Search results for: Oyster larvae
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 261

Search results for: Oyster larvae

141 Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring

Authors: Muhammad Arshad, M. Sufian, Muhammad D. Gogi, A. Aslam

Abstract:

The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations.

Keywords: Bt cotton, baseline, Cry1Ac toxins, H. armigera

Procedia PDF Downloads 106
140 Effect of Silicon on Tritrophic Interaction of Cotton, Whitefly and Chrysoperla carnea

Authors: Asim Abbasi, Muhammad Sufyan

Abstract:

The present experiment was carried out to examine the effects of silicon dioxide on tritrophic interaction of cotton, whitefly, and the predator Chrysoperla carnea. Population of whitefly was maintained on silicon treated and non-treated cotton for two generations in greenhouse net cages exposed to outside temperature and luminosity. The cotton was treated with silicon dioxide twice after 15 days intervals with 200 ppm concentration. A stock rearing of the natural predator was developed in the laboratory conditions. In the bioassay eggs of the predator all at the same age were individualized in glass petri plates that will be pierced with a pin to allow aeration and maintained in an incubator at 28 ± 2°C, 70 ± 10% relative humidity and 12h photo phase. Population of whitefly stayed on silicon treated, and non-treated cotton were offered to newly hatched chrysopid larvae until the end of the larval stage, assuring a permanent supply. Feeding preference of C. carnea along with longevity, survival of each instar larvae, pupation, adult emergence, and fecundity was checked. The results revealed that there was no significant difference in the feeding preference of C. carnea among both treatments. Durations of 1st and 2nd larval instar were also at par in both treatments. However overall longevity and adult emergence were a bit lower in silicon treated whitefly treatment. This may be due to the fact that silicon reduces the nutritional quality of host because of reduced whitefly feeding on silicon treated cotton. No significant difference in 1st and 2nd larval instars and then increased larval duration in later instars suggested that the effect of silicon treated host should be checked on more than 1 generation of C. carnea to get better findings.

Keywords: Chrysoperla carnea, silicon, tritrophic, whitefly

Procedia PDF Downloads 151
139 Defense Priming from Egg to Larvae in Litopenaeus vannamei with Non-Pathogenic and Pathogenic Bacteria Strains

Authors: Angelica Alvarez-Lee, Sergio Martinez-Diaz, Jose Luis Garcia-Corona, Humberto Lanz-Mendoza

Abstract:

World aquaculture is always looking for improvements to achieve productions with high yields avoiding the infection by pathogenic agents. The best way to achieve this is to know the biological model to create alternative treatments that could be applied in the hatcheries, which results in greater economic gains and improvements in human public health. In the last decade, immunomodulation in shrimp culture with probiotics, organic acids and different carbon sources has gained great interest, mainly in larval and juvenile stages. Immune priming is associated with a strong protective effect against a later pathogen challenge. This work provides another perspective about immunostimulation from spawning until hatching. The stimulation happens during development embryos and generates resistance to infection by pathogenic bacteria. Massive spawnings of white shrimp L. vannamei were obtained and placed in experimental units with 700 mL of sterile seawater at 30 °C, salinity of 28 ppm and continuous aeration at a density of 8 embryos.mL⁻¹. The immunostimulating effect of three death strains of non-pathogenic bacterial (Escherichia coli, Staphylococcus aureus and Bacillus subtilis) and a pathogenic strain for white shrimp (Vibrio parahaemolyticus) was evaluated. The strains killed by heat were adjusted to O.D. 0.5, at A 600 nm, and directly added to the seawater of each unit at a ratio of 1/100 (v/v). A control group of embryos without inoculum of dead bacteria was kept under the same physicochemical conditions as the rest of the treatments throughout the experiment and used as reference. The duration of the stimulus was 12 hours, then, the larvae that hatched were collected, counted and transferred to a new experimental unit (same physicochemical conditions but at a salinity of 28 ppm) to carry out a challenge of infection against the pathogen V. parahaemolyticus, adding directly to seawater an amount 1/100 (v/v) of the live strain adjusted to an OD 0.5; at A 600 nm. Subsequently, 24 hrs after infection, nauplii survival was evaluated. The results of this work shows that, after 24 hrs, the hatching rates of immunostimulated shrimp embryos with the dead strains of B. subtillis and V. parahaemolyticus are significantly higher compared to the rest of the treatments and the control. Furthermore, survival of L. vanammei after a challenge of infection of 24 hrs against the live strain of V. parahaemolyticus is greater (P < 0.05) in the larvae immunostimulated during the embryonic development with the dead strains B. subtillis and V. parahaemolyticus, followed by those that were treated with E. coli. In summary superficial antigens can stimulate the development cells to promote hatching and can have normal development in agreeing with the optical observations, plus exist a differential response effect between each treatment post-infection. This research provides evidence of the immunostimulant effect of death pathogenic and non-pathogenic bacterial strains in the rate of hatching and oversight of shrimp L. vannamei during embryonic and larval development. This research continues evaluating the effect of these death strains on the expression of genes related to the defense priming in larvae of L. vannamei that come from massive spawning in hatcheries before and after the infection challenge against V. parahaemolyticus.

Keywords: immunostimulation, L. vannamei, hatching, survival

Procedia PDF Downloads 115
138 Effectiveness Assessment of a Brazilian Larvicide on Aedes Control

Authors: Josiane N. Muller, Allan K. R. Galardo, Tatiane A. Barbosa, Evan P. Ferro, Wellington M. Dos Santos, Ana Paula S. A. Correa, Edinaldo C. Rego, Jose B. P. Lima

Abstract:

The susceptibility status of an insect population to any larvicide depends on several factors such includes genetic constitution, environmental conditions and others. The mosquito Aedes aegypti is the primary vector of three important viral diseases, Zika, Dengue, and Chikungunya. The frequent outbreaks of those diseases in different parts of Brazil demonstrate the importance of testing the susceptibility of vectors in different environments. Since the control of this mosquito leads to the control of disease, alternatives for vector control that value the different Brazilian environmental conditions are needed for effective actions. The aim of this study was to evaluate a new commercial formulation of Bacillus thuringiensis israelenses (DengueTech: Brazilian innovative technology) in the Brazilian Legal Amazon considering the climate conditions. Semi-field tests were conducted in the Institute of Scientific and Technological Research of the State of Amapa in two different environments, one in a shaded area and the other exposed to sunlight. The mosquito larvae were exposed to larvicide concentration and a control; each group was tested in three containers of 40 liters each. To assess persistence 50 third instar larvae of Aedes aegypti laboratory lineages (Rockefeller) and 50 larvae of Aedes aegypti collected in the municipality of Macapa, Brazil’s Amapa state, were added weekly and after 24 hours the mortality was assessed. In total 16 tests were performed, where 12 were done with replacement of water (1/5 of the volume, three times per week). The effectiveness of the product was determined through mortality of ≥ 80%, as recommend by the World Health Organization. The results demonstrated that high-water temperatures (26-35 °C) on the containers influenced the residual time of the product, where the maximum effect achieved was 21 days in the shaded area; and no effectiveness of 60 days was found in any of the tests, as expected according to the larvicide company. The test with and without water replacement did not present significant differences in the mortality rate. Considering the different environments and climate, these results stimulate the need to test larvicide and its effectiveness in specific environmental settings in order to identify the parameters required for better results. Thus, we see the importance of semi-field researches considering the local climate conditions for a successful control of Aedes aegypti.

