Search results for: Porous medium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3318

Search results for: Porous medium

3048 Analysis of Reflection of Elastic Waves in Three Dimensional Model Comprised with Viscoelastic Anisotropic Medium

Authors: Amares Chattopadhyay, Akanksha Srivastava

Abstract:

A unified approach to study the reflection of a plane wave in three-dimensional model comprised of the triclinic viscoelastic medium. The phase velocities of reflected qP, qSV and qSH wave have been calculated for the concerned medium by using the eigenvalue approach. The generalized method has been implemented to compute the complex form of amplitude ratios. Further, we discussed the nature of reflection coefficients of qP, qSV and qSH wave. The viscoelastic parameter, polar angle and azimuthal angle are found to be strongly influenced by amplitude ratios. The research article is particularly focused to study the effect of viscoelasticity associated with highly anisotropic media which exhibits the notable information about the reflection coefficients of qP, qSV, and qSH wave. The outcomes may further useful to the better exploration of all types of hydrocarbon reservoir and advancement in the field of reflection seismology.

Keywords: amplitude ratios, three dimensional, triclinic, viscoelastic

Procedia PDF Downloads 207
3047 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 249
3046 Early Warning Signals: Role and Status of Risk Management in Small and Medium Enterprises

Authors: Alexander Kelíšek, Denisa Janasová, Veronika Mitašová

Abstract:

Weak signals using is often associated with early warning. It is possible to find a link between early warning, respectively early problems detection and risk management. The idea of early warning is very important in the context of crisis management because of the risk prevention possibility. Weak signals are likened to risk symptoms. Nowadays, their usefulness as a tool of proactive problems solving is emphasized. Based on it, it is possible to use weak signals not only in strategic planning, project management, or early warning system, but also as a subsidiary element in risk management. The main question is how to effectively integrate weak signals into risk management. The main aim of the paper is to point out the possibilities of weak signals using in small and medium enterprises risk management.

Keywords: early warning system, weak signals, risk management, small and medium enterprises (SMEs)

Procedia PDF Downloads 400
3045 Highly Sensitive and Selective H2 Gas Sensor Based on Pd-Pt Decorated Nanostructured Silicon Carbide Thin Films for Extreme Environment Application

Authors: Satyendra Mourya, Jyoti Jaiswal, Gaurav Malik, Brijesh Kumar, Ramesh Chandra

Abstract:

Present work describes the fabrication and sensing characteristics of the Pd-Pt decorated nanostructured silicon carbide (SiC) thin films on anodized porous silicon (PSi) substrate by RF magnetron sputtering. The gas sensing performance of Pd-Pt/SiC/PSi sensing electrode towards H2 gas under low (10–400 ppm) detection limit and high operating temperature regime (25–600 °C) were studied in detail. The chemiresistive sensor exhibited high selectivity, good sensing response, fast response/recovery time with excellent stability towards H2 at high temperature. The selectivity measurement of the sensing electrode was done towards different oxidizing and reducing gases and proposed sensing mechanism discussed in detail. Therefore, the investigated Pd-Pt/SiC/PSi structure may be a highly sensitive and selective hydrogen gas sensing electrode for deployment in extreme environment applications.

Keywords: RF Sputtering, silicon carbide, porous silicon, hydrogen gas sensor

Procedia PDF Downloads 273
3044 Synthesis of Electrospun Polydimethylsiloxane (PDMS)/Polyvinylidene Fluoriure (PVDF) Nanofibrous Membranes for CO₂ Capture

Authors: Wen-Wen Wang, Qian Ye, Yi-Feng Lin

Abstract:

Carbon dioxide emissions are expected to increase continuously, resulting in climate change and global warming. As a result, CO₂ capture has attracted a large amount of research attention. Among the various CO₂ capture methods, membrane technology has proven to be highly efficient in capturing CO₂, because it can be scaled up, low energy consumptions and small area requirements for use by the gas separation. Various nanofibrous membranes were successfully prepared by a simple electrospinning process. The membrane contactor combined with chemical absorption and membrane process in the post-combustion CO₂ capture is used in this study. In a membrane contactor system, the highly porous and water-repellent nanofibrous membranes were used as a gas-liquid interface in a membrane contactor system for CO₂ absorption. In this work, we successfully prepared the polyvinylidene fluoride (PVDF) porous membranes with an electrospinning process. Afterwards, the as-prepared water-repellent PVDF porous membranes were used for the CO₂ capture application. However, the pristine PVDF nanofibrous membranes were wetted by the amine absorbents, resulting in the decrease in the CO₂ absorption flux, the hydrophobic polydimethylsiloxane (PDMS) materials were added into the PVDF nanofibrous membranes to improve the solvent resistance of the membranes. To increase the hydrophobic properties and CO₂ absorption flux, more hydrophobic surfaces of the PDMS/PVDF nanofibrous membranes are obtained by the grafting of fluoroalkylsilane (FAS) on the membranes surface. Furthermore, the highest CO₂ absorption flux of the PDMS/PVDF nanofibrous membranes is reached after the FAS modification with four times. The PDMS/PVDF nanofibrous membranes with 60 wt% PDMS addition can be a long and continuous operation of the CO₂ absorption and regeneration experiments. It demonstrates the as-prepared PDMS/PVDF nanofibrous membranes could potentially be used for large-scale CO₂ absorption during the post-combustion process in power plants.

Keywords: CO₂ capture, electrospinning process, membrane contactor, nanofibrous membranes, PDMS/PVDF

Procedia PDF Downloads 254
3043 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors

Authors: Girts Bumanis, Diana Bajare

Abstract:

With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.

Keywords: alkaline material, buffer capacity, biogas production, bioreactors

Procedia PDF Downloads 224
3042 Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication

Authors: Tahira Pirzada, Zahra Ashrafi, Saad Khan

Abstract:

We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation.

Keywords: hybrid aerogels, sol-gel electrospinning, oil-water separation, nanofibers

Procedia PDF Downloads 133
3041 Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction

Authors: Bita Bayatsarmadi, Shi-Zhang Qiao

Abstract:

Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.

Keywords: electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template

Procedia PDF Downloads 358
3040 Next Generation Membrane for Water Desalination: Facile Fabrication of Patterned Graphene Membrane

Authors: Jae-Kyung Choi, Soon-Yong Kwon, Hyung Duk Yun, Hyun-Sang Chung, Seongho Seo, Kukjin Bae

Abstract:

Recently, there were several attempts to utilize a graphene layer as a water desalination membrane. In order to use a graphene layer as a water desalination membrane, fabrication of crack-free suspension of graphene on a porous membrane, having hydrophobic surface, and generation of a uniform holes on a graphene are very important. In here, we showed a simple chemical vapor deposition (CVD) method to create a patterned graphene membrane on a patterned platinum film. After CVD growth process of patterned graphene layer/patterned Pt on SiO2 substrates, the patterned graphene layer can be successfully transferred onto arbitrary substrates via thermal-assisted transfer method. In this result, the transferred patterned graphene membrane has so hydrophobic surface which will certainly impact on the naturally and speed pass way for fresh water. In addition to this, we observed that overlapping of patterned graphene membranes reported previously by our group may generate different size of holes.

Keywords: chemical vapor deposition (CVD), hydrophobic surface, membrane desalination, porous graphene

Procedia PDF Downloads 441
3039 Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries

Authors: Vadim V. Zefirov, Victor E. Sizov, Marina A. Pigaleva, Igor V. Elmanovich, Mikhail S. Kondratenko, Marat O. Gallyamov

Abstract:

This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency.

Keywords: carbon dioxide, chitosan, polymer membrane, redox flow batteries, silica nanoparticles, supercritical fluid

Procedia PDF Downloads 118
3038 International Marketing in Business Practice of Small and Medium-Sized Enterprises

Authors: K. Matušínská, Z. Bednarčík, M. Klepek

Abstract:

This paper examines international marketing in business practice of Czech exporting small and medium-sized enterprises (SMEs) with regard to the strategic perspectives. Research was focused on Czech exporting SMEs from Moravian-Silesia region and their behaviour on international markets. For purpose of collecting data, a questionnaire was given to 262 SMEs involved in international business. Statistics utilized in this research included frequency, mean, percentage, and chi-square test. Data were analysed by Statistical Package for the Social Sciences software. The research analysis disclosed that there is certain space for improvement in strategic marketing especially in marketing research, perception of cultural and social differences, product adaptation and usage of marketing communication tools.

Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing

Procedia PDF Downloads 296
3037 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez

Abstract:

In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 371
3036 Development of Hydrophobic Coatings on Aluminum Alloy 7075

Authors: Nauman A. Siddiqui

Abstract:

High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly.

