Search results for: Malawi rainfall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 724

Search results for: Malawi rainfall

634 Utilising Indigenous Knowledge to Design Dykes in Malawi

Authors: Martin Kleynhans, Margot Soler, Gavin Quibell

Abstract:

Malawi is one of the world’s poorest nations and consequently, the design of flood risk management infrastructure comes with a different set of challenges. There is a lack of good quality hydromet data, both in spatial terms and in the quality thereof and the challenge in the design of flood risk management infrastructure is compounded by the fact that maintenance is almost completely non-existent and that solutions have to be simple to be effective. Solutions should not require any further resources to remain functional after completion, and they should be resilient. They also have to be cost effective. The Lower Shire Valley of Malawi suffers from frequent flood events. Various flood risk management interventions have been designed across the valley during the course of the Shire River Basin Management Project – Phase I, and due to the data poor environment, indigenous knowledge was relied upon to a great extent for hydrological and hydraulic model calibration and verification. However, indigenous knowledge comes with the caveat that it is ‘fuzzy’ and that it can be manipulated for political reasons. The experience in the Lower Shire valley suggests that indigenous knowledge is unlikely to invent a problem where none exists, but that flood depths and extents may be exaggerated to secure prioritization of the intervention. Indigenous knowledge relies on the memory of a community and cannot foresee events that exceed past experience, that could occur differently to those that have occurred in the past, or where flood management interventions change the flow regime. This complicates communication of planned interventions to local inhabitants. Indigenous knowledge is, for the most part, intuitive, but flooding can sometimes be counter intuitive, and the rural poor may have a lower trust of technology. Due to a near complete lack of maintenance of infrastructure, infrastructure has to be designed with no moving parts and no requirement for energy inputs. This precludes pumps, valves, flap gates and sophisticated warning systems. Designs of dykes during this project included ‘flood warning spillways’, that double up as pedestrian and animal crossing points, which provide warning of impending dangerous water levels behind dykes to residents before water levels that could cause a possible dyke failure are reached. Locally available materials and erosion protection using vegetation were used wherever possible to keep costs down.

Keywords: design of dykes in low-income countries, flood warning spillways, indigenous knowledge, Malawi

Procedia PDF Downloads 245
633 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho

Abstract:

Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.

Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem

Procedia PDF Downloads 257
632 Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin

Authors: Racha El Kadiri, Mohamed Sultan, Henrique Momm, Zachary Blair, Rachel Schultz, Tamer Al-Bayoumi

Abstract:

The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region.

Keywords: rainfall, neural networks, climatic indices, Mediterranean

Procedia PDF Downloads 285
631 Flood Scenarios for Hydrological and Hydrodynamic Modelling

Authors: M. Sharif Imam Ibne Amir, Mohammad Masud Kamal Khan, Mohammad Golam Rasul, Raj H. Sharma, Fatema Akram

Abstract:

Future flood can be predicted using the probable maximum flood (PMF). PMF is calculated using the historical discharge or rainfall data considering the other climatic parameter stationary. However, climate is changing globally and the key climatic variables are temperature, evaporation, rainfall and sea level rise (SLR). To develop scenarios to a basin or catchment scale these important climatic variables should be considered. Nowadays scenario based on climatic variables is more suitable than PMF. Six scenarios were developed for a large Fitzroy basin and presented in this paper.

Keywords: climate change, rainfall, potential evaporation, scenario, sea level rise (SLR), sub-catchment

Procedia PDF Downloads 488
630 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 251
629 Can Empowering Women Farmers Reduce Household Food Insecurity? Evidence from Malawi

Authors: Christopher Manyamba

Abstract:

Women in Malawi produce perform between 50-70 percent of all agricultural tasks and yet the majority remain food insecure. The aim of his paper is to build on existing mixed evidence that indicates that empowering women in agriculture is conducive to improving food security. The WEAI is used to provide evidence on the relationship between women’s empowerment in agriculture and household food security. A multinomial logistic regression is applied to the Women Empowerment in Agriculture Index (WEAI) components and the Household Hunger Scale. The overall results show that the WEAI can be used to determine household food insecurity; however it has to be contextually adapted. Assets ownership, credit, group membership and leisure time are positively associated with food security. Contrary to other literature, empowerment in having control and decisions on income indicate negative association with household food security. These results could potentially better inform public, private and civil society stakeholders’ dialogues in creating the most effective and sustainable interventions to help women attain long-term food security.

