Search results for: SQL injection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 379

Search results for: SQL injection

259 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis

Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat

Abstract:

Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.

Keywords: controlled release, drug delivery system, glucosamine, pluronic, thermoreversible hydrogel

Procedia PDF Downloads 244
258 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials

Authors: Ariadna Manresa, Ines Ferrer

Abstract:

Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.

Keywords: biomaterial, biopolymer, micro injection molding, ultrasound

Procedia PDF Downloads 259
257 Modeling and Simulating Drop Interactions in Spray Structure of High Torque Low Speed Diesel Engine

Authors: Rizwan Latif, Syed Adnan Qasim, Muzaffar Ali

Abstract:

Fuel direct injection represents one of the key aspects in the development of the diesel engines, the idea of controlling the auto-ignition and the consequent combustion of a liquid spray injected in a reacting atmosphere during a time scale of few milliseconds has been a challenging task for the engine community and pushed forward to a massive research in this field. The quality of the air-fuel mixture defines the combustion efficiency, and therefore the engine efficiency. A droplet interaction in dense as well as thin portion of the spray receives equal importance as other parameters in spray structure. Usually, these are modeled along with breakup process and analyzed alike. In this paper, droplet interaction is modeled and simulated for high torque low speed scenario. Droplet interactions may further be subdivided into droplet collision and coalescence, spray wall impingement, droplets drag, etc. Droplet collisions may occur in almost all spray applications, but especially in diesel like conditions such as high pressure sprays as utilized in combustion engines. These collisions have a strong influence on the mean droplet size and its spatial distribution and can, therefore, affect sub-processes of spray combustion such as mass, momentum and energy transfer between gas and droplets. Similarly, for high-pressure injection systems spray wall impingement is an inherent sub-process of mixture formation. However, its influence on combustion is in-explicit.

Keywords: droplet collision, coalescence, low speed, diesel fuel

Procedia PDF Downloads 216
256 Prediction of Fluid Induced Deformation using Cavity Expansion Theory

Authors: Jithin S. Kumar, Ramesh Kannan Kandasami

Abstract:

Geomaterials are generally porous in nature due to the presence of discrete particles and interconnected voids. The porosity present in these geomaterials play a critical role in many engineering applications such as CO2 sequestration, well bore strengthening, enhanced oil and hydrocarbon recovery, hydraulic fracturing, and subsurface waste storage. These applications involves solid-fluid interactions, which govern the changes in the porosity which in turn affect the permeability and stiffness of the medium. Injecting fluid into the geomaterials results in permeation which exhibits small or negligible deformation of the soil skeleton followed by cavity expansion/ fingering/ fracturing (different forms of instabilities) due to the large deformation especially when the flow rate is greater than the ability of the medium to permeate the fluid. The complexity of this problem increases as the geomaterial behaves like a solid and fluid under certain conditions. Thus it is important to understand this multiphysics problem where in addition to the permeation, the elastic-plastic deformation of the soil skeleton plays a vital role during fluid injection. The phenomenon of permeation and cavity expansion in porous medium has been studied independently through extensive experimental and analytical/ numerical models. The analytical models generally use Darcy's/ diffusion equations to capture the fluid flow during permeation while elastic-plastic (Mohr-Coulomb and Modified Cam-Clay) models were used to predict the solid deformations. Hitherto, the research generally focused on modelling cavity expansion without considering the effect of injected fluid coming into the medium. Very few studies have considered the effect of injected fluid on the deformation of soil skeleton. However, the porosity changes during the fluid injection and coupled elastic-plastic deformation are not clearly understood. In this study, the phenomenon of permeation and instabilities such as cavity and finger/ fracture formation will be quantified extensively by performing experiments using a novel experimental setup in addition to utilizing image processing techniques. This experimental study will describe the fluid flow and soil deformation characteristics under different boundary conditions. Further, a well refined coupled semi-analytical model will be developed to capture the physics involved in quantifying the deformation behaviour of geomaterial during fluid injection.

Keywords: solid-fluid interaction, permeation, poroelasticity, plasticity, continuum model

Procedia PDF Downloads 42
255 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions

Authors: Megh Patel, Arjun Chauhan, Jay Thakkar

Abstract:

Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.

Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers

Procedia PDF Downloads 222
254 Efficacy of Erector Spinae Plane Block for Postoperative Pain Management in Coronary Artery Bypass Graft Patients

Authors: Santosh Sharma Parajuli, Diwas Manandhar

Abstract:

Background: Perioperative pain management plays an integral part in patients undergoing cardiac surgery. We studied the effect of Erector Spinae Plane block on acute postoperative pain reduction and 24 hours opioid consumption in adult cardiac surgical patients. Methods: Twenty-five adult cardiac surgical patients who underwent cardiac surgery with sternotomy in whom ESP catheters were placed preoperatively were kept in group E, and the other 25 patients who had undergone cardiac surgery without ESP catheter and pain management done with conventional opioid injection were placed in group C. Fentanyl was used for pain management. The primary study endpoint was to compare the consumption of fentanyl and to assess the numeric rating scale in the postoperative period in the first 24 hours in both groups. Results: The 24 hours fentanyl consumption was 43.00±51.29 micrograms in the Erector Spinae Plane catheter group and 147.00±60.94 micrograms in the control group postoperatively which was statistically significant (p <0.001). The numeric rating scale was also significantly reduced in the Erector Spinae Plane group compared to the control group in the first 24 hours postoperatively. Conclusion: Erector Spinae Plane block is superior to the conventional opioid injection method for postoperative pain management in CABG patients. Erector Spinae Plane block not only decreases the overall opioid consumption but also the NRS score in these patients.

Keywords: erector, spinae, plane, numerical rating scale

Procedia PDF Downloads 44
253 Grain Selection in Spiral Grain Selectors during Casting Single-Crystal Turbine Blades

Authors: M. Javahar, H. B. Dong

Abstract:

Single crystal components manufactured using Ni-base Superalloys are routinely used in the hot sections of aero engines and industrial gas turbines due to their outstanding high temperature strength, toughness and resistance to degradation in corrosive and oxidative environments. To control the quality of the single crystal turbine blades, particular attention has been paid to grain selection, which is used to obtain the single crystal morphology from a plethora of columnar grains. For this purpose, different designs of grain selectors are employed and the most common type is the spiral grain selector. A typical spiral grain selector includes a starter block and a spiral (helix) located above. It has been found that the grains with orientation well aligned to the thermal gradient survive in the starter block by competitive grain growth while the selection of the single crystal grain occurs in the spiral part. In the present study, 2D spiral selectors with different geometries were designed and produced using a state-of-the-art Bridgeman Directional Solidification casting furnace to investigate the competitive growth during grain selection in 2d grain selectors. The principal advantage of using a 2-D selector is to facilitate the wax injection process in investment casting by enabling significant degree of automation. The automation within the process can be derived by producing 2D grain selector wax patterns parts using a split die (metal mold model) coupled with wax injection stage. This will not only produce the part with high accuracy but also at an acceptable production rate.

Keywords: grain selector, single crystal, directional solidification, CMSX-4 superalloys, investment casting

Procedia PDF Downloads 554
252 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 76
251 Effects of Clozapine and Risperidone Antipsychotic Drugs on the Expression of CACNA1C and Behavioral Changes in Rat ‘Ketamine Model of Schizophrenia

Authors: Mehrnoosh Azimi Sanavi, Hamed Ghazvini, Mehryar Zargari, Hossein Ghalehnoei, Zahra Hosseini-khah

Abstract:

Objectives: Calcium Voltage-Gated Channel Subunit Alpha1 C (CACNA1C) is one of the most important genes associated with schizophrenia. Methods: 45 male Wistar rats were divided into 5 groups: saline, control, ketamine, clozapine, and risperidone. Animals in ketamine, risperidone, and clozapine groups received ketamine (30 mg/ kg-i.p.) for 10 days. After the last injection of ketamine, we started injecting clozapine (7.5 mg/kg-i.p.) risperidone (1 mg/kg-i.p.) for up to 28 days. Twenty-four hours after the last injection, open field, social interaction, and elevated plus-maze tests, and gene expression in the hippocampus were performed. Results: The results of the social interaction test revealed a significant decrease in cumulative time with ketamine compared with the saline group and an increase with clozapine and risperidone compared with the ketamine group. Moreover, results from the elevated plus-maze test demonstrated a critical decrease in open-arm time and an increase in close-arm time with ketamine compared with saline, as well as an increase in open-arm time with risperidone compared with ketamine. Further results revealed a significant increase in rearing and grooming with ketamine compared to saline, as well as a decrease with risperidone and clozapine compared to ketamine. There were no significant differences in CACNA1C gene expression between groups in the rat hippocampus. In brief, the results of this study indicated that clozapine and risperidone could partially improve cognitive impairments in the rat. However, our findings demonstrated that this treatment is not related to CACNA1C gene expression.

