Search results for: CML current mode logic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10882

Search results for: CML current mode logic

10732 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications

Authors: Andrés Gomez-Casseres, Rubén Contreras

Abstract:

In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.

Keywords: average current control, boost converter, electrical tuning, energy harvesting

Procedia PDF Downloads 730
10731 Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows

Authors: M. Yaqub Khan, Usman Shabbir

Abstract:

History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas.

Keywords: entropy, velocity shear, ion temperature gradient mode, drift

Procedia PDF Downloads 355
10730 Sliding Mode Controlled Quadratic Boost Converter

Authors: Viji Vijayakumar, R. Divya, A. Vivek

Abstract:

This paper deals with a quadratic boost converter which belongs to cascade boost family, controlled by sliding mode controller. In the cascade boost family, quadratic boost converter is the best trade-off when circuit complexity and modulator saturation is considered. Sliding mode control being a nonlinear control results in a robust and stable system when applied to switching converters which are inherently variable structured systems. The stability of this system is analyzed through Lyapunov’s approach. Analysis is done for load regulation, line regulation and step response of the system. Also these results are compared with that of PID controller based system.

Keywords: DC-DC converter, quadratic boost converter, sliding mode control, PID control

Procedia PDF Downloads 959
10729 Integration of Fuzzy Logic in the Representation of Knowledge: Application in the Building Domain

Authors: Hafida Bouarfa, Mohamed Abed

Abstract:

The main object of our work is the development and the validation of a system indicated Fuzzy Vulnerability. Fuzzy Vulnerability uses a fuzzy representation in order to tolerate the imprecision during the description of construction. At the the second phase, we evaluated the similarity between the vulnerability of a new construction and those of the whole of the historical cases. This similarity is evaluated on two levels: 1) individual similarity: bases on the fuzzy techniques of aggregation; 2) Global similarity: uses the increasing monotonous linguistic quantifiers (RIM) to combine the various individual similarities between two constructions. The third phase of the process of Fuzzy Vulnerability consists in using vulnerabilities of historical constructions narrowly similar to current construction to deduce its estimate vulnerability. We validated our system by using 50 cases. We evaluated the performances of Fuzzy Vulnerability on the basis of two basic criteria, the precision of the estimates and the tolerance of the imprecision along the process of estimation. The comparison was done with estimates made by tiresome and long models. The results are satisfactory.

Keywords: case based reasoning, fuzzy logic, fuzzy case based reasoning, seismic vulnerability

Procedia PDF Downloads 252
10728 Highly Sensitive Fiber-Optic Curvature Sensor Based on Four Mode Fiber

Authors: Qihang Zeng, Wei Xu, Ying Shen, Changyuan Yu

Abstract:

In this paper, a highly sensitive fiber-optic curvature sensor based on four mode fiber (FMF) is presented and investigated. The proposed sensing structure is constructed by fusing a section of FMF into two standard single mode fibers (SMFs) concatenated with two no core fiber (NCF), i.e., SMF-NCF-FMF-NCF-SMF structure is fabricated. The length of the NCF is very short about 1 millimeter acting as exciting/recoupling the light from/into the core of the SMF, while the FMF is with 3 centimeters long supporting four eigenmodes including LP₀₁, LP₁₁, LP₂₁ and LP₀₂. High core modes in FMF can be effectively stimulated owing to mismatched mode field distribution and the mainly sensing principle is based on modal interferometer spectrum analysis. Different curvatures induce different strains on the FMF such that affecting the modal excitation, resulting spectrum shifts. One can get the curvature value by tracking the wavelength shifting. Experiments have been done to address the sensing performance, which is about 7.8 nm/m⁻¹ within a range of 1.90 m⁻¹~3.18 m⁻¹.

Keywords: curvature, four mode fiber, highly sensitive, modal interferometer

Procedia PDF Downloads 164
10727 Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach

Authors: Mohammad Ali Alavidoost, Hossein Bozorgian

Abstract:

Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment.

Keywords: criterion-referenced tests, threshold loss agreement, threshold point, fuzzy logic approach

Procedia PDF Downloads 332
10726 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack

Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim

Abstract:

In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.