Keywords: Aedes aegypti, bioassay, larvicida, vector control

Procedia PDF Downloads 102
137 Metabolic Costs and Chemical Profiles of Wax Production in Cryptolaemus montrouzieri and Tenuisvalvae notata

Authors: Nataly De La Pava, Christian S. A. Silva-Torres, Arodí P. Favaris, José Maurício S. Bento

Abstract:

The lady beetles Tenuisvalve notata and Cryptolaemus montrouzieri are important predators of mealybugs (Hemiptera: Pseudococcidae). Similar to the prey, these lady beetles produce wax filaments that cover their body during the larval stage. It has been hypothesized that lady beetle body wax chemical profiles are similar to their prey as i) a mechanism of camouflage and ii) conveying protection to the lady beetle larvae against aphid-tending predatory ants. In this study, we tested those hypotheses for the predators T. notata and C. montrouzieri and two mealybug prey species, Ferissia dasyrilii, and Planococcus citri. Next, we evaluated the influence of feeding on cuticular chemistry during predator development and identified possible metabolic costs associated with wax production. Cuticular wax samples were analyzed by GC-MS and GC-FID. Also, the metabolic cost linked to wax production was evaluated in the 4th instar larvae of the two predators when subjected to body wax removal from 0 to 4 times. Results showed that predator body wax profiles are not similar to the chemical profile of prey body wax. There was a metabolic cost associated with wax removal; predators (male and female) showed a significant reduction in adult body weight when the wax was removed. This suggests the reallocation of energy to wax replacement instead of growth. In addition, it was detected effects of wax removal on fecundity and egg viability. The results do not support the hypothesis that predators mimic the cuticular wax composition of prey as a means of camouflage.

Keywords: biological control, body wax, coccinellids, cuticular hydrocarbons, metabolism cost, reproduction

Procedia PDF Downloads 54
136 Urogenital Myiasis in Pregnancy - A Rare Presentation

Authors: Madeleine Elder, Aye Htun

Abstract:

Background: Myiasis is the parasitic infestation of body tissues by fly larvae. It predominantly occurs in poor socioeconomic regions of tropical and subtropical countries where it is associated with poor hygiene and sanitation. Cutaneous and wound myiasis are the most common presentations whereas urogenital myiasis is rare, with few reported cases. Case: a 26-year-old primiparous woman with a low-risk pregnancy presented to the emergency department at 37+3-weeks’ gestation after passing a 2cm black larva during micturition, with 2 weeks of mild vulvar pruritus and dysuria. She had travelled to India 9-months prior. Examination of the external genitalia showed small white larvae over the vulva and anus and a mildly inflamed introitus. Speculum examination showed infiltration into the vagina and heavy white discharge. High vaginal swab reported Candida albicans. Urine microscopy reported bacteriuria with Enterobacter cloacae. Urine parasite examination showed myiasis caused by Clogmia albipunctata species of fly larvae from the family Psychodidae. Renal tract ultrasound and inflammatory markers were normal. Infectious diseases, urology and paediatric teams were consulted. The woman received treatment for her urinary tract infection (which was likely precipitated by bladder irritation from local parasite infestation) and vaginal candidiasis. She underwent daily physical removal of parasites with cleaning, speculum examination and removal, and hydration to promote bladder emptying. Due to the risk of neonatal exposure, aspiration pneumonitis and facial infestation, the woman was steroid covered and proceeded to have an elective caesarean section at 38+3-weeks’ gestation, with delivery of a healthy infant. She then proceeded to have a rigid cystoscopy and washout, which was unremarkable. Placenta histopathology revealed focal eosinophilia in keeping with the history of maternal parasites. Conclusion: Urogenital myiasis is very rare, especially in the developed world where it is seen in returned travellers. Treatment may include systemic therapy with ivermectin and physical removal of parasites. During pregnancy, physical removal is considered the safest treatment option, and discussion around the timing and mode of delivery should consider the risk of harm to the foetus.

Keywords: urogenital myiasis, parasitic infection, infection in pregnancy, returned traveller

Procedia PDF Downloads 96
135 Predatory Potential of Coccinella septempunctata Linnaeus and Coccinella undecimpunctata Linnaeus on Different Prey Species

Authors: Adnan A. E. Darwish

Abstract:

The predatory potential and preference of both larvae and adult of seven-spot ladybird, Coccinella septempunctata Linnaeus and the eleven-spot ladybird, Coccinella undecimpunctata Linnaeus to the green peach aphid, Myzus persicae (Sulzer), the cotton aphid, Aphis gossypii Glover, the bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus) and onion thrips, Thrips tabaci Lindeman were investigated under laboratory conditions at varying prey densities at faculty of Agriculture, Damanhour university, Egypt. There were significant differences between the consumed numbers of the four different species by the two different lady beetle species. The most consumed prey by C. septempunctata was the A. gossypii followed by R. padi then M. persicae and finally T. tabaci and these results were repeated in case of C. undecimpunctata. As the grubs of C. septempunctata and C. undecimpunctata developed from 1st to 4th larval instars, the consumption rate from aphid species and thrips increased. The consumption rate of M. persicae, A. gossypii, R. padi and T. tabaci significantly increased with the advancement in the larval stage of the predator. The forth larval instar of C. septempunctata and C. undecimpunctata exhibited the highest predatory potential comparing to the first, second and third larval instars. The number of prey eaten by adult stage or different instars of larvae of the two predators increased significantly with prey density, reaching the maximum value when 150 preys were provided compared with 50 and 100 preys.

