Search results for: L-type voltage sensitive calcium channels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4294

Search results for: L-type voltage sensitive calcium channels

4054 STATCOM’s Contribution to the Improvement of Voltage Plan and Power Flow in an Electrical Transmission Network

Authors: M. Adjabi, A. Amiar, P. O. Logerais

Abstract:

Flexible Alternative Current Systems Transmission (FACTS) are used since nearly four decades and present very good dynamic performances. The purpose of this work is to study the behavior of a system where Static Compensator (STATCOM) is located at the midpoint of a transmission line which is the idea of the project functioning in disturbed modes with various levels of load. The studied model and starting from the analysis of various alternatives will lead to the checking of the aptitude of the STATCOM to maintain the voltage plan and to improve the power flow in electro-energetic system which is the east region of Algerian 400 kV transmission network. The steady state performance of STATCOM’s controller is analyzed through computer simulations with Matlab/Simulink program. The simulation results have demonstrated that STATCOM can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation.

Keywords: STATCOM, reactive power, power flow, voltage plan, Algerian network

Procedia PDF Downloads 543
4053 STATCOM's Contribution to the Improvement of Voltage Plan and Power Flow in an Electrical Transmission Network

Authors: M. Adjabi, A. Amiar, P. O. Logerais

Abstract:

Flexible Alternative Current Systems Transmission (FACTS) are used since nearly four decades and present very good dynamic performances. The purpose of this work is to study the behavior of a system where Static Compensator (STATCOM) is located at the midpoint of a transmission line which is the idea of the project functioning in disturbed modes with various levels of load. The studied model and starting from the analysis of various alternatives will lead to the checking of the aptitude of the STATCOM to maintain the voltage plan and to improve the power flow in electro-energetic system which is the east region of Algerian 400 kV transmission network. The steady state performance of STATCOM’s controller is analyzed through computer simulations with Matlab/Simulink program. The simulation results have demonstrated that STATCOM can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation.

Keywords: STATCOM, reactive power, power flow, voltage plan, Algerian network

Procedia PDF Downloads 571
4052 Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

In this paper, we present a comparative assessment of Space Vector Pulse Width Modulation (SVPWM) and Model Predictive Control (MPC) for two-level three phase (2L-3P) Voltage Source Inverter (VSI). VSI with associated system is subjected to both control techniques and the results are compared. Matlab/Simulink was used to model, simulate and validate the control schemes. Findings of this study show that MPC is superior to SVPWM in terms of total harmonic distortion (THD) and implementation.

Keywords: voltage source inverter, space vector pulse width modulation, model predictive control, comparison

Procedia PDF Downloads 479
4051 The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of a-C:H Films

Authors: X. L. Zhou, S. Tunmee, I. Toda, K. Komatsu, S. Ohshio, H. Saitoh

Abstract:

Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photo electron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased.

Keywords: negative bias voltage, a-C:H film, oxygen contamination, optical properties

Procedia PDF Downloads 446
4050 A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature

Authors: M. H. Aldahrob, A. Kokce, S. Altindal, H. E. Lapa

Abstract:

In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure.

Keywords: interfacial polymer layer, thickness dependence, electric and dielectric properties, series resistance, interface state

Procedia PDF Downloads 220
4049 Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design

Authors: Chia-Jui Yu, Chien-Ju Chen, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu

Abstract:

In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage VB. A low turn-on resistance RON (3.55 mΩ-cm2), low reverse leakage current (< 0.1 µA) at -100 V, and high reverse breakdown voltage VB (> 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode–cathode distance was LAC = 40 µm). Devices without the field plate design exhibit a Baliga’s figure of merit of VB2/ RON = 60.2 MW/cm2, whereas devices with the field plate design show a Baliga’s figure of merit of VB2/ RON = 340.9 MW/cm2 (the anode–cathode distance was LAC = 20 µm).

Keywords: AlGaN/GaN heterostructure, silicon substrate, Schottky barrier diode (SBD), high breakdown voltage, Baliga’s figure-of-merit, field plate

Procedia PDF Downloads 278
4048 Calcium Uptake and Yield of Pleurotus ostreatus Cultivated in Rice Straw-Based Substrate Enriched with Natural Sources

Authors: Arianne V. Julian, Michael R. Umagat, Renato G. Reyes

Abstract:

Pleurotus ostreatus, which is one of the most widely cultivated mushrooms, is an excellent source of protein and other minerals but inherently contains low calcium level. Calcium plays several vital functions in human health; therefore, adequate daily intake is necessary. Supplementation of growth substrate is a significant approach in mushroom production to improve nutritional content and yield. This study focused on the influence of varying concentrations of Ca supplementation derived from natural sources including agricultural lime, eggshell and oyster shell in rice straw-based formulation for the production of P. ostreatus. The effect of Ca supplementation on the total yield and Ca content were obtained. Results revealed that these natural sources increased both the yield and Ca of P. ostreatus. Mushroom grown in substrate with 8-10% agricultural lime and 6% eggshell powder produced the highest yields while using oyster shell powder did not vary with the control. Meanwhile, substrate supplementation using agricultural lime and eggshell powder in all concentrations have increased Ca in fruiting bodies. However, Ca was not absorbed in the oyster shell powder-supplemented substrate. These findings imply the potential of agricultural lime and eggshell powder in the production of Ca-enriched mushrooms resulting in higher yield.

Keywords: calcium fortification, mushroom production, natural sources, Pleurotus ostreatus

Procedia PDF Downloads 149
4047 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3

Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo

Abstract:

As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).

Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation

Procedia PDF Downloads 273
4046 Chemical Amelioration of Expansive Soils

Authors: B. R. Phanikumar, Sana Suri

Abstract:

Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour.

Keywords: expansive soils, swelling, shrinkage, amelioration, lime, calcium chloride

Procedia PDF Downloads 282
4045 Numerical Analysis of Heat Transfer in Water Channels of the Opposed-Piston Diesel Engine

Authors: Michal Bialy, Marcin Szlachetka, Mateusz Paszko

Abstract:

This paper discusses the CFD results of heat transfer in water channels in the engine body. The research engine was a newly designed Diesel combustion engine. The engine has three cylinders with three pairs of opposed pistons inside. The engine will be able to generate 100 kW mechanical power at a crankshaft speed of 3,800-4,000 rpm. The water channels are in the engine body along the axis of the three cylinders. These channels are around the three combustion chambers. The water channels transfer combustion heat that occurs the cylinders to the external radiator. This CFD research was based on the ANSYS Fluent software and aimed to optimize the geometry of the water channels. These channels should have a maximum flow of heat from the combustion chamber or the external radiator. Based on the parallel simulation research, the boundary and initial conditions enabled us to specify average values of key parameters for our numerical analysis. Our simulation used the average momentum equations and turbulence model k-epsilon double equation. There was also used a real k-epsilon model with a function of a standard wall. The turbulence intensity factor was 10%. The working fluid mass flow rate was calculated for a single typical value, specified in line with the research into the flow rate of automotive engine cooling pumps used in engines of similar power. The research uses a series of geometric models which differ, for instance, in the shape of the cross-section of the channel along the axis of the cylinder. The results are presented as colourful distribution maps of temperature, speed fields and heat flow through the cylinder walls. Due to limitations of space, our paper presents the results on the most representative geometric model only. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: Ansys fluent, combustion engine, computational fluid dynamics CFD, cooling system

Procedia PDF Downloads 190
4044 Modeling of Surge Corona Using Type94 in Overhead Power Lines

Authors: Zahira Anane, Abdelhafid Bayadi

Abstract:

Corona in the HV overhead transmission lines is an important source of attenuation and distortion of overvoltage surges. This phenomenon of distortion, which is superimposed on the distortion by skin effect, is due to the dissipation of energy by injection of space charges around the conductor, this process with place as soon as the instantaneous voltage exceeds the threshold voltage of the corona effect conductors. This paper presents a mathematical model to determine the corona inception voltage, the critical electric field and the corona radius, to predict the capacitive changes at conductor of transmission line due to corona. This model has been incorporated into the Alternative Transients Program version of the Electromagnetic Transients Program (ATP/EMTP) as a user defined component, using the MODELS interface with NORTON TYPE94 of this program and using the foreign subroutine. For obtained the displacement of corona charge hell, dichotomy mathematical method is used for this computation. The present corona model can be used for computing of distortion and attenuation of transient overvoltage waves being propagated in a transmission line of the very high voltage electric power.

Keywords: high voltage, corona, Type94 NORTON, dichotomy, ATP/EMTP, MODELS, distortion, foreign model

Procedia PDF Downloads 587
4043 Analysis of Different Space Vector Pulse Width Modulation Techniques for a Five-Phase Inverter

Authors: K. A. Chinmaya, M. Udaya Bhaskar

Abstract:

Multiphase motor drives are now a day considered for numerous applications due to the advantages that they offer when compared to their three-phase counterparts. Proper modeling of inverters and motors are important in devising an appropriate control algorithm. This paper develops a complete modeling of a five-phase inverter and five-phase space vector modulation schemes which can be used for five-phase motor drives. A novel modified algorithm is introduced which enables the sinusoidal output voltages up to certain voltage value. The waveforms of phase to neutral voltage are compared with the different modulation techniques and also different modulation indexes in terms of Low-order Harmonic (LH) voltage of 3rd and 7th present. A detailed performance evolution of existing and newly modified schemes is done in terms of Total Harmonic Distortion (THD).