Keywords: schizophrenia, ketamine, clozapine, risperidone

Procedia PDF Downloads 25
250 Analgesic and Anti-inflammatoryactivities of Camel Thorn in Experimental Animals

Authors: Abdelkader H. El Debani, Huda Gargoum, Awad G. Abdellatif

Abstract:

The aim of this study is to investigate analgesic and the anti-inflammatory effects Camel Thorn Extract (CTE) in rodents. Male albino mice weighing 20-25 gm. were divided into different groups each of 8 mice. The control was given normal saline i. p., the first group was given normal saline i. p. the 2nd, 3rd, 4th, groups received different doses of CTE (330, 660, and 1300 mg/kg) respectively and the 6th group received 5mg/kg of morphine i. p. All groups (except the control group) were given acetic acid 40 min after receiving the different treatment. The number of writhes was recorded 5 min after acetic acid injection for 15 min and the % of inhibition of writhing were calculated. Different groups of rats weighing 180- 220 gm., were divided into three groups each of 5 rats. At the beginning, the volumes of the right and left paw in animals were measured by using of the plethysmometer. The 1st group was given 660 mg /kg i. p. of CTE, the 2nd group received indomethacin (5 mg/kg i. p.). One hour later, edema was induced by sub planter injection of 0.1 ml of 1 % freshly prepared suspension of carrageenan into the right hind paws of the rats. The volume of the injected paws and contra-lateral paws were measured at 0, 0.5, 1, 2, 3, 4, and 5 hours using plethysmometer. The volume of the left paw of the rat was subtracted from the volume of the right paw of the same animal. Our results showed that 330,660 and 1300 mg/kg produced 14, 49 and 84%of inhibition of writhes, indicating that CTE has a strong analgesic activity. Our data also showed that the % of inhibition of edema at 30, 60, 120, 180, and 240 min was 14,51,71,61, and 56% in the animals given camel thorn extract whereas these figures in animals given endomethacin were 14, 24, 54, 52, and 54%. These results indicate that camel thorn has anti-inflammatory activities. The mechanism of analgesic and anti-inflammatory activities needs further investigations.

Keywords: camel thorn, imdomethacin, morphine, pharmaceutical medicine

Procedia PDF Downloads 213
249 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling

Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky

Abstract:

Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.

Keywords: nano-particles, formation damage, permeability, fines migration

Procedia PDF Downloads 590
248 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 267
247 Numerical Modelling of Immiscible Fluids Flow in Oil Reservoir Rocks during Enhanced Oil Recovery Processes

Authors: Zahreddine Hafsi, Manoranjan Mishra , Sami Elaoud

Abstract:

Ensuring the maximum recovery rate of oil from reservoir rocks is a challenging task that requires preliminary numerical analysis of different techniques used to enhance the recovery process. After conventional oil recovery processes and in order to retrieve oil left behind after the primary recovery phase, water flooding in one of several techniques used for enhanced oil recovery (EOR). In this research work, EOR via water flooding is numerically modeled, and hydrodynamic instabilities resulted from immiscible oil-water flow in reservoir rocks are investigated. An oil reservoir is a porous medium consisted of many fractures of tiny dimensions. For modeling purposes, the oil reservoir is considered as a collection of capillary tubes which provides useful insights into how fluids behave in the reservoir pore spaces. Equations governing oil-water flow in oil reservoir rocks are developed and numerically solved following a finite element scheme. Numerical results are obtained using Comsol Multiphysics software. The two phase Darcy module of COMSOL Multiphysics allows modelling the imbibition process by the injection of water (as wetting phase) into an oil reservoir. Van Genuchten, Brooks Corey and Levrett models were considered as retention models and obtained flow configurations are compared, and the governing parameters are discussed. For the considered retention models it was found that onset of instabilities viz. fingering phenomenon is highly dependent on the capillary pressure as well as the boundary conditions, i.e., the inlet pressure and the injection velocity.