Keywords: predatory potential, Coccinella septempunctata, Coccinella undecimpunctata, Thrips tabaci, Myzus persicae, Aphis gossypii, Rhopalosiphum padi

Procedia PDF Downloads 111
134 Screening for Larvicidal Activity of Aqueous and Ethanolic Extracts of Fourteen Selected Plants and Formulation of a Larvicide against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) Larvae

Authors: Michael Russelle S. Alvarez, Noel S. Quiming, Francisco M. Heralde

Abstract:

This study aims to: a) obtain ethanolic (95% EtOH) and aqueous extracts of Selaginella elmeri, Christella dentata, Elatostema sinnatum, Curculigo capitulata, Euphorbia hirta, Murraya koenigii, Alpinia speciosa, Cymbopogon citratus, Eucalyptus globulus, Jatropha curcas, Psidium guajava, Gliricidia sepium, Ixora coccinea and Capsicum frutescens and screen them for larvicidal activities against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) larvae; b) to fractionate the most active extract and determine the most active fraction; c) to determine the larvicidal properties of the most active extract and fraction against by computing their percentage mortality, LC50, and LC90 after 24 and 48 hours of exposure; and d) to determine the nature of the components of the active extracts and fractions using phytochemical screening. Ethanolic (95% EtOH) and aqueous extracts of the selected plants will be screened for potential larvicidal activity against Ae. aegypti and Ae. albopictus using standard procedures and 1% malathion and a Piper nigrum based ovicide-larvicide by the Department of Science and Technology as positive controls. The results were analyzed using One-Way ANOVA with Tukey’s and Dunnett’s test. The most active extract will be subjected to partial fractionation using normal-phase column chromatography, and the fractions subsequently screened to determine the most active fraction. The most active extract and fraction were subjected to dose-response assay and probit analysis to determine the LC50 and LC90 after 24 and 48 hours of exposure. The active extracts and fractions will be screened for phytochemical content. The ethanolic extracts of C. citratus, E. hirta, I. coccinea, G. sepium, M. koenigii, E globulus, J. curcas and C. frutescens exhibited significant larvicidal activity, with C. frutescens being the most active. After fractionation, the ethyl acetate fraction was found to be the most active. Phytochemical screening of the extracts revealed the presence of alkaloids, tannins, indoles and steroids. A formulation using talcum powder–300 mg fraction per 1 g talcum powder–was made and again tested for larvicidal activity. At 2 g/L, the formulation proved effective in killing all of the test larvae after 24 hours.

Keywords: larvicidal activity screening, partial purification, dose-response assay, capsicum frutescens

Procedia PDF Downloads 302
133 Impact of Mixed Prey Population on Predation Potential and Food Preference of a Predaceous Ladybird, Coccinella septempunctata

Authors: Ahmad Pervez

Abstract:

We investigated predation potential and food preference of different life stages of a predaceous ladybird Coccinella septempunctata L. (Coleptera: Coccinellidae) using a nutritive food (mustard aphid, Lipaphis erysimi) and a toxic food (cabbage aphid, Brevicoryne brassicae). We gave monotypic prey, L. erysimi, then B. brassicae to all life stages and found that second, third and fourth instars and adult female C. septempunctata daily consumed greater number of former prey. However, the first instar and the adult male equally consumed both the prey. In choice condition, each larva, adult male and female consumed mixed aphid diet separately in three proportions (i.e. low: high, equal: equal and high: low densities of L. erysimi: B. brassicae). We hypothesized that life stages of C. septempunctata will prefer L. erysimi regardless of its proportions. Laboratory experiment supported this hypothesis only at the adult level showing high values of β and C preference indices. However, it rejects this hypothesis at the larval level, as larvae preferred B. brassicae in certain combinations and showed no preference in a few combinations. We infer that mixing of nutritive diet in a toxic diet may possibly overcome the probable nutritive deficiency and/or reduces the toxicity of toxic diet, especially to the larvae of C. septempunctata. Consumption of high proportion of B. brassicae mixed with fewer L. erysimi suggests that mixed diet could be better for the development of immature stages of C. septempunctata.

Keywords: Coccinella septempunctata, predatory potential, prey preference, Lipaphis erysimi, Brevicoryne brassicae

Procedia PDF Downloads 164
132 In Vivo Evaluation of Exposure to Electromagnetic Fields at 27 GHz (5G) of Danio Rerio: A Preliminary Study

Authors: Elena Maria Scalisi, Roberta Pecoraro, Martina Contino, Sara Ignoto, Carmelo Iaria, Santi Concetto Pavone, Gino Sorbello, Loreto Di Donato, Maria Violetta Brundo

Abstract:

5G Technology is evolving to satisfy a variety of service requirements that may allow high data-rate connections (1Gbps) and lower latency times than current (<1ms). In order to support a high data transmission speed and a high traffic service for eMBB (enhanced mobile broadband) use cases, 5G systems have the characteristic of using different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus taking advantage of higher frequencies than previous mobile radio generations (1G-4G). However, waves at higher frequencies have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern over the past few months about possible harmful effects on human health. The aim of this preliminary study is to evaluate possible short term effects induced by 5G-millimeter waves on embryonic development and early life stages of Danio rerio by Z-FET. We exposed developing zebrafish at frequency of 27 GHz, with a standard pyramidal horn antenna placed at 15 cm far from the samples holder ensuring an incident power density of 10 mW/cm2. During the exposure cycle, from 6 h post fertilization (hpf) to 96 hpf, we measured a different morphological endpoints every 24 hours. Zebrafish embryo toxicity test (Z-FET) is a short term test, carried out on fertilized eggs of zebrafish and it represents an effective alternative to acute test with adult fish (OECD, 2013). We have observed that 5G did not reveal significant impacts on mortality nor on morphology because exposed larvae showed a normal detachment of the tail, presence of heartbeat, well-organized somites, therefore hatching rate was lower than untreated larvae even at 48 h of exposure. Moreover, the immunohistochemical analysis performed on larvae showed a negativity to the HSP-70 expression used as a biomarkers. This is a preliminary study on evaluation of potential toxicity induced by 5G and it seems appropriate to underline the importance that further studies would take, aimed at clarifying the probable real risk of exposure to electromagnetic fields.

