism, performance, reduced fuel consumption, safety

Procedia PDF Downloads 201
71 Revolution and Nationalism: The Grenada Revolution (1979-83) Contributed Significantly to the Development of a Grenada Nationalism

Authors: Oliver Benoit

Abstract:

On 13 March 1979, a left-wing political party formed in the 1970s overthrew Eric Gairy's government and established the People's Revolutionary Government which governed Grenada from (1979-1983). On the morning of 13 March 1979, the People's Revolutionary Government leader, Maurice Bishop, appealed to the people of Grenada to assist the forces of the revolution in consolidating its newly acquired political power. A cross-section of the Grenadian population responded positively to Maurice Bishop's appeal. Within the four and a half years of the revolution, noticeable social, political, and economic changes affected all areas of social life before internal divisions caused the revolution's collapse. Forty-two years following the revolution's collapse, intellectuals and commentators continue to argue about the impact of the Grenada Revolution on societal and national development. However, the revolution's impact on the spread of nationalism in Grenada is yet to be analyzed. Nationalism, as a modern phenomenon, has impacted many societies since its emergence in England in the seventeenth century, and Grenada is no exception. The paper argues that the Grenada Revolution was motivated by nationalist sentiments and the revolution itself fostered the development of nationalism in Grenada. The argument relies on 40 interviews; people who currently reside in Grenada (2020) and live in Grenada during the revolution as young adults and adults (ages 15 and beyond) and have memories of their experiences of the revolution. The sample of 40 respondence represents about 20,000 people in Grenada who are within the study population between 55 and 75 years today (2020).

Keywords: grenada, motivation, nationalism, revolution

Procedia PDF Downloads 132
70 Rare Earth Elements and Radioactivity of Granitoid Rocks at Abu Marw Area, South Eastern Desert, Egypt

Authors: Adel H.El-Afandy, Abd Alrahman Embaby, Mona A. El Harairey

Abstract:

Abu Marw area is located in the southeastern part of the Eastern Desert, about 150km south east of Aswan. Abu Marw area is mainly covered by late Proterozoic igneous and metamorphic rocks. These basement rocks are nonconformably overlain by late Cretaceous Nubian sandstones in the western and northern parts of the areas. Abu Marw granitoid batholiths comprises a co-magmatic calc alkaline I type peraluminous suite of rocks ranging in composition from tonalite, granodiorite, monzogranite, syenogranite to alkali feldspar granite. The studied tonalite and granodiorite samples have ΣREE lower than the average REE values (250ppm) of granitic rocks, while the monzogranite, syenogranite and alkali feldspar granite samples have ΣREE above the average REE values of granitic rocks. Chondrite-normalized REE patterns of the considered granites display a gull-wing shape, characterized by large to moderately fractionated patterns and high LREE relative to the MREE and HREE contents. Furthermore, the studied rocks have a steadily decreasing Eu/Eu* values from the tonalite to the alkali feldspar granite with simultaneous increase in the ΣREE contents. The average U contents in different granitic rocks.

Keywords: granite, rare earth element, radioactivity, Abu Marw, south eastern desert

Procedia PDF Downloads 400
69 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel

Procedia PDF Downloads 109
68 Ecological Effect on Aphid Population in Safflower Crop

Authors: Jan M. Mari

Abstract:

Safflower is a renowned drought tolerant oil seed crop. Previously its flowers were used for cooking and herbal medicines in China and it was cultivated by small growers for his personal needs of oil. A field study was conducted at experimental field, faculty of crop protection, Sindh Agricultural University Tandojam, during winter, 2012-13, to observe ecological effect on aphid population in safflower crop. Aphid population gradually increased with the growth of safflower. It developed with maximum aphid per leaf on 3rd week of February and it decreased in March as crop matured. A non-significant interaction was found with temperature of aphid, zigzag and hoverfly, respectively and a highly significant interaction with temperature was found with 7-spotted, lacewing, 9-spotted, and Brumus, respectively. The data revealed the overall mean population of zigzag was highest, followed by 9-spotted, 7-spotted, lace wing, hover fly and Brumus, respectively. In initial time the predator and prey ratio indicated that there was not a big difference between predator and prey ratio. After January 1st, the population of aphid increased suddenly until 18th February and it established a significant difference between predator prey ratios. After that aphid population started decreasing and it affected ratio between pest and predators. It is concluded that biotic factors, 7-spotted, zigzag, 9-spotted Brumus and lacewing exhibited a strong and positive correlation with aphid population. It is suggested that aphid pest should be monitored regularly and before reaching economic threshold level augmentation of natural enemies may be managed.