Keywords: food security, gender, empowerment, agriculture index, framework for African food security, household hunger scale

Procedia PDF Downloads 337
628 Evidence of Climate Change from Statistical Analysis of Temperature and Rainfall Data of Kaduna State, Nigeria

Authors: Iliya Bitrus Abaje

Abstract:

This study examines the evidence of climate change scenario in Kaduna State from the analysis of temperature and rainfall data (1976-2015) from three meteorological stations along a geographic transect from the southern part to the northern part of the State. Different statistical methods were used in determining the changes in both the temperature and rainfall series. The result of the linear trend lines revealed a mean increase in average temperature of 0.73oC for the 40 years period of study in the State. The plotted standard deviation for the temperature anomalies generally revealed that years of temperatures above the mean standard deviation (hotter than the normal conditions) in the last two decades (1996-2005 and 2006-2015) were more than those below (colder than the normal condition). The Cramer’s test and student’s t-test generally revealed an increasing temperature trend in the recent decades. The increased in temperature is an evidence that the earth’s atmosphere is getting warmer in recent years. The linear trend line equation of the annual rainfall for the period of study showed a mean increase of 316.25 mm for the State. Findings also revealed that the plotted standard deviation for the rainfall anomalies, and the 10-year non-overlapping and 30-year overlapping sub-periods analysis in all the three stations generally showed an increasing trend from the beginning of the data to the recent years. This is an evidence that the study area is now experiencing wetter conditions in recent years and hence climate change. The study recommends diversification of the economic base of the populace with emphasis on moving away from activities that are sensitive to temperature and rainfall extremes Also, appropriate strategies to ameliorate the scourge of climate change at all levels/sectors should always take into account the recent changes in temperature and rainfall amount in the area.

Keywords: anomalies, linear trend, rainfall, temperature

Procedia PDF Downloads 280
627 Analysis of the Probable Maximum Flood in Hydrologic Design Using Different Functions of Rainfall-Runoff Transformation

Authors: Evangelos Baltas, Elissavet Feloni, Dimitrios Karpouzos

Abstract:

A crucial issue in hydrologic design is the sizing of structures and flood-control works in areas with limited data. This research work highlights the significant variation in probable maximum flood (PMF) for a design hyetograph, using different theoretical functions of rainfall-runoff transformation. The analysis focuses on seven subbasins with different characteristics in the municipality of Florina, northern Greece. This area is a semi-agricultural one which hosts important activities, such as the operation of one of the greatest fields of lignite for power generation in Greece. Results illustrate the notable variation in estimations among the methodologies used for the examined subbasins.

Keywords: rainfall, runoff, hydrologic design, PMF

Procedia PDF Downloads 236
626 Efficient Sources and Methods of Extracting Water for Irrigation

Authors: Anthony Iyenjamu, Josiah Adeyemo

Abstract:

Due to the increasing water scarcity in South Africa, the prime focus of irrigation in South Africa shifts to creating feasible water sources and the efficient use of these sources. These irrigation systems in South Africa are implemented because of low and erratic rainfall and high evaporative demand. Irrigation contributes significantly to crop production in South Africa, as the mean annual precipitation for the country is usually less than 500mm. This is considered to be the minimum required for rain fed cropping. Even though the rainfall is low, a lot of the water in various areas in South Africa is lost due to runoff into storm water systems that run to the rivers and eventually into the sea. This study reviews the irrigation systems in South Africa which can be vastly improved by creating irrigation dams. A method of which may seem costly at first but rewarding with time. The study investigates the process of creating dam capacity capable of sustaining a suitable area size of land to be irrigated and thus diverting all runoff into these dams. This type of infrastructure method vastly improves various sectors in our irrigation systems. Extensive research is carried out in the surrounding area in which the dam should be constructed. Rainfall patterns and rainfall data is used for calculations of which period the dam will be at its optimum using rainfall. The size of the area irrigated was used to calculate the size of the irrigation dam to be constructed. The location of the dam must be situated as close to the river as possible to minimize the excessive use of pipelines to the dam. This study also investigated all existing resources to alleviate the cost. It was found that irrigation dams could solve the erratic distribution of rainfall in South Africa for irrigation purposes.