Keywords: capillary pressure, EOR process, immiscible flow, numerical modelling

Procedia PDF Downloads 106
246 Visco - Plastic Transition and Transfer of Plastic Material with SGF in case of Linear Dry Friction Contact on Steel Surfaces

Authors: Lucian Capitanu, Virgil Florescu

Abstract:

Often for the laboratory studies, modeling of specific tribological processes raises special problems. One such problem is the modeling of some temperatures and extremely high contact pressures, allowing modeling of temperatures and pressures at which the injection or extrusion processing of thermoplastic materials takes place. Tribological problems occur mainly in thermoplastics materials reinforced with glass fibers. They produce an advanced wear to the barrels and screws of processing machines, in short time. Obtaining temperatures around 210 °C and higher, as well as pressures around 100 MPa is very difficult in the laboratory. This paper reports a simple and convenient solution to get these conditions, using friction sliding couples with linear contact, cylindrical liner plastic filled with glass fibers on plate steel samples, polished and super-finished. C120 steel, which is a steel for moulds and Rp3 steel, high speed steel for tools, were used. Obtaining the pressure was achieved by continuous request of the liner in rotational movement up to its elasticity limits, when the dry friction coefficient reaches or exceeds the hardness value of 0.5 HB. By dissipation of the power lost by friction on flat steel sample, are reached contact temperatures at the metal surface that reach and exceed 230 °C, being placed in the range temperature values of the injection. Contact pressures (in load and materials conditions used) ranging from 16.3-36.4 MPa were obtained depending on the plastic material used and the glass fibers content.

Keywords: plastics with glass fibers, dry friction, linear contact, contact temperature, contact pressure, experimental simulation

Procedia PDF Downloads 276
245 A Case Study: Effect of Low Carbs High Fats Diet (Also Known as LCHF Diet) Combined with Fried Foods in Extra Virgin Olive Oil in Patient with Type 2 Diabetes and Central Obesity

Authors: Cristian Baldini

Abstract:

‘Diabesity’ is a term for diabetes occurring in the context of obesity. The positive effect of LCHF diets (low-carb, high-fat diets) is well documented: LCHF diets are at least as effective as other dietary strategies for reducing body weight, improving glycaemic control, and reducing both hyperinsulinaemia and blood glucose (reduction of HbA1c) in type 2 diabetes and have unique positive effects on blood lipid concentrations and cardiovascular risk factors. Also, in obese insulin-resistant women, food fried in extra-virgin olive oil significantly reduced both insulin and C-peptide responses after a meal. This case study shows that if combined, both dietary strategies produce a strong effect on blood glucose, resulting in a “forced” reduction of exogenous insulin injection to avoid the problem of hypoglycaemia. Blood tests after three months of this dietary treatment show how HbA1c, triglycerides, and blood lipid profile (LDL, HDL, Total Cholesterol) are improved despite the reduction of exogenous insulin injection of 80% with a parallel body weight decrease of 15%. For continuous glucose monitoring (CGM), the patient used FreeStyle Libre before and after the dietary treatment. In order to check general body functions and glycosuria, the patient used the urine test Multistix 10 SG Siemens.

Keywords: diabetes, obesity, diabesity, fat, fried foods

Procedia PDF Downloads 41
244 Double-Spear 1-H2-1 Oncolytic-Immunotherapy for Refractory and Relapsing High-Risk Human Neuroblastoma and Glioma

Authors: Lian Zeng

Abstract:

Double-Spear 1-H2-1 (DS1-H2-1) is an oncolytic virus and an innovative biological drug candidate. The chemical composition of the drug product is a live attenuated West Nile virus (WNV) containing the human T cell costimulator (CD86) gene. After intratumoral injection, the virus can rapidly self-replicate in the injected site and lyse/kill the tumor by repeated infection among tumor cells. We also established xenograft tumor models in mice to evaluate the drug candidate's efficacy on those tumors. The results from preclinical studies on transplanted tumors in immunodeficient mice showed that DS1-H2-1 had significant oncolytic effects on human-origin cancers: it completely (100%) shrieked human glioma; limited human neuroblastoma growth reached as high as 95% growth inhibition rate (%TGITW). The safety data of preclinical animal experiments confirmed that DS1-H2-1 is safe as a biological drug for clinical use. In the preclinical drug efficacy experiment, virus-drug administration with different doses did not show abnormal signs and disease symptoms in more than 300 tested mice, and no side effects or death occurred through various administration routes. Intravenous administration did not cause acute infectious disease or other side effects. However, the replication capacity of the virus in tumor tissue via intravenous administration is only 1% of that of direct intratumoral administration. The direct intratumoral administration of DS1-H2-1 had a higher rate of viral replication. Therefore, choosing direct intratumoral injection can ensure both efficacy and safety.