Keywords: aphid, ecology, population, safflower

Procedia PDF Downloads 236
67 Studies on Performance of an Airfoil and Its Simulation

Authors: Rajendra Roul

Abstract:

The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.

Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer

Procedia PDF Downloads 379
66 Evaluation of Transfusion-Related Acute Lung Injury

Authors: Hossein Barri Ghazani

Abstract:

Transfusion-related acute lung injury is the main reason of transfusion-related death, and it’s assigned to white blood cell reactive antibodies present in the blood product (anti-HLA class I and class II or anti granulocyte antibodies). TRALI may occur in the COVID-19 patients who are treated by convalescent plasma. The rate of TRALI’s reactions is the same in both males and females and can happen in all age groups. TRALI’s occurrence is higher for people who receive plasma from female donors because the parous female donors have multiple HLA antibodies in their plasma. Patients with chronic liver disease have an augmented risk of transfusion-related acute lung injuries from plasma containing blood products like FFP and PRP. The condition of TRALI suddenly starts with a non‐cardiogenic pulmonary Edema, often accompanied by marked systemic hypovolemic and hypotension. The conditions occur during or within a few hours of transfusion. Chest X-ray shows a nodular penetration or bats’ wing pattern of Edema which can be seen in acute respiratory distress syndrome as well. TRALI can occur with any type of blood products and can occur with as little as one unit. The blood donor center should be informed of the suspected TRALI reactions when the symptoms of TRALI are observed. After a review of the clinical data, the donors must be screened for granulocyte and HLA antibodies. The diagnosis and management of TRALI is not simple and is best done with a professional team and a specialty skilled nurse experienced with the upkeep of these patients.

Keywords: TRALI, transfusion-related death, anti-granulocyte antibodies, anti-HLA antibodies, COVID-19

Procedia PDF Downloads 136
65 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications

Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin

Abstract:

This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.

Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack

Procedia PDF Downloads 53
64 Effect of Genotype and Sex on Morphometric Traits of Turkey

Authors: I. O. Dudusola, I. Ogunjimi

Abstract:

This study was carried out to determine the effect of sex and genotype on morphometric traits of turkey (Meleagris gallopavo) in a turkey population. Linear body measurements were taken on 150 turkeys. 70 exotic turkeys which include both males (20) and Females (50) and 80 locally adapted turkeys which include males (30) and females (50). The study was conducted at the Turkey Unit of the Teaching and Research Farm, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. The linear body measurements taken and recorded were the beak length, head length, neck length, body length, keel length, wingspan, wing length, drumstick, Shank length, toe length, tail length and body girth all taken in centimetres (cm). The recorded variables were analyzed with SAS (2008). Duncan multiple range test was used to detect differences among means. Variation was noted between male and female turkeys in favour of the male turkeys as an expression of sexual dimorphism for all studied traits. The male is found to be significantly higher (p <0.05) than the females for all the morphometric traits measured both for the local and exotic type. The exotic type is found to be significantly higher (p <0.05) than the local type for all the morphometric traits measured. The interaction is higher significantly (p <0.05) in the exotic genotype and in the male sex in relation with the morphometric trait especially in the beak length, neck length, body length, keel length, drumstick, shank length and the toe length.