Keywords: AA 7075, hydrophobicity, silanes, polyurethane, anodization

Procedia PDF Downloads 251
3035 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 362
3034 Production of Biosurfactant by Pseudomonas luteola on a Reject from the Production of Anti-scorpion Serum

Authors: Radia Chemlal, Youcef Hamidi, Nabil Mameri

Abstract:

This study deals with the production of biosurfactant by the Pseudomonas luteola strain on three different culture media (semi-synthetic medium M1, whey, and pharmaceutical reject) in the presence of gasoil. The monitoring of bacterial growth by measuring the optical density at 600 nm by spectrophotometer and the surface tension clearly showed the ability of Pseudomonas luteola to produce biosurfactants at various conditions of the culture medium. The biosurfactant produced in the pharmaceutical reject medium generated a decrease in the surface tension with a percentage of 19.4% greater than the percentage obtained when using whey which is 7.0%. The pharmaceutical rejection is diluted at various percentages ranging from 5% to 100% in order to study the effect of the concentration on the biosurfactant production. The best result inducing the great reduction of the surface tension value is obtained at the dilution of 30% with the pharmaceutical reject.

Keywords: biosurfactant, pseudomonas luteola, whey, antiscorpionic serum, gas oil

Procedia PDF Downloads 72
3033 Three Dimensional Simulation of the Transient Modeling and Simulation of Different Gas Flows Velocity and Flow Distribution in Catalytic Converter with Porous Media

Authors: Amir Reza Radmanesh, Sina Farajzadeh Khosroshahi, Hani Sadr

Abstract:

The transient catalytic converter performance is governed by complex interactions between exhaust gas flow and the monolithic structure of the catalytic converter. Stringent emission regulations around the world necessitate the use of highly-efficient catalytic converters in vehicle exhaust systems. Computational fluid dynamics (CFD) is a powerful tool for calculating the flow field inside the catalytic converter. Radial velocity profiles, obtained by a commercial CFD code, present very good agreement with respective experimental results published in the literature. However the applicability of CFD for transient simulations is limited by the high CPU demands. In the present work, Geometric modeling ceramic monolith substrate is done with square shaped channel type of Catalytic converter and it is coated platinum and palladium. This example illustrates the effect of flow distribution on thermal response of a catalytic converter and different gas flow velocities, during the critical phase of catalytic converter warm up.

Keywords: catalytic converter, computational fluid dynamic, porous media, velocity distribution

Procedia PDF Downloads 830
3032 Analysis of Critical Success Factors of Six Sigma in Pakistani Small and Medium-Sized Enterprises

Authors: Zanjbeel Tabassum, Cahit Ali Bayraktar, Asfa Muhammad Din, Murat Durucu

Abstract:

Six Sigma is a widely adapted quality improvement methodology applied throughout the world. Through this paper, an attempt has been made to identify Critical Success Factors (CSF) for successful implementation of Six Sigma in Pakistani Small and Medium-sized Enterprises (SMEs). A survey methodology was used to collect the data from SMEs in Pakistan. The results of this exploratory empirical research reflect the importance of different CSFs of Six Sigma implementation in SMEs in Pakistan. On the basis of extracted factors, a framework has been proposed for successful Six Sigma implementation in Pakistani SMEs. This study will provide a base for Pakistani SMEs and future researchers working in Six Sigma implementation and help them to prepare a road map to eradicate the hurdles in Six Sigma implementation.

Keywords: critical success factors, small medium enterprises (SMEs), six sigma, Pakistan

Procedia PDF Downloads 321
3031 Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets

Authors: Abhishek Gandhi, Naresh Bhatnagar

Abstract:

In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing.

Keywords: foams, porous materials, morphology, composite, microscopy, open-cell foams

Procedia PDF Downloads 422
3030 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions

Authors: Varvara Roubtsova, Mohamed Chekired

Abstract:

Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.

Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics

Procedia PDF Downloads 270
3029 The Attitude of Parents and Teachers towards Multilingual Medium of Instruction in Lower Primary School Classrooms: The Case of Kapiri District Schools of Zambia

Authors: E. Machinyise

Abstract:

The main purpose of this study was to investigate the attitudes of parents and teachers towards multilingual medium of instruction in lower primary schools of Zambia. In 2013, the Government of Zambia formulated a language policy which stipulates that regional familiar languages should be used as the medium of instruction (MOI) from grade one to four in all public primary schools, while English is introduced as a subject in the second grade. This study investigated the views of parents and teachers on the use of multilingual medium of instruction in lower primary schools in order to accommodate learners who are not native speakers of regional familiar languages as well as the second languages which are official languages used in class. The study revealed that most parents suggested that teachers who teach lower primary school classes should be conversant with at least the four major local languages of Zambia (Bemba, Nyanja, Tonga and Lozi). In the same vain other parents felt that teachers teaching lower grades should not only be familiar with the regional official language but should be able to speak other dialects found in the region. Teachers teaching in lower primary grade felt that although it is difficult to speak all languages of learners in class, it is important for a teacher of lower grade class to try to accommodate children who are not speakers of the familiar languages by addressing them in the language they understand. Both teachers and parents highlighted a number of advantages of teaching children in their mother tongues. Both qualitative and quantitative methods were used for the collection of data for this study. 30 teachers from selected public primary schools and 20 parents of Kapiri district and five lecturers of teacher training colleges in Central province were selected for this study. The researcher also observed class lessons in lower primary schools of Kapiri district. This study revealed that both parents and teachers are of the views that teachers teaching lower primary classes should use multilingual medium of instruction in lower primary classes so as to accommodated children of different linguistic backgrounds.

Keywords: familiar languages, medium of instruction, multilingual medium of instruction, native speakers

Procedia PDF Downloads 163
3028 Porous Ni Electrodes Modified with Au Nanoparticles for Hydrogen Production

Authors: V. Pérez-Herranz, C. González-Buch, E. M. Ortega, S. Mestre

Abstract:

In this work new macroporous Ni electrodes modified with Au nanoparticles for hydrogen production have been developed. The supporting macroporous Ni electrodes have been obtained by means of the electrodeposition at high current densities. Then, the Au nanoparticles were synthesized and added to the electrode surface. The electrocatalytic behaviour of the developed electrocatalysts was studied by means of pseudo-steady-state polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen discharge curves. The size of the Au synthetized nanoparticles shows a monomodal distribution, with a very sharp band between 10 and 50 nm. The characteristic parameters d10, d50 and d90 were 14, 20 and 31 nm respectively. From Tafel polarization data has been concluded that the Au nanoparticles improve the catalytic activity of the developed electrodes towards the HER respect to the macroporous Ni electrodes. EIS permits to obtain the electrochemically active area by means of the roughness factor value. All the developed electrodes show roughness factor values in the same order of magnitude. From the activation energy results it can be concluded that the Au nanoparticles improve the intrinsic catalytic activity of the macroporous Ni electrodes.

Keywords: Au nano particles, hydrogen evolution reaction, porous Ni electrodes, electrochemical impedance spectroscopy

Procedia PDF Downloads 595
3027 Germination and Bulb Formation of Allium tuncelianum L. under in vitro Condition

Authors: Suleyman Kizil, Tahsin Sogut, Khalid M. Khawar

Abstract:

Genus Allium includes 600 to 750 species and most of these including Allium tuncelianum (Kollman) N. Ozhatay, B. Mathew & Siraneci; Syn; A. macrochaetum Boiss. and Hausskn. subsp. tuncelianum Kollman] or Tunceli garlic is endemic to Eastern Turkish Province of Tunceli and Munzur mountains. They are edible, bear attractive white-to-purple flowers and fertile black seeds with deep seed dormancy. This study aimed to break seed dormancy of Tunceli garlic and determine the conditions for induction of bulblets on these seeds and increase their diameter by culturing them on MS medium supplemented different strengths of KNO3. Tunceli garlic seeds were collected from field grown plants. They were germinated on MS medium with or without 20 g/l sucrose followed by their culture on 1 × 1900 mg/l, 2 × 1900 mg/l, 4 ×1900 mg/l and 6 × 1900 mg/l mg/l KNO3 supplemented with 20 g/l sucrose to increase bulb diameter. Improved seeds germination was noted on MS medium with and without sucrose but with variation compared to previous reports. The bulb development percentage on each of the sprouted seeds was not parallel to the percentage of seed germination. The results showed 34% and 28.5% bulb induction was noted on germinated seeds after 150 and 158 days on MS medium containing 20 g l-1 sucrose and no sucrose respectively showing a delay of 8 days on the latter compared to the former. The results emphatically noted role of cold stratification on agar solidified MS medium supplemented with sucrose to improve seed germination. The best increase in bulb diameter was noted on MS medium containing 1 × 1900 mg/l KNO3 after 178 days with bulblet diameter and bulblet weight of 0.54 cm and 0.048 g, respectively. Consequently, the bulbs induced on sucrose containing MS medium could be transferred to pots earlier. Increased (>1 × 1900 mg/l KNO3) strengths of KNO3 induced negative effect on growth and development of Tunceli garlic bulbs. The strategy of seed germination and bulblet induction reported in this study could be positively used for conservation of this endemic plant species.