Keywords: Biomarker of exposure, embryonic development, 5G waves, zebrafish embryo toxicity test

Procedia PDF Downloads 96
131 Evaluation of Stable Isotope in Life History and Mating Behaviour of Mediterranean Fruit Fly Ceratitis capitata (Diptera: Tephidae) in Laboratory Conditions

Authors: Hasan AL-Khshemawee, Manjree Agarwal, Xin Du, Yonglin Ren

Abstract:

The possibility use of stable isotopes to study Medfly mating and life history were investigated in these experiments. 13C6 glucose was incorporated in the diet of the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephidae). Treatments included labelling and unlabelled of either the media or adult sugar water. The measured started from egg hatching till the adults have died. After mating, the adults were analysed for 13C6 glucose ratio using Liquid chromatography-mass spectrometry LC-MS in two periods of time immediately and after three days of mating. Results showed that stable isotopes were used successfully for labelling Medfly in laboratory conditions, and there were significant differences between labelled and unlabelled treatment in eggs hatching, larval development, pupae emergence, survival of adults and mating behaviour. Labelling during larval development and combined labelling of larvae and adults resulted in detectable values. The label glucose in larvae stage did not effect on mating behaviour, however, the label glucose in adults’ stage was affected by mating behaviour. We recommended that it is possible to label adults of Mediterranean fruit fly C. capitata and detected the label after mating. This method offers good tools to study mating behaviour in Medfly and other types of insects and could be providing useful tools in genetic studies, sterile insect technique (SIT) or agricultural pest management. Also, we recommended using this technique in the field.

Keywords: stable isotope, sterile insect technique (SIT), medfly, mating behaviour

Procedia PDF Downloads 222
130 Malaria Vector Situation in Tanjung Subdistrict, West Lombok Regency, West Nusa Tenggara Province, Indonesia

Authors: Subagyo Yotopranoto, Sri Wijayanti Sulistyawati, Sukmawati Basuki, Budi Armika, Yoes Prijatna Dachlan

Abstract:

Malaria is a parasitic infectious disease that still remains a health problem in the world, including Indonesia. There is an outbreak happen at West Nusa Tenggara in 2007. A tourist spot in West Nusa Tenggara called West Lombok is mesoendemic area for malaria. Tanjung is the highest malaria morbidity subdistrict in West Lombok. Thus, the research conducted for the presence of a new species of malaria vectors, that are suspected of one factors which caused high morbidity of malaria in this region. The study was conducted in coastal and highland areas. We collected and identified Anopheles larvae from their breeding places. We also collected and identified Anopheles adult mosquitoes with outdoor cow net, indoor and outdoor human bait. In coastal area (Tembobor village), we found Anopheles vagus larvae from rivers as its breeding places. In highland area (Dasan Tengah village), we found An. subpictus from pool, lagoon, and river as its breeding places. In coastal area, with outdoor human bait, we collected An. vagus and An. subpictus adult mosquitoes. With indoor human bait, we collected An. subpictus adult mosquitoes. Whereas with outdoor cow net, we collected An. subpictus and An. maculatus, the first was more dominant. Furthermore, An subpictus strong suspected as malaria vector in coastal area. Anopheles subpictus was an anthropozoophylic mosquitoes, because it was found at indoor and outdoor places.

Keywords: malaria, vector, Tanjung, West Nusa Tenggara

Procedia PDF Downloads 342
129 Effect of Bacillus thuringiensis israelensis against Culex pipiens (Insect: Culicidae) Effect of Bti on Two Non-Target Species Eylais hamata (Acari: Hydrachnidia) and Physa marmorata (Gastropoda: Physidae) and Dosage of Their GST Biomarker

Authors: Meriem Mansouri, Fatiha Bendali Saoudi, Noureddine Soltani

Abstract:

Biological control presents a means of control for the protection of the environment. Bacillus thuringiensis israelensis Berliner 1915 is an inseticide of biological origin because it is a bacterium of the Bacillaceae family. This biocide has a biological importance, because of its specific larvicidal action against Culicidae, blood-sucking insects, responsible for several diseases to humans and animals through the world. As well as, its high specificity for these insects. Also, the freshwater mites, this necessarily parasitic group for aquatic species such as the Physidae, also have an effective biological control against the Culicidae, because of their voracious predation to the larvae of these insects. The present work aims to study the effects of the biocide Bacillus thuringiensis var israelinsis, against non-target adults of water mites Eylais hamata Koenike, 1897, as well as its associated host species Physa marmorata Fitzinger, 1833. After 12 days of oral treatment of adults with lethal concentration (LC50:0.08µg/ml), determined from essays on 4th instar larvae of Culex pipiens (hematophagous insects). No adverse effect has been recorded for adult individuals of Eylais hamata, contrary, snail Physa marmorata were sensitive for this dose of Bti. In parallel, after treatment at the Bti by LC50, the enzyme stress bio marker glutathione S-transferase, was measured after 24, 48 and 72 hours. The enzymatic activity of GST has increased after 24 and 48 hours following treatment.

Keywords: biological control, Bacillus thuringiensis var israelinsis, culicidae, hydrachnidia, enzymatic activity

Procedia PDF Downloads 628
128 Differential Expression Analysis of Busseola fusca Larval Transcriptome in Response to Cry1Ab Toxin Challenge

Authors: Bianca Peterson, Tomasz J. Sańko, Carlos C. Bezuidenhout, Johnnie Van Den Berg

Abstract:

Busseola fusca (Fuller) (Lepidoptera: Noctuidae), the maize stem borer, is a major pest in sub-Saharan Africa. It causes economic damage to maize and sorghum crops and has evolved non-recessive resistance to genetically modified (GM) maize expressing the Cry1Ab insecticidal toxin. Since B. fusca is a non-model organism, very little genomic information is publicly available, and is limited to some cytochrome c oxidase I, cytochrome b, and microsatellite data. The biology of B. fusca is well-described, but still poorly understood. This, in combination with its larval-specific behavior, may pose problems for limiting the spread of current resistant B. fusca populations or preventing resistance evolution in other susceptible populations. As part of on-going research into resistance evolution, B. fusca larvae were collected from Bt and non-Bt maize in South Africa, followed by RNA isolation (15 specimens) and sequencing on the Illumina HiSeq 2500 platform. Quality of reads was assessed with FastQC, after which Trimmomatic was used to trim adapters and remove low quality, short reads. Trinity was used for the de novo assembly, whereas TransRate was used for assembly quality assessment. Transcript identification employed BLAST (BLASTn, BLASTp, and tBLASTx comparisons), for which two libraries (nucleotide and protein) were created from 3.27 million lepidopteran sequences. Several transcripts that have previously been implicated in Cry toxin resistance was identified for B. fusca. These included aminopeptidase N, cadherin, alkaline phosphatase, ATP-binding cassette transporter proteins, and mitogen-activated protein kinase. MEGA7 was used to align these transcripts to reference sequences from Lepidoptera to detect mutations that might potentially be contributing to Cry toxin resistance in this pest. RSEM and Bioconductor were used to perform differential gene expression analysis on groups of B. fusca larvae challenged and unchallenged with the Cry1Ab toxin. Pairwise expression comparisons of transcripts that were at least 16-fold expressed at a false-discovery corrected statistical significance (p) ≤ 0.001 were extracted and visualized in a hierarchically clustered heatmap using R. A total of 329,194 transcripts with an N50 of 1,019 bp were generated from the over 167.5 million high-quality paired-end reads. Furthermore, 110 transcripts were over 10 kbp long, of which the largest one was 29,395 bp. BLAST comparisons resulted in identification of 157,099 (47.72%) transcripts, among which only 3,718 (2.37%) were identified as Cry toxin receptors from lepidopteran insects. According to transcript expression profiles, transcripts were grouped into three subclusters according to the similarity of their expression patterns. Several immune-related transcripts (pathogen recognition receptors, antimicrobial peptides, and inhibitors) were up-regulated in the larvae feeding on Bt maize, indicating an enhanced immune status in response to toxin exposure. Above all, extremely up-regulated arylphorin genes suggest that enhanced epithelial healing is one of the resistance mechanisms employed by B. fusca larvae against the Cry1Ab toxin. This study is the first to provide a resource base and some insights into a potential mechanism of Cry1Ab toxin resistance in B. fusca. Transcriptomic data generated in this study allows identification of genes that can be targeted by biotechnological improvements of GM crops.