Keywords: exotic type, linear measurement, local type, morphometric traits, Meleagris gallopavo

Procedia PDF Downloads 292
63 Effects of Probiotics on Specific Immunity in Broiler Chicken in Syria

Authors: Moussa Majed, Omar Yaser

Abstract:

The main objective of this experiment was to study the impact of Probiotic compound on the specific immunity as the case study of infectious bursal disease. Total of 8000 one-day old Ross 108 broiler were randomly divided into two experimental groups; control group (4500 birds) and experimental group (3500 birds). Birds in two groups were reared under similar environmental conditions. Birds in control group received basal diets without probiotic whereas the birds in experimental one were fed basal diets supplemented with a commercial probiotic mixture) probiotic lacting k, which contains bacteria cells beyond to lactobacillus, Streptococcus and bifidobacterium genus that are isolated from gut microflora in healthy chickens(. The commercial probiotic were used according to the manufacturer instruction. 400 blood samples for each group were collected from wing vein every 5-7 days as interval period till 42 days old. Indirect Enzyme-Linked Immunosorbent Assay (ELISA) test was performed to detect the level of infectious bursal disease virus (IBDV) antibodies. The results clearly showed that the mean of immune titers was significantly (p= 0.03) higher in trail group than control one. The coefficient of variance percentages were 55% and 39% for control and trial groups respectively, this illustrates that homogeneity of immunity titers in the trail group was much better comparing with control group. The values of geometric means of titers in the control group and trial group were reported 3820 and 8133, respectively. The crude mortality rate in the experimental group was two times lower comparing with control group (14% and 28% respectively, p = 0.005

Keywords: probiotic, broiler chicken, infectious bursal disease, immunity, ELISA test

Procedia PDF Downloads 37
62 I Look Powerful So You Will Yield to Me: The Effects of Embodied Power and the Perception of Power on Conflict Management

Authors: Fai-Ho E. Choi, Wing-Tung Au

Abstract:

This study investigated the effects of embodiment on conflict management. As shown in the research literature, the physiological (i.e. bodily postures) can affect the emotional and cognitive proceedings of human beings, but little has been shown on whether such effects would have ramifications in decision-making related to other individuals. In this study, conflict is defined as when two parties have seemingly incompatible goals, and the two have to deal with each other in order to maximize one’s own gain. In a matched-gender experiment, university undergraduate students were randomly assigned to either the high power condition or the low power condition, with participants in each condition instructed to perform a fix set of bodily postures that would either embody them with a high sense of power or a low sense of power. One high-power participant would pair up with a low-power participant to engage in an integrative bargaining task and a dictator game. Participants also filled out a pre-trial questionnaire and a post-trial questionnaire measuring general sense of power, self-esteem and self-efficacy. Personality was controlled for. Results are expected to support our hypotheses that people who are embodied with power will be more unyielding in a conflict management situation, and that people who are dealing with another person embodied with power will be more yielding in a conflict management situation. As conflicts arise frequently both within and between organizations, a better understanding of how human beings function in conflicts is important. This study should provide evidence that bodily postures can influence the perceived sense of power of the parties involved and hence influence the conflict outcomes. Future research needs to be conducted to investigate further how people perceive themselves and how they perceive their opponents in conflicts, such that we can come up with a behavioral theory of conflict management.

Keywords: conflict management, embodiment, negotiation, perception

Procedia PDF Downloads 415
61 Study of Efficiency of Flying Animal Using Computational Simulation

Authors: Ratih Julistina, M. Agoes Moelyadi

Abstract:

Innovation in aviation technology evolved rapidly by time to time for acquiring the most favorable value of utilization and is usually denoted by efficiency parameter. Nature always become part of inspiration, and for this sector, many researchers focused on studying the behavior of flying animal to comprehend the fundamental, one of them is birds. Experimental testing has already conducted by several researches to seek and calculate the efficiency by putting the object in wind tunnel. Hence, computational simulation is needed to conform the result and give more visualization which is based on Reynold Averaged Navier-Stokes equation solution for unsteady case in time-dependent viscous flow. By creating model from simplification of the real bird as a rigid body, those are Hawk which has low aspect ratio and Swift with high aspect ratio, subsequently generating the multi grid structured mesh to capture and calculate the aerodynamic behavior and characteristics. Mimicking the motion of downstroke and upstroke of bird flight which produced both lift and thrust, the sinusoidal function is used. Simulation is carried out for varied of flapping frequencies within upper and lower range of actual each bird’s frequency which are 1 Hz, 2.87 Hz, 5 Hz for Hawk and 5 Hz, 8.9 Hz, 13 Hz for Swift to investigate the dependency of frequency effecting the efficiency of aerodynamic characteristics production. Also, by comparing the result in different condition flights with the morphology of each bird. Simulation has shown that higher flapping frequency is used then greater aerodynamic coefficient is obtained, on other hand, efficiency on thrust production is not the same. The result is analyzed from velocity and pressure contours, mesh movement as to see the behavior.