Keywords: multi-phase drives, space vector modulation, voltage source inverter, low order harmonic voltages, total harmonic distortion

Procedia PDF Downloads 369
4042 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behaviour of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Current-voltage curves are particularly analysed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: electrostatic precipitator, current-voltage characteristics, least squares method, electric field, magnetic field

Procedia PDF Downloads 403
4041 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape.

Keywords: power factor correction, direct power transfer, zero-voltage transition, zero-current transition, soft switching

Procedia PDF Downloads 929
4040 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia PDF Downloads 125
4039 Stock Market Developments, Income Inequality, Wealth Inequality

Authors: Quang Dong Dang

Abstract:

This paper examines the possible effects of stock market developments by channels on income and wealth inequality. We use the Bayesian Multilevel Model with the explanatory variables of the market’s channels, such as accessibility, efficiency, and market health in six selected countries: the US, UK, Japan, Vietnam, Thailand, and Malaysia. We found that generally, the improvements in the stock market alleviate income inequality. However, stock market expansions in higher-income countries are likely to trigger income inequality. We also found that while enhancing the quality of channels of the stock market has counter-effects on wealth equality distributions, open accessibilities help reduce wealth inequality distributions within the scope of the study. In addition, the inverted U-shaped hypothesis seems not to be valid in six selected countries between the period from 2006 to 2020.

Keywords: Bayesian multilevel model, income inequality, inverted u-shaped hypothesis, stock market development, wealth inequality

Procedia PDF Downloads 68
4038 The Advertising Channels Affecting to Consumer Purchasing Decisions: Case Study of Hair-Care Market in Thailand

Authors: Narong Anurak

Abstract:

This study aimed to find out the hair-care purchasing behavior at hypermarkets and to investigate two factors, package design and advertising channels, that influenced hair-care purchasing behavior. The subjects of the study consisted of 100 housewives aged between 20-60 who usually shopped at Big C Tiwanon. They were selected by accidental sampling, and were asked to complete a questionnaire. The main findings of the survey were that the majority of respondents regarding their brand selection of hair-care products, they gave priority to the product quality followed by a reasonable price, and fragrance, respectively. Besides, more than half of the respondents had brand loyalty while the rest were attracted by an attractive package design and advertising promotion campaigns. The respondents who were attracted by the package design said that the information on the labels influenced their purchasing decision the most, and television was a medium that best reached them as well.

Keywords: advertising channels, consumer purchasing decisions, hair-care market, package design

Procedia PDF Downloads 312
4037 Generation of Symmetric Key Using Randomness of Hash Function

Authors: Sai Charan Kamana, Harsha Vardhan Nakkina, B.R. Chandavarkar

Abstract:

In a highly secure and robust key generation process, a key role is played by randomness and random numbers when current real-world cryptosystems are observed. Most of the present-day cryptographic protocols depend upon the Random Number Generators (RNG), Pseudo-Random Number Generator (PRNG). These protocols often use noisy channels such as Disk seek time, CPU temperature, Mouse pointer movement, Fan noise to obtain true random values. Despite being cost-effective, these noisy channels may need additional hardware devices to continuously communicate with them. On the other hand, Hash functions are Pseudo-Random (because of their requirements). So, they are a good replacement for these noisy channels and have low hardware requirements. This paper discusses, some of the key generation methodologies, and their drawbacks. This paper explains how hash functions can be used in key generation, how to combine Key Derivation Functions with hash functions.

Keywords: key derivation, hash based key derivation, password based key derivation, symmetric key derivation

Procedia PDF Downloads 131
4036 High Voltage Magnetic Pulse Generation Using Capacitor Discharge Technique

Authors: Mohamed Adel Abdallah

Abstract:

A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate a pulse current. Switching circuit consisting of DPDT switches, thyristor, and triggering circuit is built and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse created is measured and tabulated in the graph. Simulation using FEMM is done to compare the results obtained between experiment and simulation. This technology can be applied to area such as medical equipment, measuring instrument, and military equipment.