Keywords: oncolytic virus, WNV-CD86, immunotherapy drugs, glioma, neuroblastoma

Procedia PDF Downloads 74
243 Protective Effects of Genistein against Cyclophosphamide-Induced Hepatotoxicity in Rats: Involvement of Anti-Inflammatory and Anti-Oxidant Activities

Authors: Dina F. Mansour, Dalia O. Saleh, Rasha E. Mostafa

Abstract:

Cyclophosphamide (CP), the most commonly used chemotherapeutic agent, was reported to cause many side effects including urotoxicity, cardiotoxicity, gonadotoxicity, and hepatotoxicity; this limits its clinical practice. In the present study, the protective effect of genistein (GEN), the major phytoestrogen in soy products that possesses various pharmacological activities, has been investigated against CP-induced acute liver damage in rats. Forty adult Sprague-Dawley rats were allocated into five groups. The first group received the vehicles and act as normal control. In the other groups, rats were injected with a single dose of CP (200 mg/kg, i.p). The last three groups were pretreated with subcutaneous GEN at doses of 0.5, 1 and 2 mg/kg/day, respectively, for 15 consecutive days prior CP injection. Forty-eight hours following CP injection, rats of all groups were investigated for the serum levels of alanine transaminase and aspartate transaminase, as well as the liver contents of reduced glutathione, malondialdehyde, nitrite, interleukin-1β, and myeloperoxidase. Histopathological examination of liver tissues was also conducted. CP resulted in acute liver damage in rats as evidenced by alteration of liver function biomarkers, oxidative stress, and inflammatory markers; that was confirmed by the histopathological outcomes. Pretreatment of rats with GEN significantly protected against CP-induced deterioration of liver function and showed marked anti-oxidant and anti-inflammatory properties that were demonstrated by the biochemical and histopathological findings. In conclusion, the present findings demonstrated the protective effects of GEN against CP-induced liver damage and suggested role of its antioxidant and anti-inflammatory activities.

Keywords: cyclophosphamide, genistein, inflammation, interleukin-1β, liver, myeloperoxidase, oxidative stress

Procedia PDF Downloads 277
242 On Board Measurement of Real Exhaust Emission of Light-Duty Vehicles in Algeria

Authors: R. Kerbachi, S. Chikhi, M. Boughedaoui

Abstract:

The study presents an analysis of the Algerian vehicle fleet and resultant emissions. The emission measurement of air pollutants emitted by road transportation (CO, THC, NOX and CO2) was conducted on 17 light duty vehicles in real traffic. This sample is representative of the Algerian light vehicles in terms of fuel quality (gasoline, diesel and liquefied petroleum gas) and the technology quality (injection system and emission control). The experimental measurement methodology of unit emission of vehicles in real traffic situation is based on the use of the mini-Constant Volume Sampler for gas sampling and a set of gas analyzers for CO2, CO, NOx and THC, with an instrumentation to measure kinematics, gas temperature and pressure. The apparatus is also equipped with data logging instrument and data transfer. The results were compared with the database of the European light vehicles (Artemis). It was shown that the technological injection liquefied petroleum gas (LPG) has significant impact on air pollutants emission. Therefore, with the exception of nitrogen oxide compounds, uncatalyzed LPG vehicles are more effective in reducing emissions unit of air pollutants compared to uncatalyzed gasoline vehicles. LPG performance seems to be lower under real driving conditions than expected on chassis dynamometer. On the other hand, the results show that uncatalyzed gasoline vehicles emit high levels of carbon monoxide, and nitrogen oxides. Overall, and in the absence of standards in Algeria, unit emissions are much higher than Euro 3. The enforcement of pollutant emission standard in developing countries is an important step towards introducing cleaner technology and reducing vehicular emissions.