Keywords: characteristics of aerodynamic, efficiency, flapping frequency, flapping wing, unsteady simulation

Procedia PDF Downloads 214
60 A Systematic Review for the Association between Active Smoking and Latent Tuberculosis Infection

Authors: Pui Hong Chung, Wing Chi Ho, Jun Li, Cyrus Leung, Ek Yeoh

Abstract:

Background: Cigarette smoking is associated with poor tuberculosis (TB) outcomes in terms of progression of active TB, relapse of TB and TB-related mortality, but the association with latent tuberculosis infection (LTBI) is unclear. The systematic review conducted aimed at studying the association between active smoking and LTBI, and likelihood of dose-response relationship. Methods: Two independent reviewers searched three electronic databases comprising PudMed, Medline by EBSCOHOST, ExcerptaMedica Database (EMBASE), from inception up to 31st Dec 2015 for studies reporting data on current smoking and the LTBI with tuberculin skin test (TST) or interferon-γ release assays (IGRAs) results, comparing the odds ratios (ORs) of outcome measure of TST or IGRAs among current smokers with 95% confidence intervals (CI). Results: Seven studies were identified, including six cross-sectional studies and one longitudinal cohort study. The outcome measures from three studies were in TST, three studies in IGRAs and one for both tests. For TST, OR ranging from 1.39 to 3.40 (95% CI) with all studies shown positive association between cigarette smoking and LTBI. For IGRAs, OR ranging from 0.47 to 1.89 (95% CI) with one study shown the negative association that might be related to impaired interferon-gamma production in immunosuppressive persons. One identified study demonstrated positive dose-response relationship in TST result. Conclusions: Cigarette smoking is likely to be a risk factor of LTBI. There is the important implication for TB and tobacco control program to halt TB by empowering public health policy. Further study is also needed to provide more evidence of the dose-response model/relationship.

Keywords: latent tuberculosis infection, systematic review, active smoking, model

Procedia PDF Downloads 225
59 Linearization of Y-Force Equation of Rigid Body Equation of Motion and Behavior of Fighter Aircraft under Imbalance Weight on Wings during Combat

Authors: Jawad Zakir, Syed Irtiza Ali Shah, Rana Shaharyar, Sidra Mahmood

Abstract:

Y-force equation comprises aerodynamic forces, drag and side force with side slip angle β and weight component along with the coupled roll (φ) and pitch angles (θ). This research deals with the linearization of Y-force equation using Small Disturbance theory assuming equilibrium flight conditions for different state variables of aircraft. By using assumptions of Small Disturbance theory in non-linear Y-force equation, finally reached at linearized lateral rigid body equation of motion; which says that in linearized Y-force equation, the lateral acceleration is dependent on the other different aerodynamic and propulsive forces like vertical tail, change in roll rate (Δp) from equilibrium, change in yaw rate (Δr) from equilibrium, change in lateral velocity due to side force, drag and side force components due to side slip, and the lateral equation from coupled rotating frame to decoupled rotating frame. This paper describes implementation of this lateral linearized equation for aircraft control systems. Another significant parameter considered on which y-force equation depends is ‘c’ which shows that any change bought in the weight of aircrafts wing will cause Δφ and cause lateral force i.e. Y_c. This simplification also leads to lateral static and dynamic stability. The linearization of equations is required because much of mathematics control system design for aircraft is based on linear equations. This technique is simple and eases the linearization of the rigid body equations of motion without using any high-speed computers.

Keywords: Y-force linearization, small disturbance theory, side slip, aerodynamic force drag, lateral rigid body equation of motion

Procedia PDF Downloads 458