Keywords: high voltage, magnetic pulse, capacitor discharge, coil

Procedia PDF Downloads 647
4035 A High Step-Up DC-DC Converter for Renewable Energy System Applications

Authors: Sopida Vacharasukpo, Sudarat Khwan-On

Abstract:

This paper proposes a high step-up DC-DC converter topology for renewable energy system applications. The proposed converter employs only a single power switch instead of using several switches. Compared to the conventional DC-DC step-up converters the higher voltage gain with small output ripples can be achieved by using the proposed high step-up DC-DC converter topology. It can step up the low input voltage (20-50Vdc) generated from the photovoltaic modules to the high output voltage level approximately 600Vdc in order to supply the three-phase inverter fed the three-phase motor drive. In this paper, the operating principle of the proposed converter topology and its control strategy under the continuous conduction mode (CCM) are described. Finally, simulation results are shown to demonstrate the effectiveness of the proposed high step-up DC-DC converter with its control strategy to increase the voltage step-up conversion ratio.

Keywords: DC-DC converter, high step-up ratio, renewable energy, single switch

Procedia PDF Downloads 1159
4034 Determination of Mineral Elements in Some Coarse Grains Used as Staple Food in Kano, Nigeria

Authors: M. I. Mohammed, U. M. Ahmad

Abstract:

Analyses of mineral elements were carried out on some coarse grains used as staple food in Kano. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer (FES). The result of the study shows that the mean results of the mineral elements ranged from 62.50±0.55 - 84.82±0.74mg/kg sodium, 73.33±0.35 - 317±0.10mg/kg magnesium, 89.22±0.26 - 193.33±0.19mg/kg potassium, 70.00±0.52 - 186.67±0.29mg/kg calcium, 1.00±0.11 - 20.50±1.30mg/kg manganese, 25.00±0.11 - 80.50±0.36mg/kg iron. 4.00±0.08 - 13.00±0.24mg/kg copper and 15.00±0.34 - 50.50±0.24 zinc. There was significant difference (p < 0.05) in levels of sodium, potassium and calcium whereas no significant difference (p > 0.05) occurs in levels of magnesium, manganese, copper and zinc. In comparison with Recommended Daily Allowances of essential and trace metals set by international standard organizations, the coarse grains analysed in this work contribute little to the provision of essential and trace elements requirements.

Keywords: mineral elements, coarse grains, staple food, Kano, Nigeria

Procedia PDF Downloads 252
4033 Large-Scale Photovoltaic Generation System Connected to HVDC Grid with Centralized High Voltage and High Power DC/DC Converter

Authors: Xinke Huang, Huan Wang, Lidong Guo, Changbin Ju, Runbiao Liu, Shanshan Meng, Yibo Wang, Honghua Xu

Abstract:

Large-scale photovoltaic (PV) generation system connected to HVDC grid has many advantages compared to its counterpart of AC grid. DC connection can solve many problems that AC connection faces, such as the grid-connection and power transmission, and DC connection is the tendency. DC/DC converter as the most important device in the system has become one of the hot spots recently. The paper proposes a centralized DC/DC converter which uses Boost Full Bridge Isolated DC/DC Converter(BFBIC) topology and combination through input parallel output series(IPOS) method to improve power capacity and output voltage to match with the HVDC grid voltage. Meanwhile, it adopts input current sharing control strategy to realize input current and output voltage balance. A ±30kV/1MW system is modeled in MATLAB/SIMULINK, and a downscaled ±10kV/200kW DC/DC converter platform is built to verify the proposed topology and control strategy.

Keywords: photovoltaic generation, cascaded dc/dc converter, galvanic isolation, high-voltage, direct current (HVDC)

Procedia PDF Downloads 412
4032 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 119
4031 Calcium Complexing Properties of Isosaccharinate Ion in Highly Alkaline Environment

Authors: Csilla Dudás, Éva Böszörményi, Bence Kutus, István Pálinkó, Pál Sipos

Abstract:

In this study the behavior of alpha-D-isosaccharinate (2-hydroxymethyl-3-deoxy-D-erythro-pentonate, ISA−) in alkaline medium in the presence of calcium was studied. At first the Ca–ISA system was studied by Ca-ion selective electrode (Ca-ISE) in neutral medium at T = 25 °C and I = 1 M NaCl to determine the formation constant of the CaISA+ monocomplex, which was found to be logK = 1.01 ± 0.01 for the reaction of Ca2+ + ISA– = CaISA+. In alkaline medium pH potentiometric titrations were carried out to determine the composition and stability constant of the complex(es) formed. It was found that in these systems above pH = 12.5 the predominant species is the CaISAOH complex. Its formation constant was found to be logK = 3.04 ± 0.05 for the reaction of Ca2+ + ISA– + H2O = CaISAOH + H+ at T = 25 °C and I = 1 M NaCl. Solubility measurements resulted in data consistent with those of the potentiometric titrations. Temperature dependent NMR spectra showed that the slow exchange range between the complex and the free ligand is below 5 °C. It was also showed that ISA– acts as a multidentate ligand forming macrochelate Ca-complexes. The structure of the complexes was determined by using ab initio quantum chemical calculations.