Keywords: irrigation, rainfed, rain harvesting, reservoir

Procedia PDF Downloads 254
625 Interval Estimation for Rainfall Mean in Northeastern Thailand

Authors: Nitaya Buntao

Abstract:

This paper considers the problems of interval estimation for rainfall mean of the lognormal distribution and the delta-lognormal distribution in Northeastern Thailand. We present here the modified generalized pivotal approach (MGPA) compared to the modified method of variance estimates recovery (MMOVER). The performance of each method is examined in term of coverage probabilities and average lengths by Monte Carlo simulation. An extensive simulation study indicates that the MMOVER performs better than the MGPA approach in terms of the coverage probability; it results in highly accurate coverage probability.

Keywords: rainfall mean, interval estimation, lognormal distribution, delta-lognormal distribution

Procedia PDF Downloads 425
624 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar

Authors: Chulsang Yoo, Gildo Kim

Abstract:

Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).

Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm

Procedia PDF Downloads 181
623 Estimation of the Curve Number and Runoff Height Using the Arc CN-Runoff Tool in Sartang Ramon Watershed in Iran

Authors: L.Jowkar. M.Samiee

Abstract:

Models or systems based on rainfall and runoff are numerous and have been formulated and applied depending on the precipitation regime, temperature, and climate. In this study, the ArcCN-Runoff rain-runoff modeling tool was used to estimate the spatial variability of the rainfall-runoff relationship in Sartang Ramon in Jiroft watershed. In this study, the runoff was estimated from 6-hour rainfall. The results showed that based on hydrological soil group map, soils with hydrological groups A, B, C, and D covered 1, 2, 55, and 41% of the basin, respectively. Given that the majority of the area has a slope above 60 percent and results of soil hydrologic groups, one can conclude that Sartang Ramon Basin has a relatively high potential for producing runoff. The average runoff height for a 6-hour rainfall with a 2-year return period is 26.6 mm. The volume of runoff from the 2-year return period was calculated as the runoff height of each polygon multiplied by the area of the polygon, which is 137913486 m³ for the whole basin.

Keywords: Arc CN-Run off, rain-runoff, return period, watershed

Procedia PDF Downloads 100
622 Effect of Abiotic Factors on Population of Red Cotton Bug Dysdercus Koenigii F. (Heteroptera: Pyrrhocoridae) and Its Impact on Cotton Boll Disease

Authors: Haider Karar, Saghir Ahmad, Amjad Ali, Ibrar Ul Haq

Abstract:

The experiment was conducted at Cotton Research Station, Multan to study the impact of weather factors and red cotton bug (RCB) on cotton boll disease yielded yellowish lint during 2012. The population on RCB along with abiotic factors was recorded during three consecutive years i.e. 2012, 2013, and 2014. Along with population of RCB and abiotic factors, the number of unopened/opened cotton bolls (UOB), percent yellowish lint (YL) and whitish lint (WL) were also recorded. The data revealed that the population per plant of RCB remain 0.50 and 0.34 during years 2012, 2013 but increased during 2014 i.e. 3.21 per plant. The number of UOB were more i.e. 13.43% in 2012 with YL 76.30 and WL 23.70% when average maximum temperature 34.73◦C, minimum temperature 22.83◦C, RH 77.43% and 11.08 mm rainfall. Similarly in 2013 the number of UOB were less i.e. 0.34 per plant with YL 1.48 and WL 99.53 per plant when average maximum temperature 34.60◦C, minimum temperature 23.37◦C, RH 73.01% and 9.95 mm rainfall. During 2014 RCB population per plant was 3.22 with no UOB and YL was 0.00% and WL was 100% when average maximum temperature 23.70◦C, minimum temperature 23.18◦C, RH 71.67% and 4.55 mm rainfall. So it is concluded that the cotton bolls disease was more during 2012 due to more rainfall and more percent RH. The RCB may be the carrier of boll rot disease pathogen during more rainfall.