Keywords: smart hybrid powerpack (SHP), electro hydraulic actuator (EHA), permanent sensor fault tolerance, sliding mode observer (SMO), graphic user interface (GUI)

Procedia PDF Downloads 523
10725 Seasonal Variation in Aerosols Characteristics over Ahmedabad

Authors: Devansh Desai, Chamandeep Kaur, Nirmal Kullu, George Christopher

Abstract:

Study of aerosols has become very important tool in assuming the climatic changes over a region.Spectral and temporal variability’s in aerosol optical depth(AOD) and size distribution are investigated using ground base measurements over Ahmedabad during the months of January(2013) to may (2013). Angstrom coefficient (ἁ) was found to be higher in winter season (January to march) indicating the dominance of fine mode aerosol concentration over Ahmedabad, and the Angstrom coefficient (ἁ) was found to be lower indicating the dominance of coarse mode aerosol concentration over Ahmedabad. The different values of alpha are observed when calculated over different wavelength ranges indicating bimodal aerosol size distribution. Discrimination of aerosol size during different seasons is made using the coefficient of polynomial fit (ἁ1 and ἁ2) which shows the presence of changing dominant aerosol types as a function of season over Ahmedabad. The ἁ2- ἁ1 value is used to get the confirmation on the dominant aerosol mode over Ahmedabad in both seasons. During pre-monsoon about 90% of AOD spectra is dominated by coarse mode aerosols and during winter about 60% of AOD spectra is dominated by fine mode aerosols. This characterization of aerosols is important in assessing the response of different aerosols type in radiative forcing and over climate of Ahmedabad.

Keywords: radiative forcing, aerosol optical depth, fine mode, coarse mode

Procedia PDF Downloads 472
10724 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor

Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong

Abstract:

Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.

Keywords: variable speed refrigeration system, fuzzy logic control, membership function range, control performance

Procedia PDF Downloads 235
10723 Design and Simulation of Unified Power Quality Conditioner based on Adaptive Fuzzy PI Controller

Authors: Brahim Ferdi, Samira Dib

Abstract:

The unified power quality conditioner (UPQC), a combination of shunt and series active power filter, is one of the best solutions towards the mitigation of voltage and current harmonics problems in distribution power system. PI controller is very common in the control of UPQC. However, one disadvantage of this conventional controller is the difficulty in tuning its gains (Kp and Ki). To overcome this problem, an adaptive fuzzy logic PI controller is proposed. The controller is composed of fuzzy controller and PI controller. According to the error and error rate of the control system and fuzzy control rules, the fuzzy controller can online adjust the two gains of the PI controller to get better performance of UPQC. Simulations using MATLAB/SIMULINK are carried out to verify the performance of the proposed controller. The results show that the proposed controller has fast dynamic response and high accuracy of tracking the current and voltage references.

Keywords: adaptive fuzzy PI controller, current harmonics, PI controller, voltage harmonics, UPQC

Procedia PDF Downloads 524
10722 Sliding Mode Control of the Power of Doubly Fed Induction Generator for Variable Speed Wind Energy Conversion System

Authors: Ahmed Abbou, Ali Mousmi, Rachid El Akhrif

Abstract:

This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.

Keywords: correction of the equivalent command, DFIG, induction machine, sliding mode controller

Procedia PDF Downloads 387
10721 Plotting of an Ideal Logic versus Resource Outflow Graph through Response Analysis on a Strategic Management Case Study Based Questionnaire

Authors: Vinay A. Sharma, Shiva Prasad H. C.