Keywords: epithelial healing, Lepidoptera, resistance, transcriptome

Procedia PDF Downloads 164
127 Antifeedant Activity of Plant Extracts on the Spongy Moth (Lymantria dispar) Larvae

Authors: Jovana M. Ćirković, Aleksandar M. Radojković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković

Abstract:

The protection of forests is a national interest and of strategic importance in every country. The spongy moth (Lymantria dispar) is a damaging invasive pest that can weaken and destroy trees by defoliating them. Chemical pesticides commonly used to protect forests against spongy moths not only have a negative impact on terrestrial and aquatic organisms/ecosystems but also often fail to provide significant protection. Therefore, many eco-friendly alternatives have been considered. Within this research, a new biopesticide was developed based on the method of nanoencapsulation of plant extracts in a biopolymer matrix, which provides a slow release of the active components during a substantial time period. The antifeedant activity of plant extracts of common (Fraxinus excelsior L.), manna (F. ornus L.) ash tree, and the tree of heaven Ailanthus altissima (Mill.) was tested on the spongy moth (Lymantria dispar L, 1758) larvae. To test the antifeedant activity of these compounds, the choice and non-choice tests in laboratory conditions for different plant extract concentrations (0.01, 0.1, 0.5, and 1 % v/v) were carried out. In both cases, the best results showed formulations based on the tree of heaven and common ash for the concentration of 1%, with deterioration indices of 163 and 132, respectively. The main benefit of these formulations is their versatility, effectiveness, prolonged effect, and because they are completely environmentally acceptable. Therefore, they can be considered for suppression of the spongy moth in forest ecosystems.

Keywords: Ailanthus altissima (Mill.), Fraxinus excelsior L., encapsulation, Lymantria dispar

Procedia PDF Downloads 37
126 In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model

Authors: Iñaki Iturria, Pasquale Russo, Montserrat Nacher-Vázquez, Giuseppe Spano, Paloma López, Miguel Angel Pardo

Abstract:

Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level.

Keywords: gnotobiotic, immune system, lactic acid bacteria, probiotics, zebrafish

Procedia PDF Downloads 294
125 Antifungal Susceptibility of Saprolegnia parasitica Isolated from Rainbow Trout and Its Host Pathogen Interaction in Zebrafish Disease Model

Authors: Sangyeop Shin, D. C. M. Kulatunga, S. H. S. Dananjaya, Chamilani Nikapitiya, Jehee Lee, Mahanama De Zoysa

Abstract:

Saprolegniasis is one of the most devastating fungal diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated fungi belong to the member of S. parasitica, supported by its typical fungal features including cotton-like whitish mycelium, zoospores (primary and secondary) and phylogenetic analysis with internal transcribed spacer (ITS) region. Pathogenicity of isolated S. parasitica was developed in embryo, larvae, juvenile and adult zebrafish as a disease model. Up regulation of host genes encoding ZfTnf-α, Zfc-Rel, ZfIl-12, ZfLyz-c, Zfβ-def, and ZfHsp-70 was identified in zebrafish larvae after experimental challenge of S. parasitica showing the host immune responses against the S. parasitica. Survival of the juveniles upon fungal infection might be due to the increased immune protection in the host. Investigation of antifungal susceptibility of S. parasitica with natural lawsone (2-hydroxy-1,4-naphthoquinone) revealed the minimum inhibitory concentration (MIC) and percentage inhibition of radial growth (PIRG %) as 200 µg/mL and 31.8%, respectively. Lawsone was able to change the membrane permeability, and cause irreversible damage and disintegration to the cellular membranes of S. parasitica which might have effect on fungi growth inhibition. Moreover, the mycelium exposed to lawsone (MIC level) changed the transcriptional responses of S. parasitica genes. Overall results indicate that lawsone could be a potential and novel anti-S. parasitica agent for controlling S. parasitica infection.

Keywords: host-pathogen interactions, lawsone, rainbow trout, Saprolegnia parasitica, Saprolegniasis, zebrafish

Procedia PDF Downloads 220
124 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models

Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru

Abstract:

Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.

Keywords: maize, stem borers, density, RapidEye, GLM

Procedia PDF Downloads 464
123 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays

Procedia PDF Downloads 112
122 Evaluation of a Chitin Synthesis Inhibitor Novaluron in the Shrimp Palaemon Adspersus: Impact on Ecdysteroids and Chitin Contents

Authors: Hinda Berghiche, Hamida Benradia, Noureddine Soltani

Abstract:

Pesticides are widely used in crop production and are known to induce a major contamination of ecosystems especially in aquatic environments. The leaching of a large amount of pollutants derived from agricultural activities (fertilizers, pesticides) might contaminate rivers which diverse into the likes and estuarine and coastal environments affecting several organisms such as crustacean species. In this context, there is searched for new selective insecticides with minimal toxic effects on the environment and human health such as growth insect regulators (GIRs). The current study aimed to examine the impact of novaluron (CE 20%), a potent benzoylphenylurea derivative insecticide on mosquito larvae, against non-target shrimp, Palaemon adspersus (Decapoda, Palaemonidae). The compound was tested at two concentrations (0.91 mg/L and 4.30 mg/L) corresponding respectively to the LC50 and LC90 determined against fourth-instar larvae of Culiseta longiareolata (Diptera, Culicidae). The molting hormone titer was determined in the haemolymph by an enzyme-immunoassay, while chitin was measured in peripheral integument at different stages during the molting cycle. Under normal conditions, the haemolymphatic ecdysteroid concentrations increased during the molting cycle to reach peak at stage D. In the treated series, we note absence of the peak at stage D and an increase at stages B, C and D as compared to the controls. Concerning the chitin amounts, we observe an increase from stage A to stage C followed by a decrease at stage D. Exposition of shrimps to novaluron resulted in a significant decrease of values at all molting stages with a dose-response effect. Thus, the insecticide can present secondary effects on this non-target arthropod species.

