Search results for: Satoshi Tsuchiya
25 Effect of Institutional Structure on Project Managers Performance in Construction Projects: A Case Study in Nigeria
Authors: Ebuka Valentine Iroha, Tsunemi Watanabe, Satoshi Tsuchiya
Abstract:
Project management practices play an important role in construction project performance and are one of project managers' essential key performance indicators. Previous studies have explored the poor performance of the construction industry, with project delays and cost overruns identified to contribute largely to numerous abandoned projects. These challenges are attributed to insufficient project management practices and a lack of utilization of project managers. The actual causes of inadequate project management practices and underutilization of project managers have been rarely discussed. This study tends to bridge the gap by identifying and assessing the actual causes of insufficient project management practices and underutilization of project managers. This study differs from past studies investigating the causes of poor performance by using institutional analysis methods to identify and analyze the factors influencing project management practices and proper utilization of project managers. Based on a comprehensive literature review, this study identified some factors embedded in the construction industry that influence the institutional environment and weaken the laws and regulations. These factors were used as the basis for semi-structured interview questions to investigate their impacts on project management practices and project managers. The data collected were coded into a four-level framework for institutional analysis. This method was used to analyze the interrelationships between the identified embedded factors, institutional laws and regulations, and construction organizations to understand how these influences result in the underutilization of project managers. The study found that the underutilization of project managers consists of two subsystems, including underutilization and lowering commitment. The first subsystem, corruption, political influence, religious and tribal discrimination, and organizational culture, were found to affect the institutional structure. These embedded factors weaken the industry’s governance mechanism, forcing project managers to prioritize corrupt practices over project demands. The ineffectiveness of the existing laws and regulations worsens the situation, supporting unfair working conditions and contributing to the underperformance of project managers. This situation leads to the development of the second subsystem, which is characterized by a lack of opportunities for career development and minimal incentives within construction organizations. The findings provide significant potential for addressing systemic challenges in the construction industry, particularly the underutilization of project managers and enhancing organizational support measures to improve project management practices and mitigate the adverse effects of corruption.Keywords: construction industry, project management, poor performance, embedded factors, project managers underutilization
Procedia PDF Downloads 3624 Cell-Cell Interactions in Diseased Conditions Revealed by Three Dimensional and Intravital Two Photon Microscope: From Visualization to Quantification
Authors: Satoshi Nishimura
Abstract:
Although much information has been garnered from the genomes of humans and mice, it remains difficult to extend that information to explain physiological and pathological phenomena. This is because the processes underlying life are by nature stochastic and fluctuate with time. Thus, we developed novel "in vivo molecular imaging" method based on single and two-photon microscopy. We visualized and analyzed many life phenomena, including common adult diseases. We integrated the knowledge obtained, and established new models that will serve as the basis for new minimally invasive therapeutic approaches.Keywords: two photon microscope, intravital visualization, thrombus, artery
Procedia PDF Downloads 37323 Recurrence of Papillary Thyroid Cancer with an Interval of 40 Years. Report of an Autopsy Case
Authors: Satoshi Furukawa, Satomu Morita, Katsuji Nishi, Masahito Hitosugi
Abstract:
A 75-year-old woman took thyroidectomy forty years previously. Enlarged masses were seen at autopsy just above and below the left clavicle. We proved the diagnosis of papillary thyroid cancer (PTC) and lung metastasis by histological examinations. The prognosis of PTC is excellent; the 10-year survival rate ranges between 85 and 99%. Lung metastases may be found in 10% of the patients with PTC. We report an unusual case of recurrence of PTC with metastasis to the lung.Keywords: papillary thyroid cancer, lung metastasis, autopsy, histopathological findings
Procedia PDF Downloads 34022 Free to Select vTuber Avatar eLearning Video for University Ray Tracing Course
Authors: Rex Hsieh, Kosei Yamamura, Satoshi Cho, Hisashi Sato
Abstract:
This project took place in the fall semester of 2019 from September 2019 to February 2020. It improves upon the design of a previous vTuber based eLearning video system by correcting criticisms from students and enhancing the positive aspects of the previous system. The transformed audio which has proven to be ineffective in previous experiments was not used in this experiment. The result is videos featuring 3 avatars covering different Ray Tracing subject matters being released weekly. Students are free to pick which videos they want to watch and can also re-watch any videos they want. The students' subjective impressions of each video is recorded and analysed to help further improve the system.Keywords: vTuber, eLearning, Ray Tracing, Avatar
Procedia PDF Downloads 18821 Utility Analysis of API Economy Based on Multi-Sided Platform Markets Model
Authors: Mami Sugiura, Shinichi Arakawa, Masayuki Murata, Satoshi Imai, Toru Katagiri, Motoyoshi Sekiya
Abstract:
API (Application Programming Interface) economy, where many participants join/interact and form the economy, is expected to increase collaboration between information services through API, and thereby, it is expected to increase market value from the service collaborations. In this paper, we introduce API evaluators, which are the activator of API economy by reviewing and/or evaluating APIs, and develop a multi-sided API economy model that formulates interactions among platform provider, API developers, consumers, and API evaluators. By obtaining the equilibrium that maximizes utility of all participants, the impact of API evaluators on the utility of participants in the API economy is revealed. Numerical results show that, with the existence of API evaluators, the number of developers and consumers increase by 1.5% and the utility of platformer increases by 2.3%. We also discuss the strategies of platform provider to maximize its utility under the existence of API evaluators.Keywords: API economy, multi-sided markets, API evaluator, platform, platform provider
Procedia PDF Downloads 18620 Difference in the Expression of CIRBP, RBM3 and HSP70 in the Myocardium and Cerebellum after Death by Hypothermi a and Carbon Monoxide Poisoning
Authors: Satoshi Furukawa, Satomu Morita, Lisa Wingenfeld, Katsuji Nishi, Masahito Hitosugi
Abstract:
We studied the expression of hypoxia-related antigens (e.g., cold-inducible antigens and apoptotic antigens) in the myocardium and the cerebellumthat were obtained from individuals after death by carbon monoxide or hypothermia. The immunohistochemistry results revealed that expression of cold-inducible RNA binding protein (CIRBP) and RNA-binding protein 3 (RBM3) may be associated with hpyothermic and the hypoxic conditions. The expression of CIRBP and RBM3 in the myocardium was different from their expression in the cerebellum, especially in the Purkinje cells. The results indicate that agonal duration influences antigen expression. In the hypothermic condition, the myocardium uses more ATP since the force of the excitation-contraction coupling of the myocardium increases by more than 400% when the experimental temperature is reduced from 35°C to 25°C. The results obtained in this study indicate that physicians should pay attention to the myocardium when cooling the patient’s body to protect the brain.Keywords: carbon monoxide death, cerebellum, CIRBP, hypothermic death, myocardium, RBM3
Procedia PDF Downloads 36319 An Autopsy Case of Blunt Chest Trauma from a Traffic Accident Complicated by Chest Compression Due to Resuscitation Attempts
Authors: Satoshi Furukawa, Satomu Morita, Katsuji Nishi, Masahito Hitosugi
Abstract:
Coronary artery dissection leading to acute myocardial infarction after blunt chest trauma is extremely rare. A 67-year-old woman suffered blunt chest trauma following a traffic accident. The electrocardiogram revealed acute posterior ST-segment elevation and myocardial infarction and coronary angiography demonstrated acute right coronary artery dissection. Following the death of the victim an autopsy was performed after cardiopulmonary support had been carried out. In this case report, we describe the case of a woman with blunt chest trauma, who developed an acute myocardial infarction secondary to right coronary artery dissection. Although there was additional the blunt chest trauma due to chest compression, we confirmed the injury at autopsy and by histological findings.Keywords: blunt chest trauma, right coronary artery dissection, coronary angiography, autopsy, histological examination
Procedia PDF Downloads 63418 The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization
Authors: Tsung-Yen Tsai, Naveen Bunekar, Ming Hsuan Chang, Wen-Kuang Wang, Satoshi Onda
Abstract:
The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.Keywords: initiator, bulk polymerization, layered silicates, methyl methacrylate
Procedia PDF Downloads 29217 Instability of H2-O2-CO2 Premixed Flames on Flat Burner
Authors: Kaewpradap Amornrat, Endo Takahiro, Kadowaki Satoshi
Abstract:
The combustion of hydrogen-oxygen (H2-O2) mixtures was investigated to consider the reduction of carbon dioxide (CO2) and nitrogen oxide (NOx) as the greenhouse emission. Normally, the flame speed of combustion H2-O2 mixtures are very fast thus it is necessary to control the limit of mixtures with CO2 addition as H2-O2-CO2 combustion. The limit of hydrogen was set and replaced by CO2 with O2:CO2 ratio as 1:3.76, 1:4 and 1:5 for this study. In this study, the combustion of H2-O2 -CO2 on flat burner at equivalence ratio =0.5 was investigated for 10, 15 and 20 L/min of flow rate mixtures. When the ratio of CO2 increases, the power spectral density is lower, the size of attractor and cellular flame become larger because the decrease of hydrogen replaced by CO2 affects the diffusive-thermal instability. Moreover, the flow rate mixtures increases, the power spectral density increases, the size of reconstructed attractor and cell size become smaller due to decreasing of instability. The results show that the variation of CO2 and mixture flow rate affects the instability of cellular premixed flames on flat burner.Keywords: instability, H2-O2-CO2 combustion, flat burner, diffusive-thermal instability
Procedia PDF Downloads 36116 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service
Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura
Abstract:
Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.Keywords: consensus building, value co-creation, higher education, learning service
Procedia PDF Downloads 30215 Autopsy-Based Study of Abdominal Traffic Trauma Death after Emergency Room Arrival
Authors: Satoshi Furukawa, Satomu Morita, Katsuji Nishi, Masahito Hitosugi
Abstract:
We experience the autopsy cases that the deceased was alive in emergency room on arrival. Bleeding is the leading cause of preventable death after injury. This retrospective study aimed to characterize opportunities for performance improvement identified in patients who died from traffic trauma and were considered by the quality improvement of education system. The Japan Advanced Trauma Evaluation and Care (JATEC) education program was introduced in 2002. We focused the abdominal traffic trauma injury. An autopsy-based cross-sectional study conducted. A purposive sampling technique was applied to select the study sample of 41 post-mortems of road traffic accident between April 1999 and March 2014 subjected to medico-legal autopsy at the department of Forensic Medicine, Shiga University of Medical Science. 16 patients (39.0%) were abdominal trauma injury. The mean period of survival after meet with accident was 13.5 hours, compared abdominal trauma death was 27.4 hours longer. In road traffic accidents, the most injured abdominal organs were liver followed by mesentery. We thought delayed treatment was associated with immediate diagnostic imaging, and so expected to expand trauma management examination.Keywords: abdominal traffic trauma, preventable death, autopsy, emergency medicine
Procedia PDF Downloads 45314 The Social Conflicts and Evaluation of Times Square, Middletown Manhattan District in Development Since the Inceptive Point
Authors: Seung Oh, Satoshi Okada
Abstract:
This study is information-intensive research that provides insight from the factual history, social perception, and robust ideas derived from the social conflict in the most progressively thriving district in the world, Times Square. The case study provides the socio-environmental setup since the Inceptive Point of the development, the Great Depression, the history archives, and evaluation based on the master-level journals as standard. The Great Depression invited macro-sized changes, including financial systems, to raise fluidity by gutting off the debt limit by the gold value, organizing the labor, and social problems in the major cities. The locality of Times Square was implemented by the socio-political changes, overturning ownerships of properties, including theaters, delocalizing tourism, and re-entering the labors with organizations through infrastructure projects and civil activities for minorities and preservations amid the progressive developments over time. Naturally, chasing the media for factual research before and after Inceptive Points. Times Square is understood not just the ‘tower with subway’ progression but also social conflicts raised for adjustment for civil rights, preservations, and progression to deliver the environmental background to trigger the 42nd Street Development (42DP) in the 1990s.Keywords: development, district, progressive, preservation, social conflict, value chasing
Procedia PDF Downloads 7213 Differentiation of Drug Stereoisomers by Their Stereostructure-Selective Membrane Interactions as One of Pharmacological Mechanisms
Authors: Maki Mizogami, Hironori Tsuchiya, Yoshiroh Hayabuchi, Kenji Shigemi
Abstract:
Since drugs exhibit significant structure-dependent differences in activity and toxicity, their differentiation based on the mechanism of action should have implications for comparative drug efficacy and safety. We aimed to differentiate drug stereoisomers by their stereostructure-selective membrane interactions underlying pharmacological and toxicological effects. Biomimetic lipid bilayer membranes were prepared with phospholipids and sterols (either cholesterol or epicholesterol) to mimic the lipid compositions of neuronal and cardiomyocyte membranes and to provide these membranes with the chirality. The membrane preparations were treated with different classes of stereoisomers at clinically- and pharmacologically-relevant concentrations (25-200 μM), followed by measuring fluorescence polarization to determine the membrane interactivity of drugs to change the physicochemical property of membranes. All the tested drugs acted on lipid bilayers to increase or decrease the membrane fluidity. Drug stereoisomers could not be differentiated when interacting with the membranes consisting of phospholipids alone. However, they stereostructure-selectively interacted with neuro-mimetic and cardio-mimetic membranes containing 40 mol% cholesterol ((3β)-cholest-5-en-3-ol) to show the relative potencies being local anesthetic R(+)-bupivacaine > rac-bupivacaine > S(‒)-bupivacaine, α2-adrenergic agonistic D-medetomidine > rac-medetomidine > L-medetomidine, β-adrenergic antagonistic R(+)-propranolol > rac-propranolol > S(–)-propranolol, NMDA receptor antagonistic S(+)-ketamine > rac-ketamine, analgesic monoterpenoid (+)-menthol > (‒)-menthol, non-steroidal anti-inflammatory S(+)-ibuprofen > rac-ibuprofen > R(‒)-ibuprofen, and bioactive flavonoid (+)-epicatechin > (‒)-epicatechin. All of the order of membrane interactivity were correlated to those of beneficial and adverse effects of the tested stereoisomers. In contrast, the membranes prepared with epicholesterol ((3α)-chotest-5-en-3-ol), an epimeric form of cholesterol, reversed the rank order of membrane interactivity to be S(‒)-enantiomeric > racemic > R(+)-enantiomeric bupivacaine, L-enantiomeric > racemic > D-enantiomeric medetomidine, S(–)-enantiomeric > racemic > R(+)-enantiomeric propranolol, racemic > S(+)-enantiomeric ketamine, (‒)-enantiomeric > (+)-enantiomeric menthol, R(‒)-enantiomeric > racemic > S(+)-enantiomeric ibuprofen, and (‒)-enantiomeric > (+)-enantiomeric epicatechin. The opposite configuration allows drug molecules to interact with chiral sterol membranes enantiomer-selectively. From the comparative results, it is speculated that a 3β-hydroxyl group in cholesterol is responsible for the enantioselective interactions of drugs. In conclusion, the differentiation of drug stereoisomers by their stereostructure-selective membrane interactions would be useful for designing and predicting drugs with higher activity and/or lower toxicity.Keywords: chiral membrane, differentiation, drug stereoisomer, enantioselective membrane interaction
Procedia PDF Downloads 22312 Developing Value Chain of Synthetic Methane for Net-zero Carbon City Gas Supply in Japan
Authors: Ryota Kuzuki, Mitsuhiro Kohara, Noboru Kizuki, Satoshi Yoshida, Hidetaka Hirai, Yuta Nezasa
Abstract:
About fifty years have passed since Japan's gas supply industry became the first in the world to switch from coal and oil to LNG as a city gas feedstock. Since the Japanese government target of net-zero carbon emission in 2050 was announced in October 2020, it has now entered a new era of challenges to commit to the requirement for decarbonization. This paper describes the situation that synthetic methane, produced from renewable energy-derived hydrogen and recycled carbon, is a promising national policy of transition toward net-zero society. In November 2020, the Japan Gas Association announced the 'Carbon Neutral Challenge 2050' as a vision to contribute to the decarbonization of society by converting the city gas supply to carbon neutral. The key technologies is methanation. This paper shows that methanation is a realistic solution to contribute to the decarbonization of the whole country at a lower social cost, utilizing the supply chain that already exists, from LNG plants to burner chips. The challenges during the transition period (2030-2050), as CO2 captured from exhaust of thermal power plants and industrial factories are expected to be used, it is proposed that a system of guarantee of origin (GO) for H2 and CO2 should be established and harmonize international rules for calculating and allocating greenhouse gas emissions in the supply chain, a platform is also needed to manage tracking information on certified environmental values.Keywords: synthetic methane, recycled carbon fuels, methanation, transition period, environmental value transfer platform
Procedia PDF Downloads 10811 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot
Procedia PDF Downloads 17210 Effect of Retention Time on Kitchen Wastewater Treatment Using Mixed Algal-Bacterial Consortia
Authors: Keerthi Katam, Abhinav B. Tirunaghari, Vinod Vadithya, Toshiyuki Shimizu, Satoshi Soda, Debraj Bhattacharyya
Abstract:
Researchers worldwide are increasingly focusing on the removal of carbon and nutrient from wastewater using algal-bacterial hybrid systems. Algae produce oxygen during photosynthesis, which is taken up by heterotrophic bacteria for mineralizing organic carbon to carbon dioxide. This phenomenon reduces the net mechanical aeration requirement of aerobic biological wastewater treatment processes. Consequently, the treatment cost is also reduced. Microalgae also participate in the treatment process by taking up nutrient (N, P) from wastewater. Algal biomass, if harvested, can generate value-added by-products. The aim of the present study was to compare the performance of two systems - System A (mixed microalgae and bacteria) and System B (diatoms and bacteria) in treating kitchen wastewater (KWW). The test reactors were operated at five different solid retention times (SRTs) -2, 4, 6, 8, and 10-days in draw-and-fill mode. The KWW was collected daily from the dining hall-kitchen area of the Indian Institute of Technology Hyderabad. The influent and effluent samples were analyzed for total organic carbon (TOC), total nitrogen (TN) using TOC-L analyzer. A colorimetric method was used to analyze anionic surfactant. Phosphorus (P) and chlorophyll were measured by following standard methods. The TOC, TN, and P of KWW were in the range of 113.5 to 740 mg/L, 2 to 22.8 mg/L, and 1 to 4.5 mg/L, respectively. Both the systems gave similar results with 85% of TOC removal and 60% of TN removal at 10-d SRT. However, the anionic surfactant removal in System A was 99% and 60% in System B. The chlorophyll concentration increased with an increase in SRT in both the systems. At 2-d SRT, no chlorophyll was observed in System B, whereas 0.5 mg/L was observed in System A. At 10-d SRT, the chlorophyll concentration in System A was 7.5 mg/L, whereas it was 4.5 mg/L in System B. Although both the systems showed similar performance in treatment, the increase in chlorophyll concentration suggests that System A demonstrated a better algal-bacterial symbiotic relationship in treating KWW than System B.Keywords: diatoms, microalgae, retention time, wastewater treatment
Procedia PDF Downloads 1299 Calpoly Autonomous Transportation Experience: Software for Driverless Vehicle Operating on Campus
Authors: F. Tang, S. Boskovich, A. Raheja, Z. Aliyazicioglu, S. Bhandari, N. Tsuchiya
Abstract:
Calpoly Autonomous Transportation Experience (CATE) is a driverless vehicle that we are developing to provide safe, accessible, and efficient transportation of passengers throughout the Cal Poly Pomona campus for events such as orientation tours. Unlike the other self-driving vehicles that are usually developed to operate with other vehicles and reside only on the road networks, CATE will operate exclusively on walk-paths of the campus (potentially narrow passages) with pedestrians traveling from multiple locations. Safety becomes paramount as CATE operates within the same environment as pedestrians. As driverless vehicles assume greater roles in today’s transportation, this project will contribute to autonomous driving with pedestrian traffic in a highly dynamic environment. The CATE project requires significant interdisciplinary work. Researchers from mechanical engineering, electrical engineering and computer science are working together to attack the problem from different perspectives (hardware, software and system). In this abstract, we describe the software aspects of the project, with a focus on the requirements and the major components. CATE shall provide a GUI interface for the average user to interact with the car and access its available functionalities, such as selecting a destination from any origin on campus. We have developed an interface that provides an aerial view of the campus map, the current car location, routes, and the goal location. Users can interact with CATE through audio or manual inputs. CATE shall plan routes from the origin to the selected destination for the vehicle to travel. We will use an existing aerial map for the campus and convert it to a spatial graph configuration where the vertices represent the landmarks and edges represent paths that the car should follow with some designated behaviors (such as stay on the right side of the lane or follow an edge). Graph search algorithms such as A* will be implemented as the default path planning algorithm. D* Lite will be explored to efficiently recompute the path when there are any changes to the map. CATE shall avoid any static obstacles and walking pedestrians within some safe distance. Unlike traveling along traditional roadways, CATE’s route directly coexists with pedestrians. To ensure the safety of the pedestrians, we will use sensor fusion techniques that combine data from both lidar and stereo vision for obstacle avoidance while also allowing CATE to operate along its intended route. We will also build prediction models for pedestrian traffic patterns. CATE shall improve its location and work under a GPS-denied situation. CATE relies on its GPS to give its current location, which has a precision of a few meters. We have implemented an Unscented Kalman Filter (UKF) that allows the fusion of data from multiple sensors (such as GPS, IMU, odometry) in order to increase the confidence of localization. We also noticed that GPS signals can easily get degraded or blocked on campus due to high-rise buildings or trees. UKF can also help here to generate a better state estimate. In summary, CATE will provide on-campus transportation experience that coexists with dynamic pedestrian traffic. In future work, we will extend it to multi-vehicle scenarios.Keywords: driverless vehicle, path planning, sensor fusion, state estimate