Abstract:

The initial stages of any project are often observed to be in a mixed set of conditions. Setting up the project is a tough task, but taking the initial decisions is rather not complex, as some of the critical factors are yet to be introduced into the scenario. These simple initial decisions potentially shape the timeline and subsequent events that might later be plotted on it. Proceeding towards the solution for a problem is the primary objective in the initial stages. The optimization in the solutions can come later, and hence, the resources deployed towards attaining the solution are higher than what they would have been in the optimized versions. A ‘logic’ that counters the problem is essentially the core of the desired solution. Thus, if the problem is solved, the deployment of resources has led to the required logic being attained. As the project proceeds along, the individuals working on the project face fresh challenges as a team and are better accustomed to their surroundings. The developed, optimized solutions are then considered for implementation, as the individuals are now experienced, and know better of the consequences and causes of possible failure, and thus integrate the adequate tolerances wherever required. Furthermore, as the team graduates in terms of strength, acquires prodigious knowledge, and begins its efficient transfer, the individuals in charge of the project along with the managers focus more on the optimized solutions rather than the traditional ones to minimize the required resources. Hence, as time progresses, the authorities prioritize attainment of the required logic, at a lower amount of dedicated resources. For empirical analysis of the stated theory, leaders and key figures in organizations are surveyed for their ideas on appropriate logic required for tackling a problem. Key-pointers spotted in successfully implemented solutions are noted from the analysis of the responses and a metric for measuring logic is developed. A graph is plotted with the quantifiable logic on the Y-axis, and the dedicated resources for the solutions to various problems on the X-axis. The dedicated resources are plotted over time, and hence the X-axis is also a measure of time. In the initial stages of the project, the graph is rather linear, as the required logic will be attained, but the consumed resources are also high. With time, the authorities begin focusing on optimized solutions, since the logic attained through them is higher, but the resources deployed are comparatively lower. Hence, the difference between consecutive plotted ‘resources’ reduces and as a result, the slope of the graph gradually increases. On an overview, the graph takes a parabolic shape (beginning on the origin), as with each resource investment, ideally, the difference keeps on decreasing, and the logic attained through the solution keeps increasing. Even if the resource investment is higher, the managers and authorities, ideally make sure that the investment is being made on a proportionally high logic for a larger problem, that is, ideally the slope of the graph increases with the plotting of each point.

Keywords: decision-making, leadership, logic, strategic management

Procedia PDF Downloads 83
10720 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac

Abstract:

This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: fuzzy logic, intelligent system, precision agriculture, renewable energy

Procedia PDF Downloads 96
10719 One Period Loops of Memristive Circuits with Mixed-Mode Oscillations

Authors: Wieslaw Marszalek, Zdzislaw Trzaska

Abstract:

Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed.

Keywords: mixed-mode oscillations, memristive circuits, pinched hysteresis, one-period loops, singularly perturbed circuits

Procedia PDF Downloads 446
10718 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV

Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol

Abstract:

In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.

Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing

Procedia PDF Downloads 410
10717 VTOL-Fw Mode-Transitioning UAV Design and Analysis

Authors: Feri̇t Çakici, M. Kemal Leblebi̇ci̇oğlu

Abstract:

In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-transitioning capability is designed and analyzed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching maneuvers between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile maneuvers and increasing survivability. Experiments conducted in simulation and real world environments shows that VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope.

Keywords: aircraft design, linear analysis, mode transitioning control, UAV

Procedia PDF Downloads 359
10716 Relative Intensity Noise of Vertical-Cavity Surface-Emitting Lasers Subject to Variable Polarization-Optical Feedback

Authors: Salam Nazhan Ahmed

Abstract:

Influence of variable polarization angle (θp) of optical feedback on the Relative Intensity Noise (RIN) of a Vertical-Cavity Surface-Emitting Laser (VCSEL) has been experimentally investigated. The RIN is a minimum at θp = 0° for the dominant polarization mode (XP), and at θp = 90° for the suppressed polarization mode (YP) of VCSEL. Furthermore, the RIN of the XP mode increases rapidly with increasing θp, while for the YP mode, it increases slightly to θp = 45° and decreases for angles greater than 45°.