Keywords: on-board measurements of unit emissions of CO, HC, NOx and CO2, light vehicles, mini-CVS, LPG-fuel, artemis, Algeria

Procedia PDF Downloads 254
241 Opioid Administration on Patients Hospitalized in the Emergency Department

Authors: Mani Mofidi, Neda Valizadeh, Ali Hashemaghaee, Mona Hashemaghaee, Soudabeh Shafiee Ardestani

Abstract:

Background: Acute pain and its management remained the most complaint of emergency service admission. Diagnostic and therapeutic procedures add to patients’ pain. Diminishing the pain increases the quality of patient’s feeling and improves the patient-physician relationship. Aim: The aim of this study was to evaluate the outcomes and side effects of opioid administration in emergency patients. Material and Methods: patients admitted to ward II emergency service of Imam Khomeini hospital, who received one of the opioids: morphine, pethidine, methadone or fentanyl as an analgesic were evaluated. Their vital signs and general condition were examined before and after drug injection. Also, patient’s pain experience were recorded as numerical rating score (NRS) before and after analgesic administration. Results: 268 patients were studied. 34 patients were addicted to opioid drugs. Morphine had the highest rate of prescription (86.2%), followed by pethidine (8.5%), methadone (3.3%) and fentanyl (1.68). While initial NRS did not show significant difference between addicted patients and non-addicted ones, NRS decline and its score after drug injection were significantly lower in addicted patients. All patients had slight but statistically significant lower respiratory rate, heart rate, blood pressure and O2 saturation. There was no significant difference between different kind of opioid prescription and its outcomes or side effects. Conclusion: Pain management should be always in physicians’ mind during emergency admissions. It should not be assumed that an addicted patient complaining of pain is malingering to receive drug. Titration of drug and close monitoring must be in the curriculum to prevent any hazardous side effects.

Keywords: numerical rating score, opioid, pain, emergency department

Procedia PDF Downloads 401
240 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis

Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman

Abstract:

A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.

Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering

Procedia PDF Downloads 185
239 Oil Water Treatment by Nutshell and Dates Pits

Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren

Abstract:

The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.

Keywords: date pits, nutshell, oil water, TSS

Procedia PDF Downloads 133
238 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor

Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles

Procedia PDF Downloads 278
237 Gender Specific Differences in Clinical Outcomes of Knee Osteoarthritis Treated with Micro-Fragmented Adipose Tissue

Authors: Tiffanie-Marie Borg, Yasmin Zeinolabediny, Nima Heidari, Ali Noorani, Mark Slevin, Angel Cullen, Stefano Olgiati, Alberto Zerbi, Alessandro Danovi, Adrian Wilson

Abstract:

Knee Osteoarthritis (OA) is a critical cause of disability globally. In recent years, there has been growing interest in non-invasive treatments, such as intra-articular injection of micro-fragmented fat (MFAT), showing great potential in treating OA. Mesenchymal stem cells (MSCs), originating from pericytes of micro-vessels in MFAT, can differentiate into mesenchymal lineage cells such as cartilage, osteocytes, adipocytes, and osteoblasts. Secretion of growth factor and cytokines from MSCs have the capability to inhibit T cell growth, reduced pain and inflammation, and create a micro-environment that through paracrine signaling, can promote joint repair and cartilage regeneration. Here we have shown, for the first time, data supporting the hypothesis that women respond better in terms of improvements in pain and function to MFAT injection compared to men. Historically, women have been underrepresented in studies, and studies with both sexes regularly fail to analyse the results by sex. To mitigate this bias and quantify it, we describe a technique using reproducible statistical analysis and replicable results with Open Access statistical software R to calculate the magnitude of this difference. Genetic, hormonal, environmental, and age factors play a role in our observed difference between the sexes. This observational, intention-to-treat study included the complete sample of 456 patients who agreed to be scored for pain (visual analogue scale (VAS)) and function (Oxford knee score (OKS)) at baseline regardless of subsequent changes to adherence or status during follow-up. We report that a significantly larger number of women responded to treatment than men: [90% vs. 60% change in VAS scores with 87% vs. 65% change in OKS scores, respectively]. Women overall had a stronger positive response to treatment with reduced pain and improved mobility and function. Pre-injection, our cohort of women were in more pain with worse joint function which is quite common to see in orthopaedics. However, during the 2-year follow-up, they consistently maintained a lower incidence of discomfort with superior joint function. This data clearly identifies a clear need for further studies to identify the cell and molecular biological and other basis for these differences and be able to utilize this information for stratification in order to improve outcome for both women and men.

Keywords: gender differences, micro-fragmented adipose tissue, knee osteoarthritis, stem cells

Procedia PDF Downloads 167
236 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor

Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis

Procedia PDF Downloads 247
235 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage

Authors: Meng H. Lean, Wei-Ping L. Chu

Abstract:

The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.

Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport

Procedia PDF Downloads 325
234 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir

Authors: Worawanna Panyakotkaew, Falan Srisuriyachai

Abstract:

Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.

Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery

Procedia PDF Downloads 437
233 Role of Intralesional Tranexamic Acid in Comparison of Oral Tranexamic Acid in the Treatment of Melasma

Authors: Lubna Khondker

Abstract:

Background: Melasma is a common pigmentary dermatosis, manifested by hyperpigmented macules or patches on the face, commonly occurring in females due to an acquired disorder in the melanogenesis process. Although several treatments are currently used, it remains a great challenge due to recurrence and refractory nature. It was recently reported that tranexamic acid (TA-plasmin inhibitor) is an effective treatment for melasma. Objective: This study aims to compare the efficacy and side effects of intralesional injection of Tranexamic acid with oral Tranexamic acid in the treatment of melasma. Methods: A clinical trial was done in the Department of Dermatology and Venereology, Bangabandhu Sheikh Mujib Medical University, for a period of 4 years. A total of 100 patients with melasma who did not respond to topical therapy were included in the study as group A and group B. Group A Patients were administered intralesional injection (10 mg/ml) of Tranexamic acid( TA) weekly for 6 weeks, and group B patients were treated with oral tranexamic acid 250 mg 12 hourly for 12 weeks after taking informed consent. The severity and extent of pigmentation were assessed by the modified melasma area severity index (MASI). The response to treatment was assessed by MASI at 4 weeks, 8 weeks, and 12 weeks after stopping treatment. Results: The study showed the MASI scores at the baseline, 4 weeks, 8 weeks, and 12 weeks in group A were 18.23±1.22, 6.14±3.26, 3.21±2.14 and 2.11±2.01 respectively, and in group B, 17.87±1.12, 11.21±6.25, 6.57±4.26 and 6.41±4.17 respectively. The mean MASI significantly reduced in group A compared to group B in the 4th, 8th, and 12th weeks. The present study showed that among group A patients, 56% rated excellent (>75% reduction) in outcome, 32% good (50-75% reduction), 8% moderate (25-50% reduction) and only 4% (<25% reduction) was unsatisfactory and among group B patients, 14% rated excellent in outcome, 28% good, 36% moderate and 22% was unsatisfactory. Overall improvement in our study in group A was 96% and in group B 78%. Side effects were negligible, and all the patients tolerated the treatment well. Conclusion: Based on our results, intralesional Tranexamic acid (10 mg/ml) is more effective and safer than oral Tranexamic acid in the treatment of melasma.

Keywords: intralesional tranexamic acid, melasma, oral tranexamic acid, MASI score

Procedia PDF Downloads 29
232 Evaluation of Double Displacement Process via Gas Dumpflood from Multiple Gas Reservoirs

Authors: B. Rakjarit, S. Athichanagorn

Abstract:

Double displacement process is a method in which gas is injected at an updip well to displace the oil bypassed by waterflooding operation from downdip water injector. As gas injection is costly and a large amount of gas is needed, gas dump-flood from multiple gas reservoirs is an attractive alternative. The objective of this paper is to demonstrate the benefits of the novel approach of double displacement process via gas dump-flood from multiple gas reservoirs. A reservoir simulation model consisting of a dipping oil reservoir and several underlying layered gas reservoirs was constructed in order to investigate the performance of the proposed method. Initially, water was injected via the downdip well to displace oil towards the producer located updip. When the water cut at the producer became high, the updip well was shut in and perforated in the gas zones in order to dump gas into the oil reservoir. At this point, the downdip well was open for production. In order to optimize oil recovery, oil production and water injection rates and perforation strategy on the gas reservoirs were investigated for different numbers of gas reservoirs having various depths and thicknesses. Gas dump-flood from multiple gas reservoirs can help increase the oil recovery after implementation of waterflooding upto 10%. Although the amount of additional oil recovery is slightly lower than the one obtained in conventional double displacement process, the proposed process requires a small completion cost of the gas zones and no operating cost while the conventional method incurs high capital investment in gas compression facility and high-pressure gas pipeline and additional operating cost. From the simulation study, oil recovery can be optimized by producing oil at a suitable rate and perforating the gas zones with the right strategy which depends on depths, thicknesses and number of the gas reservoirs. Conventional double displacement process has been studied and successfully implemented in many fields around the world. However, the method of dumping gas into the oil reservoir instead of injecting it from surface during the second displacement process has never been studied. The study of this novel approach will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost.