Keywords: Tunceli garlic, seed, dormancy, bulblets, bulb growth

Procedia PDF Downloads 246
3026 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, welded medium-walled I-shaped sections

Procedia PDF Downloads 291
3025 The Role of Social Media in Growing Small and Medium Enterprises: An Empirical Study in Jordan

Authors: Hanady Al-Zagheer

Abstract:

The purpose of this paper research is to introduce the role of the social media (face book) in growing small and medium enterprises in Jordan, Today’s developments of information technologies are dazzling. Using information technologies results in having advantages in competition, decreasing costs, gaining time, and getting and sharing information. Now it is possible to state that there are different types of usage within the information technologies. Small and medium enterprises have been grown rapidly in recent years and continue to grow. Jordanian females have played a large role in the growth of entrepreneurship and have made an impact on household economics. Virtual storefronts have allowed these women to balance roles assigned by tradition and culture while becoming successful providers. If you have a small business with a limited public relations and advertising budget, Facebook can be a cost effective way to promote your services because opening an account is free. However, this can work against you if you do not maintain the page. A Face book page without frequent updates can destroy your brand value and image. According to a 2009 Computerworld article by Lisa Hoover, having a Facebook page that looks abandoned is worse than having no page at all. You might need to hire someone or pay an employee to update your business’s Facebook page.

Keywords: social media, social media small, medium enterprises, Jordan

Procedia PDF Downloads 287
3024 Early Adolescents Motivation and Engagement Levels in Learning in Low Socio-Economic Districts in Sri Lanka (Based on T-Tests Results)

Authors: Ruwandika Perera

Abstract:

Even though the Sri Lankan government provides a reasonable level of support for students at all levels of the school system, for example, free education, textbooks, school uniforms, subsidized public transportation, and school meals, low participation in learning among secondary students is an issue warranting investigation, particularly in low socio-economic districts. This study attempted to determine the levels of motivation and engagement amongst students in a number of schools in two low socio-economic districts of Sri Lanka. This study employed quantitative research design in an attempt to determine levels of motivation and engagement amongst Sri Lankan secondary school students. Motivation and Engagement Scale-Junior School (MES-JS) was administered among 100 Sinhala-medium and 100 Tamil-medium eighth-grade students (50 students from each gender). The mean age of the students was 12.8 years. Schools were represented by type 2 government schools located in Monaragala and Nuwara Eliya districts in Sri Lanka. Confirmatory factor analysis (CFA) was conducted to measure the construct validity of the scale. Since this did not provide a robust solution, exploratory factor analysis (EFA) was conducted. Four factors were identified; Failure Avoidance and Anxiety (FAA), Positive Motivation (PM), Uncertain Control (UC), and Positive Engagement (PE). An independent-samples t-test was conducted to compare PM, PE, FAA, and UC in gender and ethnic groups. There was no significant difference identified for PE, FAA, and UC scales based upon gender. These results indicate that for the participants in this study, there were no significant differences based on gender in the levels of failure avoidance and anxiety, uncertain control, and positive engagement in the school experience. But, the result for the PM scale was close to significant, indicating there may be differences based on gender for positive motivation. A significant difference exists for all scales based on ethnicity, with the mean result for the Tamil students being significantly higher than that for the Sinhala students. These results indicate those Sinhala-medium students’ levels of positive motivation and positive engagement in learning was lower than Tamil-medium students. Also, these results indicate those Tamil-medium students’ levels of failure avoidance, anxiety, and uncertain control was higher than Sinhala-medium students. It could be concluded that male students levels of PM were significantly lower than female students. Also, Sinhala-medium students’ levels of PM and PE was lower than Tamil-medium students, and Tamil-medium students levels of FAA and UC was significantly higher than Sinhala-medium students. Thus, there might be particular school-related conditions affecting this situation, which are related to early adolescents’ motivation and engagement in learning.