Procedia PDF Downloads 1448 The Revival of Asakusa Entertainment Streets and Social Conflicts Since Its Inceptive Point, the Post-war Time
Authors: Seung Oh, Satoshi Okada
Abstract:
Today, religious organizations that have long existed alongside local people are being challenged by social changes in the districts they control. The influence of religious organizations is declining everywhere as locals seeking diversity and economic benefits become more interested in developing projects that attract investors and increase market value instead of opting for conservation. Religions whose moral and philosophical stance rejects materialism have a limited capacity to act as agents of local development in modern society. However, in Tokyo, the city’s oldest temple, Senso-Ji played a vital role in the local development of Asakusa, as an entertainment district while nevertheless retaining the area’s traditional character, despite almost complete destruction caused by the Tokyo air raids. The temple played a vigorous role as a mediator between the community and the Tokyo Metropolitan Government as a spokesman for common interests. This research, therefore, examines the social conflicts that Senso-Ji has confronted with regard to the pressures of development of Asakusa on the one hand, and the legitimacy of perpetuating its traditional religious and cultural role in local society on the other. First, this article examines Senso-Ji’s place in society based on its location in the history of Japanese Buddhism, which existed to offer spiritual and practical help to the ordinary people, and to investigate its social legitimacy as a local stakeholder and historical institution. Second, this paper considers the impact of the social changes that Asakusa had undergone during the Meiji and Taisho eras, by examining the social conflicts and changes in the Asakusa entertainment district, taking the Tokyo Air Raids as the Inceptive Point (IP). Third, it reconsiders how Senso-Ji responded to today’s growth-oriented local developments, as proposed by Tokyo’s Metropolitan planning authorities along lines commonly seen in all cities. Studying the role of Senso-Ji in the development of Asakusa can serve as a case study to justify the involvement of religious institutions in local issues and as a useful and practical example of progressive development which nevertheless permitted conservation of traditional features, as a result of pressure from social groups in a way that may be useful for other places facing similar problems.Keywords: Architecture, Urban Design, Urban Planning, Preservation, Conservation, Social Science
Procedia PDF Downloads 237 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing
Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima
Abstract:
Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.Keywords: reverse osmosis, washing condition optimization, hypochlorous acid, biofouling control
Procedia PDF Downloads 3516 Controlling Shape and Position of Silicon Micro-nanorolls Fabricated using Fine Bubbles during Anodization
Authors: Yodai Ashikubo, Toshiaki Suzuki, Satoshi Kouya, Mitsuya Motohashi
Abstract:
Functional microstructures such as wires, fins, needles, and rolls are currently being applied to variety of high-performance devices. Under these conditions, a roll structure (silicon micro-nanoroll) was formed on the surface of the silicon substrate via fine bubbles during anodization using an extremely diluted hydrofluoric acid (HF + H₂O). The as-formed roll had a microscale length and width of approximately 1 µm. The number of rolls was 3-10 times and the thickness of the film forming the rolls was about 10 nm. Thus, it is promising for applications as a distinct device material. These rolls functioned as capsules and/or pipelines. To date, number of rolls and roll length have been controlled by anodization conditions. In general, controlling the position and roll winding state is required for device applications. However, it has not been discussed. Grooves formed on silicon surface before anodization might be useful control the bubbles. In this study, we investigated the effect of the grooves on the position and shape of the roll. The surfaces of the silicon wafers were anodized. The starting material was p-type (100) single-crystalline silicon wafers. The resistivity of the wafer is 5-20 ∙ cm. Grooves were formed on the surface of the substrate before anodization using sandpaper and diamond pen. The average width and depth of the grooves were approximately 1 µm and 0.1 µm, respectively. The HF concentration {HF/ (HF + C₂H5OH + H₂O)} was 0.001 % by volume. The C2H5OH concentration {C₂H5OH/ (HF + C₂H5OH + H₂O)} was 70 %. A vertical single-tank cell and Pt cathode were used for anodization. The silicon roll was observed by field-emission scanning electron microscopy (FE-SEM; JSM-7100, JEOL). The atomic bonding state of the rolls was evaluated using X-ray photoelectron spectroscopy (XPS; ESCA-3400, Shimadzu). For