Keywords: red cotton bug, cotton, weather factors, years

Procedia PDF Downloads 313
621 Comparison of Rainfall Trends in the Western Ghats and Coastal Region of Karnataka, India

Authors: Vinay C. Doranalu, Amba Shetty

Abstract:

In recent days due to climate change, there is a large variation in spatial distribution of daily rainfall within a small region. Rainfall is one of the main end climatic variables which affect spatio-temporal patterns of water availability. The real task postured by the change in climate is identification, estimation and understanding the uncertainty of rainfall. This study intended to analyze the spatial variations and temporal trends of daily precipitation using high resolution (0.25º x 0.25º) gridded data of Indian Meteorological Department (IMD). For the study, 38 grid points were selected in the study area and analyzed for daily precipitation time series (113 years) over the period 1901-2013. Grid points were divided into two zones based on the elevation and situated location of grid points: Low Land (exposed to sea and low elevated area/ coastal region) and High Land (Interior from sea and high elevated area/western Ghats). Time series were applied to examine the spatial analysis and temporal trends in each grid points by non-parametric Mann-Kendall test and Theil-Sen estimator to perceive the nature of trend and magnitude of slope in trend of rainfall. Pettit-Mann-Whitney test is applied to detect the most probable change point in trends of the time period. Results have revealed remarkable monotonic trend in each grid for daily precipitation of the time series. In general, by the regional cluster analysis found that increasing precipitation trend in shoreline region and decreasing trend in Western Ghats from recent years. Spatial distribution of rainfall can be partly explained by heterogeneity in temporal trends of rainfall by change point analysis. The Mann-Kendall test shows significant variation as weaker rainfall towards the rainfall distribution over eastern parts of the Western Ghats region of Karnataka.

Keywords: change point analysis, coastal region India, gridded rainfall data, non-parametric

Procedia PDF Downloads 261
620 Co-design Workshop Approach: Barriers and Facilitators of Using IV Iron in Anaemic Pregnant Women in Malawi - A Qualitative Study

Authors: Elisabeth Mamani-Mategula

Abstract:

Background: Anaemia has significant consequences on both the mother and child's health as it results in maternal haemorrhage, low childbirth weight, premature delivery, poor organ development, and infections at birth and hence the need for treatment. In low-middle income countries, anaemic pregnant women are recommended to take 30 mg to 60 mg of elemental iron daily throughout pregnancy which are often poorly tolerated and adhered to. A potential alternative to oral iron is intravenous (IV) iron which allows the saturation of the body’s iron stores quickly. Currently, a randomised controlled trial on the Effect of intravenous iron on Anaemia in Malawian Pregnant women (REVAMP) is underway. Since this is new in Africa and Malawi is the second country to implement it, its acceptability to both the providers and end-users is not known. Suppose the use of IV iron during pregnancy would be acceptable in Malawi, it could change how we treat and manage pregnant women with anaemia and be scaled up throughout Malawi to improve maternal and child health. Objectives: To identify the barriers and facilitators of implementing IV iron in the Malawian healthcare system and identify ‘touchpoints’ and co-develop strategies to support and inform the implementation of the trial Methodology: A qualitative study was conducted with policymakers, government partners, and health managers through in-depth interviews to identify barriers and facilitators relating to the implementation of IV iron in the health system of Malawi. From the interviews, touchpoints were identified that formed the basis of the discussion in further discussing the barriers and suggested solutions in the co-design workshops with the community members and the health workers, respectively. We purposively recruited 20 health workers (10 male, 10 Female). 20 community members (10 male, 10 female) were recruited randomly. Data was collected through group discussions and interactive sessions and was recorded through audios, flip charts, and sticky notes. We familiarized ourselves with the data and identified themes. Results: Two co-design workshops were conducted with different community members and different health worker carders. Identified individual factors included lack of knowledge about anaemia, lack of male involvement, the attitude of health workers and patient non-compliance with appointments. Community factors included myths and misconceptions about IV iron, including associating the use of IV iron with vampirism and covid 19 vaccination. Health system factors identified were a shortage of staff and equipment, unfamiliarity with IV iron and its cost. Discussion: The use of IV iron, as suggested by the community members and health workers, demands civic education through bringing awareness to end-users and training to providers. Through these co-design workshops, community sensitization and awareness, briefing and training of health workers and creation of educational materials were done.