Keywords: lasers, vertical-cavity surface-emitting lasers, optical switching, optical polarization feedback, relative intensity noise

Procedia PDF Downloads 355
10715 Determining the Mode II Intra Ply Energy Release Rate of Composites Made of Prepreg

Authors: Philip Rose, Markus Linke, David Busquets

Abstract:

The distinction between interlaminar and intralaminar fracture toughness has already been investigated by several authors. For loading mode I, the double cantilever beam specimens were often used for the interlaminar fracture toughness and the compact tension specimen for the intralaminar fracture toughness. In order to minimize the influence of the different specimen geometries, a method was developed which allows the determination of both the interlaminar and the intralaminar fracture toughness on an almost identical specimen geometry. However, as this method is not applicable to prepreg semi-finished products, a further modification was developed, which is also suitable for prepreg laminates. After the successful application for the investigation of mode I with this method, the application of the method for loading mode II is presented in this paper. In addition to manufacturing differences, due to an additional fiber ply in which the controlled crack growth takes place, the adapted test procedure is also explained. By comparing the test results of standardized end-notched flexure (ENF) specimens with those of the modified ENF specimen, the difference between the interlaminar and intralaminar fracture toughness of the material Hexply 8552/IM7 is shown.

Keywords: ENF, fracture toughness, interlaminar, mode II

Procedia PDF Downloads 104
10714 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement

Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer

Abstract:

Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.

Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator

Procedia PDF Downloads 199
10713 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: electrowinning, intercell bars, PV energy, current modulation

Procedia PDF Downloads 122
10712 Designing Back-Stepping Sliding Mode Controller for a Class of 4Y Octorotor

Authors: I. Khabbazi, R. Ghasemi

Abstract:

This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octorotor UAV and its feature will be shown.

Keywords: sliding mode, backstepping, decoupling, octorotor UAV

Procedia PDF Downloads 414
10711 Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter

Authors: M. Doumi, A. Miloudi, A. G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir

Abstract:

The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. Some MPPT techniques are available in that perturbation and observation (P&O) and Fuzzy logic controller (FLC). The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. Both techniques have been analyzed and simulated. MPPT using fuzzy logic shows superior performance and more reliable control with respect to the P&O technique for this application.

Keywords: photovoltaic system, MPPT, perturb and observe, fuzzy logic

Procedia PDF Downloads 572
10710 PID Sliding Mode Control with Sliding Surface Dynamics based Continuous Control Action for Robotic Systems

Authors: Wael M. Elawady, Mohamed F. Asar, Amany M. Sarhan

Abstract:

This paper adopts a continuous sliding mode control scheme for trajectory tracking control of robot manipulators with structured and unstructured uncertain dynamics and external disturbances. In this algorithm, the equivalent control in the conventional sliding mode control is replaced by a PID control action. Moreover, the discontinuous switching control signal is replaced by a continuous proportional-integral (PI) control term such that the implementation of the proposed control algorithm does not require the prior knowledge of the bounds of unknown uncertainties and external disturbances and completely eliminates the chattering phenomenon of the conventional sliding mode control approach. The closed-loop system with the adopted control algorithm has been proved to be globally stable by using Lyapunov stability theory. Numerical simulations using the dynamical model of robot manipulators with modeling uncertainties demonstrate the superiority and effectiveness of the proposed approach in high speed trajectory tracking problems.

Keywords: PID, robot, sliding mode control, uncertainties

Procedia PDF Downloads 471
10709 Development of a Fuzzy Logic Based Model for Monitoring Child Pornography

Authors: Mariam Ismail, Kazeem Rufai, Jeremiah Balogun

Abstract:

A study was conducted to apply fuzzy logic to the development of a monitoring model for child pornography based on associated risk factors, which can be used by forensic experts or integrated into forensic systems for the early detection of child pornographic activities. A number of methods were adopted in the study, which includes an extensive review of related works was done in order to identify the factors that are associated with child pornography following which they were validated by an expert sex psychologist and guidance counselor, and relevant data was collected. Fuzzy membership functions were used to fuzzify the associated variables identified alongside the risk of the occurrence of child pornography based on the inference rules that were provided by the experts consulted, and the fuzzy logic expert system was simulated using the Fuzzy Logic Toolbox available in the MATLAB Software Release 2016. The results of the study showed that there were 4 categories of risk factors required for assessing the risk of a suspect committing child pornography offenses. The results of the study showed that 2 and 3 triangular membership functions were used to formulate the risk factors based on the 2 and 3 number of labels assigned, respectively. The results of the study showed that 5 fuzzy logic models were formulated such that the first 4 was used to assess the impact of each category on child pornography while the last one takes the 4 outputs from the 4 fuzzy logic models as inputs required for assessing the risk of child pornography. The following conclusion was made; there were factors that were related to personal traits, social traits, history of child pornography crimes, and self-regulatory deficiency traits by the suspects required for the assessment of the risk of child pornography crimes committed by a suspect. Using the values of the identified risk factors selected for this study, the risk of child pornography can be easily assessed from their values in order to determine the likelihood of a suspect perpetuating the crime.