Keywords: toxicology, novaluron, crustacean, palaemon adspersus, ecdysteroids, cuticle, chitin

Procedia PDF Downloads 223
121 Toxicity Evaluation of Reduced Graphene Oxide on First Larval Stages of Artemia sp.

Authors: Roberta Pecoraro

Abstract:

The focus of this work was to investigate the potential toxic effect of titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites on nauplii of microcrustacean Artemia sp. In order to assess the nanocomposite’s toxicity, a short-term test was performed by exposing nauplii to solutions containing TiO₂-rGO. To prepare titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites, a green procedure based on solar photoreduction was proposed; it allows to obtain the photocatalysts by exploiting the photocatalytic properties of titania activated by the solar irradiation in order to avoid the high temperatures and pressures required for the standard hydrothermal synthesis. Powders of TiO₂-rGO supplied by the Department of Chemical Sciences (University of Catania) are indicated as TiO₂-rGO at 1% and TiO₂-rGO at 2%. Starting from a stock solution (1mg rGO-TiO₂/10 ml ASPM water) of each type, we tested four different concentrations (serial dilutions ranging from 10⁻¹ to 10⁻⁴ mg/ml). All the solutions have been sonicated for 12 min prior to use. Artificial seawater (called ASPM water) was prepared to guarantee the hatching of the cysts and to maintain nauplii; the durable cysts used in this study, marketed by JBL (JBL GmbH & Co. KG, Germany), were hydrated with ASPM water to obtain nauplii (instar II-III larvae). The hatching of the cysts was carried out in the laboratory by immersing them in ASPM water inside a 500 ml beaker and keeping them constantly oxygenated thanks to an aerator for the insufflation of microbubble air: after 24-48 hours, the cysts hatched, and the nauplii appeared. The nauplii in the second and third stages of development were collected one-to-one, using stereomicroscopes, and transferred into 96-well microplates where one nauplius per well was added. The wells quickly have been filled with 300 µl of each specific concentration of the solution used, and control samples were incubated only with ASPM water. Replication was performed for each concentration. Finally, the microplates were placed on an orbital shaker, and the tests were read after 24 and 48 hours from inoculating the solutions to assess the endpoint (immobility/death) for the larvae. Nauplii that appeared motionless were counted as dead, and the percentages of mortality were calculated for each treatment. The results showed a low percentage of immobilization both for TiO₂-rGO at 1% and TiO₂-rGO at 2% for all concentrations tested: for TiO₂-rGO at 1% was below 12% after 24h and below 15% after 48h; for TiO₂-rGO at 2% was below 8% after 24h and below 12% after 48h. According to other studies in the literature, the results have not shown mortality nor toxic effects on the development of larvae after exposure to rGO. Finally, it is important to highlight that the TiO₂-rGO catalysts were tested in the solar photodegradation of a toxic herbicide (2,4-Dichlorophenoxyacetic acid, 2,4-D), obtaining a high percentage of degradation; therefore, this alternative approach could be considered a good strategy to obtain performing photocatalysts.

Keywords: Nauplii, photocatalytic properties, reduced GO, short-term toxicity test, titanium dioxide

Procedia PDF Downloads 155
120 High Temperature Tolerance of Chironomus Sulfurosus and Its Molecular Mechanisms

Authors: Tettey Afi Pamela, Sotaro Fujii, Hidetoshi Saito, Kawaii Koichiro

Abstract:

Introduction: Organisms employ adaptive mechanisms when faced with any stressor or risk of being wiped out. This has made it possible for them to survive in harsh environmental conditions such as increasing temperature, low pH, and anoxia. Some of the mechanisms they utilize include the expression of heat shock proteins, synthesis of cryoprotectants, and anhydrobiosis. Heat shock proteins (HSPs) have been widely studied to determine their involvement in stress tolerance among various organism, of which chironomid species have been no exception. We examined the survival and expression of genes encoding five (5) heat shock proteins (HSP70, HSP67, HSP60, HSP27, and HSP23) from Chironomus sulfurosus larvae reared from 1st instar at 25°C, 30°C, 35°C, and 40°C. Results: The highest survival rate was recorded at 30°C, followed by 25°C, then 35°C. Only a small percentage of C. sulfurosus survived at 40°C (14.5%). With regards to HSPs expression, some HSPs responded to an increase in high temperature. The relative expression levels were lowest at 30°C for HSP70, HSP60, HSP27, and HSP23. At 25°C and 40°C, HSP70, HSP67, HSP60, HSP27, and HSP23 had the highest expression. At 35°C, all had the lowest expression. Discussion: The expression of heat shock proteins varies from one species to another. We designated the genes HSP 70, HSP 67, HSP 60, HSP 27, and HSP 23 genes based on transcriptome analysis of C. sulfurosus. Our study can be termed as a long-heat shock study as C. sulfurosus was reared from the first instar to the fourth instar, and this might have led to a continuous induction of HSPs at 25°C. 40°C had the lowest survival but highest HSPs expression as C. sulfurosus larvae had to utilize HSPs for sustenance. These results and future high-throughput studies at both the transcriptome and proteome level will improve the information needed to predict the future geographic distribution of these species within the context of global warming.