Keywords: gas dump-flood, multi-gas layers, double displacement process, reservoir simulation

Procedia PDF Downloads 378
231 The Anti-Angiogenic Effect of Tectorigenin in a Mouse Model of Retinopathy of Prematurity

Authors: KuiDong Kang, Hye Bin Yim, Su Ah Kim

Abstract:

Purpose: Tectorigenin is an isoflavone derived from the rhizome of Belamacanda chinensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of tectorigenin in mice. Methods: ICR neonatal mice were exposed to 75% oxygen from postnatal day P7 until P12 and returned to room air (21% oxygen) for five days (P12 to P17). Mice were subjected to daily intraperitoneal injection of tectorigenin (1 mg/kg, 10 mg/kg) and vehicle from P12 to P17. Retro-orbital injection of FITC-dextran was performed and retinal flat mounts were viewed by fluorescence microscopy. The Central avascular area was quantified from the digital images in a masked fashion using image analysis software (NIH ImageJ). Neovascular tufts were quantified by using SWIFT_NV and neovascular lumens were quantified from a histologic section in a masked fashion. Immunohistochemistry and Western blot analysis were also performed to demonstrate the anti-angiogenic activity of this compound in vivo. Results: In the retina of tectorigenin injected mouse (10mg/kg), the central non-perfusion area was significantly decreased compared to the vehicle injected group (1.76±0.5 mm2 vs 2.85±0.6 mm2, P<0.05). In vehicle-injected group, 33.45 ± 5.51% of the total retinal area was avascular, whereas the retinas of pups treated with high-dose (10 mg/kg) tectorigenin showed avascular retinal areas of 21.25 ±4.34% (P<0.05). High dose of tectorigenin also significantly reduced the number of vascular lumens in the histologic section. Tectorigenin (10 mg/kg) significantly reduced the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), MMP-9, and angiotensin II compared to the vehicle injected group. Tectorigenin did not affect CD31 abundance at any tested dose. Conclusions: Our results show that tectorigenin possesses powerful anti-angiogenic properties and can attenuate new vessel formation in the retina after systemic administration. These results imply that this compound can be considered as a candidate substance for therapeutic inhibition of retinal angiogenesis.

Keywords: tectorigenin, anti-angiogenic, retinopathy, Belamacanda chinensis

Procedia PDF Downloads 241
230 Polymer Flooding: Chemical Enhanced Oil Recovery Technique

Authors: Abhinav Bajpayee, Shubham Damke, Rupal Ranjan, Neha Bharti

Abstract:

Polymer flooding is a dramatic improvement in water flooding and quickly becoming one of the EOR technologies. Used for improving oil recovery. With the increasing energy demand and depleting oil reserves EOR techniques are becoming increasingly significant .Since most oil fields have already begun water flooding, chemical EOR technique can be implemented by using fewer resources than any other EOR technique. Polymer helps in increasing the viscosity of injected water thus reducing water mobility and hence achieves a more stable displacement .Polymer flooding helps in increasing the injection viscosity as has been revealed through field experience. While the injection of a polymer solution improves reservoir conformance the beneficial effect ceases as soon as one attempts to push the polymer solution with water. It is most commonly applied technique because of its higher success rate. In polymer flooding, a water-soluble polymer such as Polyacrylamide is added to the water in the water flood. This increases the viscosity of the water to that of a gel making the oil and water greatly improving the efficiency of the water flood. It also improves the vertical and areal sweep efficiency as a consequence of improving the water/oil mobility ratio. Polymer flooding plays an important role in oil exploitation, but around 60 million ton of wastewater is produced per day with oil extraction together. Therefore the treatment and reuse of wastewater becomes significant which can be carried out by electro dialysis technology. This treatment technology can not only decrease environmental pollution, but also achieve closed-circuit of polymer flooding wastewater during crude oil extraction. There are three potential ways in which a polymer flood can make the oil recovery process more efficient: (1) through the effects of polymers on fractional flow, (2) by decreasing the water/oil mobility ratio, and (3) by diverting injected water from zones that have been swept. It has also been suggested that the viscoelastic behavior of polymers can improve displacement efficiency Polymer flooding may also have an economic impact because less water is injected and produced compared with water flooding. In future we need to focus on developing polymers that can be used in reservoirs of high temperature and high salinity, applying polymer flooding in different reservoir conditions and also combine polymer with other processes (e.g., surfactant/ polymer flooding).

Keywords: fractional flow, polymer, viscosity, water/oil mobility ratio

Procedia PDF Downloads 359