straight groove, the rolls were formed along the groove. This indicates that the orientation of the rolls can be controlled by the grooves. For lattice-like groove, the rolls formed inside the lattice and along the long sides. In other words, the aspect ratio of the lattice is very important for the roll formation. In addition, many rolls were formed and winding states were not uniform when the lattice size is too large. On the other hand, no rolls were formed for small lattice. These results indicate that there is the optimal size of lattice for roll formation. In the future, we are planning on formation of rolls using groove formed by lithography technique instead of sandpaper and the pen. Furthermore, the rolls included nanoparticles will be formed for nanodevices.Keywords: silicon roll, anodization, fine bubble, microstructure
Procedia PDF Downloads 185 Challenges for Competency-Based Learning Design in Primary School Mathematics in Mozambique
Authors: Satoshi Kusaka
Abstract:
The term ‘competency’ is attracting considerable scholarly attention worldwide with the advance of globalization in the 21st century and with the arrival of a knowledge-based society. In the current world environment, familiarity with varied disciplines is regarded to be vital for personal success. The idea of a competency-based educational system was mooted by the ‘Definition and Selection of Competencies (DeSeCo)’ project that was conducted by the Organization for Economic Cooperation and Development (OECD). Further, attention to this topic is not limited to developed countries; it can also be observed in developing countries. For instance, the importance of a competency-based curriculum was mentioned in the ‘2013 Harmonized Curriculum Framework for the East African Community’, which recommends key competencies that should be developed in primary schools. The introduction of such curricula and the reviews of programs are actively being executed, primarily in the East African Community but also in neighboring nations. Taking Mozambique as a case in point, the present paper examines the conception of ‘competency’ as a target of frontline education in developing countries. It also aims to discover the manner in which the syllabus, textbooks and lessons, among other things, in primary-level math education are developed and to determine the challenges faced in the process. This study employs the perspective of competency-based education design to analyze how the term ‘competency’ is defined in the primary-level math syllabus, how it is reflected in the textbooks, and how the lessons are actually developed. ‘Practical competency’ is mentioned in the syllabus, and the description of the term lays emphasis on learners' ability to interactively apply socio-cultural and technical tools, which is one of the key competencies that are advocated in OECD's ‘Definition and Selection of Competencies’ project. However, most of the content of the textbooks pertains to ‘basic academic ability’, and in actual classroom practice, teachers often impart lessons straight from the textbooks. It is clear that the aptitude of teachers and their classroom routines are greatly dependent on the cultivation of their own ‘practical competency’ as it is defined in the syllabus. In other words, there is great divergence between the ‘syllabus’, which is the intended curriculum, and the content of the ‘textbooks’. In fact, the material in the textbooks should serve as the bridge between the syllabus, which forms the guideline, and the lessons, which represent the ‘implemented curriculum’. Moreover, the results obtained from this investigation reveal that the problem can only be resolved through the cultivation of ‘practical competency’ in teachers, which is currently not sufficient.Keywords: competency, curriculum, mathematics education, Mozambique
Procedia PDF Downloads 1944 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups
Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto
Abstract:
The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group
Procedia PDF Downloads 3783 An Empirical Analysis of Farmers Field Schools and Effect on Tomato Productivity in District Malakand Khyber Pakhtunkhwa-Pakistan
Authors: Mahmood Iqbal, Khalid Nawab, Tachibana Satoshi
Abstract:
Farmer Field School (FFS) is constantly aims to assist farmers to determine and learn about field ecology and integrated crop management. The study was conducted to examine the change in productivity of tomato crop in the study area; to determine increase in per acre yield of the crop, and find out reduction in per acre input cost. A study of tomato crop was conducted in ten villages namely Jabban, Bijligar Colony, Palonow, Heroshah, Zara Maira, Deghar Ghar, Sidra Jour, Anar Thangi, Miangano Korona and Wartair of district Malakand. From each village 15 respondents were selected randomly on the basis of identical allocation making sample size of 150 respondents. The research was based on primary as well as secondary data. Primary data was collected from farmers while secondary data were taken from Agriculture Extension Department