Keywords: chironomid, heat shock proteins, high temperature, heat shock protein expression

Procedia PDF Downloads 72
119 Effect of Different Temperatures and Cold Storage on Pupaes Apanteles gelechiidivoris Marsh (Hymenoptera: Braconidae) Parasitoid of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)

Authors: Jessica Morales Perdomo, Daniel Rodriguez Caicedo, Fernando Cantor Rincon

Abstract:

Tuta absoluta known as the tomato leaf miner, is one of the main pests in tomato crops in South America and the main pest in many European countries. Apanteles gelechiidivoris is a parasitoid of third instar Tuta absoluta larvae. Our studies have demonstrated that this parasitoid can cause up to 80% mortality of T. absoluta larvae in the field. We investigated cold storage of A. gelechiidivoris pupae as a method of mass production of this parasitoid. This storage method does not interfere with biological characteristics of the parasitoid. In this study, we evaluated the effect of different temperatures (4, 8 and 12°C) and different time duration (7, 14, 21 or 28 days) of cold storage on biological parameters of A. gelechiidivoris pupae and adults. The biological parameters of the parasitoid evaluated were: adult emergence time, lifespan, parasitism percentage and sex ratio. We found that the adult emergence time was delayed when the parasitoid pupae were stored at 4°C and 8°C. The shortest adult emergence was recorded when pupae were stored for seven days. The lowest adult emergence was found for pupae stored at 4°C and decreased significantly as the days of storage increased. We found high percentages of adult emergence when pupae were stored at 8°C and 12°C for seven days. Adult lifespan decreased with increasing days of cold storage. Adults emerging from pupae stored at 8°C during seven and 14 days showed the longest lifespan (nine days). The lowest parasitism rate was recorded at 4°C at every time point. The highest percentage of parasitism (80%) was found at 8°C during seven days of storage. The treatments had no effect on adults the sex ratio. The results suggest that A. gelechiidivoris pupae can be stored for up to 14 days at 8°C without affecting the efficacy of the parasitoid in the field.

Keywords: biological control, cold storage, massive rearing, quality control

Procedia PDF Downloads 337
118 Anisakidosis in Turkey: Serological Survey and Risk for Humans

Authors: E. Akdur Öztürk, F. İrvasa Bilgiç, A. Ludovisi , O. Gülbahar, D. Dirim Erdoğan, M. Korkmaz, M. Á. Gómez Morales

Abstract:

Anisakidosis is a zoonotic human fish-borne parasitic disease caused by accidental ingestion of anisakid third-stage larvae (L3) of members of the Anisakidae family present in infected marine fish or cephalopods. Infection with anisakid larvae can lead to gastric, intestinal, extra-gastrointestinal and gastroallergic forms of the disease. Anisakid parasites have been reported in almost all seas, particularly in the Mediterranean Sea. There is a remarkably high level of risk exposure to these zoonotic parasites as they are present in economically and ecologically important fish of Europe. Anisakid L3 larvae have been also detected in several fish species from the Aegean Sea. Turkey is a peninsular country surrounded by Black, Aegean and the Mediterranean Sea. In this country, fishing habit and fishery product consumption are highly common. In recent years, there was also an increase in the consumption of raw fish due to the increasing interest in the cuisine of the Far East countries. In different regions of Turkey, A. simplex (inMerluccius Merluccius Scomber japonicus, Trachurus mediterraneus, Sardina pilchardus, Engraulis encrasicolus, etc.), Anisakis spp., Contraceucum spp., Pseudoterronova spp. and, C. aduncum were identified as well. Although it is accepted both the presence of anisakid parasites in fish and fishery products in Turkey and the presence of Turkish people with allergic manifestations after fish consumption, there are no reports of human anisakiasis in this country. Given the high prevalence of anisakid parasites in the country, the absence of reports is likely not due to the absence of clinical cases rather to the unavailability of diagnostic tools and the low awareness of the presence of this infection. The aim of the study was to set up an IgE-Western Blot (WB) based test to detect the anisakidosis sensitization among Turkish people with a history of allergic manifestation related to fish consumption. To this end, crude worm antigens (CWA) and allergen enriched fraction (50-66% ) were prepared from L3 of A. simplex (s.l.) collected from Lepidopus caudatus fished in the Mediterranean Sea. These proteins were electrophoretically separated and transferred into the nitrocellulose membranes. By WB, specific proteins recognized by positive control serum samples from sensitized patients were visualized on nitrocellulose membranes by a colorimetric reaction. The CWA and 50–66% fraction showed specific bands, mainly due to Ani s 1 (20-22 kD) and Ani s 4 (9-10 kD). So far, a total of 7 serum samples from people with allergic manifestation and positive skin prick test (SPT) after fish consumption, have been tested and all of them resulted negative by WB, indicating the lack of sensitization to anisakids. This preliminary study allowed to set up a specific test and evidence the lack of correlation between both tests, SPT and WB. However, the sample size should be increased to estimate the anisakidosis burden in Turkish people.

Keywords: anisakidosis, fish parasite, serodiagnosis, Turkey

Procedia PDF Downloads 102
117 Study of Potato Cyst Nematodes (Globodera Rostochiensis, Globodera pallida) in Georgia

Authors: Ekatereine Abashidze, Nino Nazarashvili, Dali Gaganidze, Oleg Gorgadze, Mariam Aznarashvili, Eter Gvritishvili

Abstract:

Potato is one of the leading agricultural crops in Georgia. Georgia produces early and late potato varieties in almost all regions. Potato production is equal to 25,000 ha and its average yield is 20-25 t/ha. Among the plant pests that limit potato production and quality, the potato cyst nematodes (Globodera pallida (Stone) Behrens and Globodera rostochiensis (Wollenveber) Behrens) are harmful around the world. PCN is among the most difficult plant pests to control. Cysts protected by a durable wall can survive for over 30 years . Control of PCN (G. pallida and G. rostochiensis) is regulated by Council Directive 2007/33/EE C. There was no legislative regulation of these pests in Georgia before 2016. By Resolution #302 from July 1, 2016, developed within the action plan of the DCFTA (Deep and Comprehensive Free Trade Area) the Government of Georgia established control over potato cyst nematodes. The Agreement about the legal acts approximation to EU legislation concerns the approval of rules of PCN control and research of these pests. Taking into consideration the above mentioned, it is necessary to study PCN (G. pallida and G. rostochiensis) in the potato-growing areas of Georgia. The aim of this research is to conduct survey of potato cyst nematodes (Globodera rostochiensis and G. pallida) in two geographically distinct regions of Georgia - Samtskhe - Javakheti and Svanetii and to identify the species G. Rostochiensis and G. Pallida by the morphological - morphometric and molecular methods. Soil samples were taken in each village, in a zig-zag pattern on the potato fields of the private sector, using the Metlitsky method. Samples were taken also from infested potato plant roots. To extract nematode cysts from soil samples Fanwick can be used according to standard methods by EPPO. Cysts were measured under a stereoscopic microscope (Leica M50). Identification of the nematod species was carried out according to morphological and morphometric characteristics of the cysts and larvae using appropriate protocols EPPO. For molecular identification, a multiplex PCR test was performed by the universal ITS5 and cyst nematodes’ (G. pallida, G. rostochiensis) specific primers. To identify the species of potato cyst nematodes (PCN) in two regions (Samtskhe-Javakheti and Svaneti) were taken 200 samples, among them: 80 samples in Samtskhe-Javakheti region and 120 in Svaneti region. Cysts of Globiodera spp. were revealed in 50 samples obtained from Samtskhe-Javakheti and 80 samples from Svaneti regions. Morphological, morphometric and molecular analysis of two forms of PCN found in investigated regions of Georgia shows that one form of PCN belongs to G. rostoshiensi; the second form is the different species of Globodera sp.t is the subject of future research. Despite the different geographic locations, larvae and cysts of G. rostoshiensi were found in both regions. But cysts and larvae of G. pallida were not reported. Acknowledgement: The research has been supported by the Shota Rustaveli National Scientific Foundation of Georgia: Project # FR17_235.