Keywords: early adolescents, engagement, low socio-economic districts, motivation

Procedia PDF Downloads 140
3023 Economic Policy to Promote small and Medium-sized Enterprises in Georgia in the Post-Pandemic Period

Authors: Gulnaz Erkomaishvili

Abstract:

Introduction: The paper assesses the impact of the COVID-19 pandemic on the activities of small and medium-sized enterprises in Georgia, identifies their problems, and analyzes the state economic policy measures. During the pandemic, entrepreneurs named the imposition of restrictions, access to financial resources, shortage of qualified personnel, high tax rates, unhealthy competition in the market, etc. as the main challenges. The Georgian government has had to take special measures to mitigate the crisis impact caused by the pandemic. For example - in 2020, they mobilized more than 1,6 billion Gel for various eventsto support entrepreneurs. Small and medium-sized entrepreneurship development strategy is presented based on the research; Corresponding conclusions are made, and recommendations are developed. Objectives: The object of research is small and medium-sized enterprises and economic-political decisions aimed at their promotion.Methodology: This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. In-depth interviews with experts were conducted to determine quantitative and qualitative indicators; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions: The COVID-19pandemic has had a significant impact on small and medium-sized enterprises. For them, Lockdown is a major challenge. Total sales volume decreased. At the same time, the innovative capabilities of enterprises and the volume of sales in remote channels have increased. As for the assessment of state support measures by small and medium-sizedentrepreneurs, despite the existence of support programs, a large number of entrepreneurs still do not evaluate the measures taken by the state positively. Among the desirable measures to be taken by the state, which would improve the activities of small and medium-sized entrepreneurs, who negatively or largely negatively assessed the activity of the state, named: tax incentives/exemption from certain taxes at the initial stage; Need for periodic trainings/organization of digital technologies, marketing training courses to improve the qualification of employees; Logic and adequacy of criteria when awarding grants and funding; Facilitating the finding of investors; Less bureaucracy, etc.

Keywords: small and medium enterprises, small and medium entrepreneurship, economic policy for small and medium entrepreneurship development, government regulations in Georgia, COVID-19 pandemic

Procedia PDF Downloads 132
3022 Magneto-Convective Instability in a Horizontal Power-Law Nanofluid Saturated Porous Layer

Authors: Norazuwin Najihah Mat Tahir, Fuziyah Ishak, Seripah Awang Kechil

Abstract:

The onset of the convective instability in the horizontal through flow of a power-law nanofluid saturated by porous layer heated from below under the influences of magnetic field are investigated in this study. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both traveling wave and oscillatory convection. The effects of the power-law index, Lewis number and Peclet number on the stability of the system were investigated. The Lewis number stabilizes while the power-law index and Peclet number destabilize the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field.

Keywords: convection, instability, magnetic field, nanofluid, power-law

Procedia PDF Downloads 239
3021 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium

Authors: P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.

Keywords: Al6061, graphite, passivation, red mud, vortex

Procedia PDF Downloads 510
3020 Application of Medium High Hydrostatic Pressure in Preserving Textural Quality and Safety of Pineapple Compote

Authors: Nazim Uddin, Yohiko Nakaura, Kazutaka Yamamoto

Abstract:

Compote (fruit in syrup) of pineapple (Ananas comosus L. Merrill) is expected to have a high market potential as one of convenient ready-to-eat (RTE) foods worldwide. High hydrostatic pressure (HHP) in combination with low temperature (LT) was applied to the processing of pineapple compote as well as medium HHP (MHHP) in combination with medium-high temperature (MHT) since both processes can enhance liquid impregnation and inactivate microbes. MHHP+MHT (55 or 65 °C) process, as well as the HHP+LT process, has successfully inactivated the microbes in the compote to a non-detectable level. Although the compotes processed by MHHP+MHT or HHP+LT have lost the fresh texture as in a similar manner as those processed solely by heat, it was indicated that the texture degradations by heat were suppressed under MHHP. Degassing process reduced the hardness, while calcium (Ca) contributed to be retained hardness in MHT and MHHP+MHT processes. Electrical impedance measurement supported the damage due to degassing and heat. The color, Brix, and appearance were not affected by the processing methods significantly. MHHP+MHT and HHP+LT processes may be applicable to produce high-quality, safe RTE pineapple compotes. Further studies on the optimization of packaging and storage condition will be indispensable for commercialization.

Keywords: compote of pineapple, RTE, medium high hydrostatic pressure, postharvest loss, texture

Procedia PDF Downloads 105
3019 Performances Analysis and Optimization of an Adsorption Solar Cooling System

Authors: Nadia Allouache

Abstract:

The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.

Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling

Procedia PDF Downloads 421