Dargai, District Malakand. Interview schedule was planned and each farmer was interviewed personally. The study was based on comparison of cost, yield and income of tomato before and after FFS. Paired t-test and Statistical Package for Social Sciences (SPSS) was used for analysis; outcome of the study show that integrated pest management project has brought a positive change in the attitude of farmers of the project area through FFS approach. In district Malakand 66.0% of the respondents were between the age group of 31-50 years, 11.3% of respondents had primary level of education, 12.7% of middle level, 28.7% metric level, 3.3% of intermediate level and 2.0% of graduate level of education while 42.0% of respondents were illiterate and have no education. Average land holding size of farmers was 6.47 acres, cost of seed, crop protection from insect pest and crop protection from diseases was reduced by Rs. 210.67, Rs. 2584.43 and Rs. 3044.16 respectively, the cost of fertilizers and cost of farm yard manure was increased by Rs.1548.87 and Rs. 1151.40 respectively while tomato yield was increased by 1585.03 kg/acre from 7663.87 to 9248.90 kg/acre. The role of FFS initiate by integrated pest management project through department of agriculture extension for the development of agriculture was worth mentioning. It has brought enhancement in crop yield of tomato and their income through FFS approach. On the basis of results of the research studies, integrated pest management project should spread their developmental activities for maximum participation of the complete rural masses through participatory FFS approach.Keywords: agriculture, Farmers field schools, extension education, tomato
Procedia PDF Downloads 6132 Sugar-Induced Stabilization Effect of Protein Structure
Authors: Mitsuhiro Hirai, Satoshi Ajito, Nobutaka Shimizu, Noriyuki Igarashi, Hiroki Iwase, Shinichi Takata
Abstract:
Sugars and polyols are known to be bioprotectants preventing such as protein denaturation and enzyme deactivation and widely used as a nontoxic additive in various industrial and medical products. The mechanism of their protective actions has been explained by specific bindings between biological components and additives, changes in solvent viscosities, and surface tension and free energy changes upon transfer of those components into additive solutions. On the other hand, some organisms having tolerances against extreme environment produce stress proteins and/or accumulate sugars in cells, which is called cryptobiosis. In particular, trehalose has been drawing attention relevant to cryptobiosis under external stress such as high or low temperature, drying, osmotic pressure, and so on. The function of cryptobiosis by trehalose has been explained relevant to the restriction of the intra-and/or-inter-molecular movement by vitrification or from the replacement of water molecule by trehalose. Previous results suggest that the structure and interaction between sugar and water are a key determinant for understanding cryptobiosis. Recently, we have shown direct evidence that the protein hydration (solvation) and structural stability against chemical and thermal denaturation significantly depend on sugar species and glycerol. Sugar and glycerol molecules tend to be preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. Due to the protective action of the protein hydration shell by those molecules, the protein structure is stabilized against chemical (guanidinium chloride) and thermal denaturation. The protective action depends on sugar species. To understand the above trend and difference in detail, it is essentially important to clarify the characteristics of solutions containing those additives. In this study, by using wide-angle X-ray scattering technique covering a wide spatial region (~3-120 Å), we have clarified structures of sugar solutions with the concentration from 5% w/w to 65% w/w. The sugars measured in the present study were monosaccharides (glucose, fructose, mannose) and disaccharides (sucrose, trehalose, maltose). Due to observed scattering data with a wide spatial resolution, we have succeeded in obtaining information on the internal structure of individual sugar molecules and on the correlation between them. Every sugar gradually shortened the average inter-molecular distance as the concentration increased. The inter-molecular interaction between sugar molecules was essentially showed an exclusive tendency for every sugar, which appeared as the presence of a repulsive correlation hole. This trend was more weakly seen for trehalose compared to other sugars. The intermolecular distance and spread of individual molecule clearly showed the dependence of sugar species. We will discuss the relation between the characteristic of sugar solution and its protective action of biological materials.Keywords: hydration, protein, sugar, X-ray scattering
Procedia PDF Downloads 1561 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach
Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa
Abstract:
Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation
Procedia PDF Downloads 188