Keywords: cyst nematode, globodera rostochiensis, globodera pallida, morphologic-morphometric measurement

Procedia PDF Downloads 175
116 Microwave-Assisted Eradication of Wool

Authors: M. Salama, K. Haggag, H. El-Sayed

Abstract:

An environmentally and ecologically acceptable method for eradication of wool fabrics based on microwave irradiation (MWI) was described. The process would be a suitable alternative for mothproofing of wool using toxic degradative chemical or biological methods. The effect of microwave irradiation and exposure time on the extent of eradication of wool fabrics from moth larvae was monitored. The inherent properties of the MW-irradiated wool fabrics; viz. tensile properties, alkali solubility, and yellowing index, were not adversely altered.

Keywords: microwave, wool, fabric, moth, eradication, resistance

Procedia PDF Downloads 428
115 Efficacy of Gamma Radiation on the Productivity of Bactrocera oleae Gmelin (Diptera: Tephritidae)

Authors: Mehrdad Ahmadi, Mohamad Babaie, Shiva Osouli, Bahareh Salehi, Nadia Kalantaraian

Abstract:

The olive fruit fly, Bactrocera oleae Gmelin (Diptera: Tephritidae), is one of the most serious pests in olive orchards in growing province in Iran. The female lay eggs in green olive fruit and larvae hatch inside the fruit, where they feed upon the fruit matters. One of the main ecologically friendly and species-specific systems of pest control is the sterile insect technique (SIT) which is based on the release of large numbers of sterilized insects. The objective of our work was to develop a SIT against B. oleae by using of gamma radiation for the laboratory and field trial in Iran. Oviposition of female mated by irradiated males is one of the main parameters to determine achievement of SIT. To conclude the sterile dose, pupae were placed under 0 to 160 Gy of gamma radiation. The main factor in SIT is the productivity of females which are mated by irradiated males. The emerged adults from irradiated pupae were mated with untreated adults of the same age by confining them inside the transparent cages. The fecundity of the irradiated males mated with non-irradiated females was decreased with the increasing radiation dose level. It was observed that the number of eggs and also the percentage of the egg hatching was significantly (P < 0.05) affected in either IM x NF crosses compared with NM x NF crosses in F1 generation at all doses. Also, the statistical analysis showed a significant difference (P < 0.05) in the mean number of eggs laid between irradiated and non-irradiated females crossed with irradiated males, which suggests that the males were susceptible to gamma radiation. The egg hatching percentage declined markedly with the increase of the radiation dose of the treated males in mating trials which demonstrated that egg hatch rate was dose dependent. Our results specified that gamma radiation affects the longevity of irradiated B. oleae larvae (established from irradiated pupae) and significantly increased their larval duration. Results show the gamma radiation, and SIT can be used successfully against olive fruit flies.

Keywords: fertility, olive fruit fly, radiation, sterile insect technique

Procedia PDF Downloads 170
114 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike

Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.

Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability

Procedia PDF Downloads 48
113 Changes of Mitochondrial Potential in the Midgut Epithelium of Lithobius forficatus (Myriapoda, Chilopoda) Exposed to Cadmium Concentrated in Soil

Authors: Magdalena Rost-Roszkowska, Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Malgorzata Lesniewska

Abstract:

Lithobius forficatus, commonly known as the brown centipede, is a widespread European species, which lives in the upper layers of soil, under stones, litter, rocks, and leaves. As the soil organism, it is exposed to numerous stressors such as xenobiotics, including heavy metals, temperature, starvation, pathogens, etc. Heavy metals are treated as the environmental pollutants of the soil because of their toxic effects on plants, animals and human being. One of the heavy metals which is xenobiotic and can be taken up by plants or animals from the soil is cadmium. The digestive system of centipedes is composed of three distinct regions: fore-, mid- and hindgut. The salivary glands of centipedes are the organs which belong to the anterior region of the digestive system and take part in the synthesis, accumulation, and secretion of many substances. The middle region having contact with the food masses is treated as one of the barriers which protect the organism against any stressors which originate from the external environment, e.g., toxic metals. As the material for our studies, we chose two organs of the digestive system in brown centipede, the organs which take part in homeostasis maintenance: the salivary glands and the midgut. The main purpose of the project was to investigate the relationship between the percentage of depolarized mitochondria, mitophagy and ATP level in cells of mentioned above organs. The animals were divided into experimental groups: K – the control group, the animals cultured in a laboratory conditions in a horticultural soil and fed with Acheta domesticus larvae; Cd1 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 12 days – short-term exposure; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 45 days – long-term exposure. The studies were conducted using transmission electron microscopy (TEM), flow cytometry and confocal microscopy. Quantitative analysis revealed that regardless of the organ, a progressive increase in the percentage of cells with depolarized mitochondria was registered, but only in the salivary glands. These were statistically significant changes from the control. In both organs, there were no differences in the level of the analyzed parameter depending on the duration of exposure of individuals to cadmium. Changes in the ultrastructure of mitochondria have been observed. With the extension of the body's exposure time to metal, an increase in the ADP/ATP index was recorded. However, changes statistically significant to the control were demonstrated in the intestine and salivary glands. The size of this intestinal index and salivary glands in the Cd2 group was about thirty and twenty times higher, respectively than in control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, digestive system, ultrastructure, centipede

Procedia PDF Downloads 108
112 Amphiphilic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Algae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofilm is a predominant lifestyle chosen by bacteria. Whether it is developed on an immerged surface or a mobile biofilm known as flocs, the bacteria within this form of life show properties different from its planktonic ones. Within the biofilm, the self-formed matrix of Extracellular Polymeric Substances (EPS) offers hydration, resources capture, enhanced resistance to antimicrobial agents, and allows cell-communication. Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint6 (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation7, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids9 to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge (BSV36, KLN47) or a zwitterionic polar-head group (SL386, MB2871) to prevent microfouling with marine bacteria. We also study the toxicity of these compounds in order to identify the most promising compound that must feature high anti-adhesive properties and a low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, bacterial biofilm, marine microfouling, non-toxic antifouling

Procedia PDF Downloads 110