Keywords: acceptability, IV iron, barriers, facilitators, co-design

Procedia PDF Downloads 99
619 Effect of Manure Treatment on Furrow Erosion: A Case Study of Sagawika Irrigation Scheme in Kasungu, Malawi

Authors: Abel Mahowe

Abstract:

Furrow erosion is the major problem menacing sustainability of irrigation in Malawi and polluting water bodies resulting in death of many aquatic animals. Many rivers in Malawi are drying due to some poor practices that are being practiced around these water bodies, furrow erosion is one of the cause of sedimentation in these rivers although it has gradual effect on deteriorating of these rivers hence neglected, but has got long term disastrous effect on water bodies. Many aquatic animals also suffer when these sediments are taken into these water bodies. An assessment of effect of manure treatment on furrow erosion was carried out in Sagawika irrigation scheme located in Kasungu District north part of Malawi. The soil on the field was clay loam and had just been tilled. The average furrow slope of 0.2% and was divided into two blocks, A and B. Each block had 20V-shaped furrow having a length of 10 m. Three different manure were used to construct these furrows by mixing it with soil which was moderately moist and 5 furrows from each block were constructed without manure. In each block 5furrow were made using a specific type of manure, and one set of five furrows in each block was made without manure treatment. The types of manure that were used were goat manure, pig manure, and manure from crop residuals. The manure application late was 5 kg/m. The furrow was constructed at a spacing of 0.6 m. Tomato was planted in the two blocks at spacing of 0.15 m between rows and 0.15 m between planting stations. Irrigation water was led from feeder canal into the irrigation furrows using siphons. The siphons discharge into each furrow was set at 1.86 L/S. The ¾ rule was used to determine the cut-off time for the irrigation cycles in order to reduce the run-off at the tail end. During each irrigation cycle, samples of the runoff water were collected at one-minute intervals and analyzed for total sediment concentration for use in estimating the total soil sediment loss. The results of the study have shown that a significant amount of soil is lost in soils without many organic matters, there was a low level of erosion in furrows that were constructed using manure treatment within the blocks. In addition, the results have shown that manure also differs in their ability to control erosion since pig manure proved to have greater abilities in binding the soil together than other manure since they were reduction in the amount of sediments at the tail end of furrows constructed by this type of manure. The results prove that manure contains organic matters which helps soil particles to bind together hence resisting the erosive force of water. The use of manure when constructing furrows in soil with less organic matter can highly reduce erosion hence reducing also pollution of water bodies and improve the conditions of aquatic animals.

Keywords: aquatic, erosion, furrow, soil

Procedia PDF Downloads 259
618 Numerical Analysis of Rainfall-Induced Roadside Slope Failures and Their Stabilizing Solution

Authors: Muhammad Suradi, Sugiarto, Abdullah Latip

Abstract:

Many roadside slope failures occur during the rainy season, particularly in the period of extreme rainfall along Connecting National Road of Salubatu-Mambi, West Sulawesi, Indonesia. These occurrences cause traffic obstacles and endanger people along and around the road. Research collaboration between P2JN (National Road Construction Board) West Sulawesi Province, who authorize to supervise the road condition, and Ujung Pandang State Polytechnic (Applied University) was established to cope with the landslide problem. This research aims to determine factors triggering roadside slope failures and their optimum stabilizing solution. To achieve this objective, site observation and soil investigation were carried out to obtain parameters for analyses of rainfall-induced slope instability and reinforcement design using the SV Flux and SV Slope software. The result of this analysis will be taken into account for the next analysis to get an optimum design of the slope reinforcement. The result indicates some factors such as steep slopes, sandy soils, and unvegetated slope surface mainly contribute to the slope failures during intense rainfall. With respect to the contributing factors as well as construction material and technology, cantilever/butressing retaining wall becomes the optimum solution for the roadside slope reinforcement.