Keywords: Ca-ISE potentiometry, calcium complexes, isosaccharinate ion, NMR spectroscopy, pH potentiometry

Procedia PDF Downloads 232
4030 Thermal Interruption Performance of High Voltage Gas Circuit Breaker Operating with CO₂ Mixtures

Authors: Yacine Babou, Nitesh Ranjan, Branimir Radisavljevic , Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti, Paulo Cristini

Abstract:

In the frame of replacement of Sulfur hexafluoride (SF6) gas as insulating and switching medium, diverse alternative gases, offering acceptable Global Warming Potential and fulfilling requirements in terms of heat dissipation, insulation and arc quenching performances are currently investigated for High Voltage Circuit Breaker applications. Among the potential gases, CO₂ seems a promising candidate for replacing SF6, because on one hand it is environmentally friendly, harmless, non-toxic, non-corrosive, non-flammable and on the other hand previous studies have demonstrated its fair interruption capabilities. The present study aims at investigating the performance of CO₂ for the thermal interruption in high voltage self-blast circuit breakers. In particular, the correlation between thermal interruption performance and arc voltage is considered and the effect of the arc-network interaction on the performance is rigorously analyzed. For the considered designs, the thermal interruption was evaluated by varying the slope at current zero (i.e., di/dt) for which the breaker could interrupt. Besides, the characteristics of the post-arc current are examined in detail for various rated voltages and currents. The outcome of these experimental investigations will be reported and analyzed.

Keywords: current zero measurement, high voltage circuit breaker, thermal arc discharge, thermal interruption

Procedia PDF Downloads 146
4029 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)

Authors: Sekkak Abdelmalek

Abstract:

The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.

Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing

Procedia PDF Downloads 482
4028 Environmental Modeling of Storm Water Channels

Authors: L. Grinis

Abstract:

Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.

Keywords: open channel, physical modeling, baffles, turbulent flow

Procedia PDF Downloads 260
4027 Optimal Analysis of Grounding System Design for Distribution Substation

Authors: Thong Lantharthong, Nattchote Rugthaicharoencheep, Att Phayomhom

Abstract:

This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations.

Keywords: grounding system, touch voltage, step voltage, safety criteria

Procedia PDF Downloads 416
4026 Effect of Curing Temperature on Unconfined Compression Strength of Bagasse Ash-Calcium Carbide Residue Treated Organic Clay

Authors: John Trihatmoko, Luky Handoko

Abstract:

A series of experimental program was undertaken to study the effect of curing temperature on the unconfined compression strength of bagasse ash (BA) - calcium carbide residue (CCR) stabilized organic clay (OC). A preliminary experiment was performed to get the physical properties of OC, and to get the optimum water content (OMC), the standard compaction test was done. The stabilizing agents used in this research was (40% BA + 60% CCR) . Then to obtain the best binder proportion, unconfined compression test was undertaken for OC + 3, 6, 9, 12 and 15% of binder with 7, 14, 21, 28 and 56 days curing period. The best quantity of the binder was found on 9%. Finally, to study the effect of curing temperature, the unconfined compression test was performed on OC + 9% binder with 7, 14, 21, 28 and 56 days curing time with 20O, 25O, 30O, 40O, and 50O C curing temperature. The result indicates that unconfined compression strength (UCS) of treated OC improve according to the increase of curing temperature at the same curing time. The improvement of UCS is probably due to the degree of cementation and pozzolanic reactions.

Keywords: curing temperature, organic clay, bagasse ash, calcium carbide residue, unconfined compression strength

Procedia PDF Downloads 84
4025 Single-Inductor Multi-Output Converters with Four-Level Output Voltages

Authors: Yasunori Kobori, Murong Li, Feng Zhao, Shu Wu, Nobukazu Takai, Haruo Kobayashi

Abstract:

This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors with capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the average of LED current of 350 mA.

Keywords: DC-DC buck converter, four-level output voltage, single inductor multi output (SIMO), switching converter

Procedia PDF Downloads 526