Keywords: roadside slope, failure, rainfall, slope reinforcement, optimum solution

Procedia PDF Downloads 66
617 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand

Authors: Sudip Kumar Kundu, Charu Singh

Abstract:

As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.

Keywords: global warming, rainfall, CMIP5, CORDEX, NWH

Procedia PDF Downloads 138
616 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review

Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon

Abstract:

The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.

Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration

Procedia PDF Downloads 61
615 New Hybrid Method to Model Extreme Rainfalls

Authors: Youness Laaroussi, Zine Elabidine Guennoun, Amine Amar

Abstract:

Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose in the present paper a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.

Keywords: extreme values theory, fractals dimensions, peaks Over threshold, rainfall occurrences

Procedia PDF Downloads 336
614 Analysis of Extreme Rainfall Trends in Central Italy

Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Marco Cifrodelli, Corrado Corradini

Abstract:

The trend of magnitude and frequency of extreme rainfalls seems to be different depending on the investigated area of the world. In this work, the impact of climate change on extreme rainfalls in Umbria, an inland region of central Italy, is examined using data recorded during the period 1921-2015 by 10 representative rain gauge stations. The study area is characterized by a complex orography, with altitude ranging from 200 to more than 2000 m asl. The climate is very different from zone to zone, with mean annual rainfall ranging from 650 to 1450 mm and mean annual air temperature from 3.3 to 14.2°C. Over the past 15 years, this region has been affected by four significant droughts as well as by six dangerous flood events, all with very large impact in economic terms. A least-squares linear trend analysis of annual maximums over 60 time series selected considering 6 different durations (1 h, 3 h, 6 h, 12 h, 24 h, 48 h) showed about 50% of positive and 50% of negative cases. For the same time series the non-parametrical Mann-Kendall test with a significance level 0.05 evidenced only 3% of cases characterized by a negative trend and no positive case. Further investigations have also demonstrated that the variance and covariance of each time series can be considered almost stationary. Therefore, the analysis on the magnitude of extreme rainfalls supplies the indication that an evident trend in the change of values in the Umbria region does not exist. However, also the frequency of rainfall events, with particularly high rainfall depths values, occurred during a fixed period has also to be considered. For all selected stations the 2-day rainfall events that exceed 50 mm were counted for each year, starting from the first monitored year to the end of 2015. Also, this analysis did not show predominant trends. Specifically, for all selected rain gauge stations the annual number of 2-day rainfall events that exceed the threshold value (50 mm) was slowly decreasing in time, while the annual cumulated rainfall depths corresponding to the same events evidenced trends that were not statistically significant. Overall, by using a wide available dataset and adopting simple methods, the influence of climate change on the heavy rainfalls in the Umbria region is not detected.

Keywords: climate changes, rainfall extremes, rainfall magnitude and frequency, central Italy

Procedia PDF Downloads 209
613 The Mitidja between Drought and Water Pollution

Authors: Aziez Ouahiba, Remini Boualam, Habi Mohamed

Abstract:

the growth and the development of a pay are strongly related to the existence or the absence of water in this area, The sedentary lifestyle of the population makes that water demand is increasing and the different brandishing (dams, tablecloths or other) are increasingly solicited. In normal time rain and snow of the winter period reloads the slicks and the wadis that fill dams. Over these two decades, global warming fact that temperature is increasingly high and rainfall is increasingly low which induces a charge less and less important tablecloths, add to that the strong demand in irrigation. Our study will focus on the variation of rainfall and irrigation, their effects on the degree of pollution of the groundwater in this area based on statistical analyses by the Xlstat (ACP, correlation...) software for a better explanation of these results and determine the hydrochemistry of different groups or polluted areas pou be able to offer adequate solutions for each area.

Keywords: rainfall, groundwater of mitidja, irrigation, pollution

Procedia PDF Downloads 377
612 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 418
611 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change

Authors: Ali Razmi, Saeed Golian

Abstract:

Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.

Keywords: climate change, climate variables, copula, joint probability

Procedia PDF Downloads 326
610 Analysis of Weather Variability Impact on Yields of Some Crops in Southwest, Nigeria

Authors: Olumuyiwa Idowu Ojo, Oluwatobi Peter Olowo

Abstract:

The study developed a Geographical Information Systems (GIS) database and mapped inter-annual changes in crop yields of cassava, cowpea, maize, rice, melon and yam as a response to inter-annual rainfall and temperature variability in Southwest, Nigeria. The aim of this project is to study the comparative analysis of the weather variability impact of six crops yield (Rice, melon, yam, cassava, Maize and cowpea) in South Western States of Nigeria (Oyo, Osun, Ekiti, Ondo, Ogun and Lagos) from 1991 – 2007. The data was imported and analysed in the Arch GIS 9 – 3 software environment. The various parameters (temperature, rainfall, crop yields) were interpolated using the kriging method. The results generated through interpolation were clipped to the study area. Geographically weighted regression was chosen from the spatial statistics toolbox in Arch GIS 9.3 software to analyse and predict the relationship between temperature, rainfall and the different crops (Cowpea, maize, rice, melon, yam, and cassava).

Keywords: GIS, crop yields, comparative analysis, temperature, rainfall, weather variability

Procedia PDF Downloads 290
609 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria

Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader

Abstract:

Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world.  In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB   Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime.  The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.

Keywords: modelling, optimization, rainfall-runoff relationship, empirical model, OCC

Procedia PDF Downloads 237
608 Performance of the Cmip5 Models in Simulation of the Present and Future Precipitation over the Lake Victoria Basin

Authors: M. A. Wanzala, L. A. Ogallo, F. J. Opijah, J. N. Mutemi

Abstract:

The usefulness and limitations in climate information are due to uncertainty inherent in the climate system. For any given region to have sustainable development it is important to apply climate information into its socio-economic strategic plans. The overall objective of the study was to assess the performance of the Coupled Model Inter-comparison Project (CMIP5) over the Lake Victoria Basin. The datasets used included the observed point station data, gridded rainfall data from Climate Research Unit (CRU) and hindcast data from eight CMIP5. The methodology included trend analysis, spatial analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and categorical statistical skill score. Analysis of the trends in the observed rainfall records indicated an increase in rainfall variability both in space and time for all the seasons. The spatial patterns of the individual models output from the models of MPI, MIROC, EC-EARTH and CNRM were closest to the observed rainfall patterns.

Keywords: categorical statistics, coupled model inter-comparison project, principal component analysis, statistical downscaling

Procedia PDF Downloads 342
607 Surgical Skills in Mulanje

Authors: Nick Toossi, Joseph Hartland

Abstract:

Background: Malawi is an example of a low resource setting which faces a chronic shortage of doctors and other medical staff. This shortfall is made up for by clinical officers (COs), who are para-medicals trained for 4 years. The literature suggests to improve outcomes surgical skills training specifically should be promoted for COs in district and mission hospitals. Accordingly, the primary author was tasked with developing a basic surgical skills teaching package for COs of Mulanje Mission Hospital (MMH), Malawi, as part of a 4th year medical student External Student Selected Component field trip. MMH is a hospital based in the South of Malawi near the base of Mulanje Mountain and works in an extremely isolated environment with some of the poorest communities in the country. Traveling to Malawi the medical student author performed an educational needs assessment to develop and deliver a bespoke basic surgical skills teaching package. Methodology: An initial needs assessment identified the following domains: basic surgical skills (instrument naming & handling, knot tying, suturing principles and suturing techniques) and perineal repair. Five COs took part in a teaching package involving an interactive group simulation session, overseen by senior clinical officers and surgical trainees from the UK. Non-organic and animal models were used for simulation practice. This included the use of surgical skills boards to practice knot tying and ox tongue to simulate perineal repair. All participants spoke and read English. The impact of the session was analysed in two different ways. The first was via a pre and post Single Best Answer test and the second a questionnaire including likert’s scales and free text response questions. Results: There was a positive trend in pre and post test scores on competition of the course. There was increase in the mean confidence of learners before and after the delivery of teaching in basic surgical skills and simulated perineal repair, especially in ‘instrument naming and handling’. Whilst positively received it was discovered that learners desire more frequent surgical skills teaching sessions in order to improve and revise skills. Feedback suggests that the learners were not confident in retaining the skills without regular input. Discussion: Skills and confidence were improved as a result of the teaching provided. Learner's written feedback suggested there was an overall appetite for regular surgical skills teaching in the clinical environment and further opportunities to allow for deliberate self-practice. Surgical mentorship schemes facilitating supervised theatre time among trainees and lead surgeons along with improving access to surgical models/textbooks were some of the simple suggestions to improve surgical skills and confidence among COs. Although, this study is limited by population size it is reflective of the small, isolated and low resource environment in which this healthcare is delivered. This project does suggest that current surgical skills packages used in the UK could be adapted for employment in low resource settings, but it is consistency and sustainability that staff seek above all in their on-going education.

Keywords: clinical officers, education, Malawi, surgical skills

Procedia PDF Downloads 157
606 Understanding the Effect of Fall Armyworm and Integrated Pest Management Practices on the Farm Productivity and Food Security in Malawi

Authors: Innocent Pangapanga, Eric Mungatana

Abstract:

Fall armyworm (FAW) (Spodoptera frugiperda), an invasive lepidopteran pest, has caused substantial yield loss since its first detection in September 2016, thereby threatening the farm productivity food security and poverty reduction initiatives in Malawi. Several stakeholders, including households, have adopted chemical pesticides to control FAW without accounting for its costs on welfare, health and the environment. Thus, this study has used panel data endogenous switching regression model to investigate the impact of FAW and the integrated pest management (IPM) –related practices on-farm productivity and food security. The study finds that FAW substantively reduces farm productivity by seven (7) percent and influences the adoption of IPM –related practices, namely, intercropping, mulching, and agroforestry, by 6 percent, ceteris paribus. Interestingly, multiple adoptions of the IPM -related practices noticeably increase farm productivity by 21 percent. After accounting for potential endogeneity through the endogenous switching regression model, the IPM practices further demonstrate tenfold more improvement on food security, implying the role of the IPM –related practices in containing the effect of FAW at the household level.

Keywords: hunger, invasive fall army worms, integrated pest management practices, farm productivity, endogenous switching regression

Procedia PDF Downloads 107
605 Influence of Climate Change on Landslides in Northeast India: A Case Study

Authors: G. Vishnu, T. V. Bharat

Abstract:

Rainfall plays a major role in the stability of natural slopes in tropical and subtropical regions. These slopes usually have high slope angles and are stable during the dry season. The critical rainfall intensity that might trigger a landslide may not be the highest rainfall. In addition to geological discontinuities and anthropogenic factors, water content, suction, and hydraulic conductivity also play a role. A thorough geotechnical investigation with the principles of unsaturated soil mechanics is required to predict the failures in these cases. The study discusses three landslide events that had occurred in residual hills of Guwahati, India. Rainfall data analysis, history image analysis, land use, and slope maps of the region were analyzed and discussed. The landslide occurred on June (24, 26, and 28) 2020, on the respective sites, but the highest rainfall was on June (6 and 17) 2020. The factors that lead to the landslide occurrence is the combination of critical events initiated with rainfall, causing a reduction in suction. The sites consist of a mixture of rocks and soil. The slope failure occurs due to the saturation of the soil layer leading to loss of soil strength resulting in the flow of the entire soil rock mass. The land-use change, construction activities, other human and natural activities that lead to faster disintegration of rock mass may accelerate the landslide events. Landslides in these slopes are inevitable, and the development of an early warning system (EWS) to save human lives and resources is a feasible way. The actual time of failure of a slope can be better predicted by considering all these factors rather than depending solely on the rainfall intensities. An effective EWS is required with less false alarms in these regions by proper instrumentation of slope and appropriate climatic downscaling.

Keywords: early warning system, historic image analysis, slope instrumentation, unsaturated soil mechanics

Procedia PDF Downloads 82