Keywords: fuzzy, membership functions, pornography, risk factors

Procedia PDF Downloads 101
10708 Inverse Saturable Absorption in Non-linear Amplifying Loop Mirror Mode-Locked Fiber Laser

Authors: Haobin Zheng, Xiang Zhang, Yong Shen, Hongxin Zou

Abstract:

The research focuses on mode-locked fiber lasers with a non-linear amplifying loop mirror (NALM). Although these lasers have shown potential, they still have limitations in terms of low repetition rate. The self-starting of mode-locking in NALM is influenced by the cross-phase modulation (XPM) effect, which has not been thoroughly studied. The aim of this study is two-fold. First, to overcome the difficulties associated with increasing the repetition rate in mode-locked fiber lasers with NALM. Second, to analyze the influence of XPM on self-starting of mode-locking. The power distributions of two counterpropagating beams in the NALM and the differential non-linear phase shift (NPS) accumulations are calculated. The analysis is conducted from the perspective of NPS accumulation. The differential NPSs for continuous wave (CW) light and pulses in the fiber loop are compared to understand the inverse saturable absorption (ISA) mechanism during pulse formation in NALM. The study reveals a difference in differential NPSs between CW light and pulses in the fiber loop in NALM. This difference leads to an ISA mechanism, which has not been extensively studied in artificial saturable absorbers. The ISA in NALM provides an explanation for experimentally observed phenomena, such as active mode-locking initiation through tapping the fiber or fine-tuning light polarization. These findings have important implications for optimizing the design of NALM and reducing the self-starting threshold of high-repetition-rate mode-locked fiber lasers. This study contributes to the theoretical understanding of NALM mode-locked fiber lasers by exploring the ISA mechanism and its impact on self-starting of mode-locking. The research fills a gap in the existing knowledge regarding the XPM effect in NALM and its role in pulse formation. This study provides insights into the ISA mechanism in NALM mode-locked fiber lasers and its role in selfstarting of mode-locking. The findings contribute to the optimization of NALM design and the reduction of self-starting threshold, which are essential for achieving high-repetition-rate operation in fiber lasers. Further research in this area can lead to advancements in the field of mode-locked fiber lasers with NALM.

Keywords: inverse saturable absorption, NALM, mode-locking, non-linear phase shift

Procedia PDF Downloads 79
10707 Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption, and Open Cv-Library

Authors: Hazim Abdulsada

Abstract:

The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality.

Keywords: fuzzy logic, mobile robots, Opencv, subsumption, under vehicle inspection

Procedia PDF Downloads 444
10706 [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: fuzzy logic, metal machining, process modeling, surface roughness

Procedia PDF Downloads 134
10705 A Mixed Thought Pattern and the Question of Justification: A Feminist Project

Authors: Angana Chatterjee

Abstract:

The feminist scholars point out the various problematic issues in the traditional mainstream western thought and theories. The thought practices behind the discriminatory and oppressive social practices are based on concepts that play a pivotal role in theorisation. Therefore, many feminist philosophers take up reformation or reconceptualisation projects. Such projects have bearings on various aspects of philosophical thought, namely, ontology, epistemology, logic, ethics, social, political thought, and so on. In tune with this spirit, the present paper suggests a well-established thought pattern which is not western but has got the potential to deal with the problems of mainstream western thought culture that are identified by the feminist critics. The Indian thought pattern is theorised in the domain of Indian logic, which is a study of inference patterns. As, in the Indian context, the inference is considered as a source of knowledge, certain epistemological questions are linked with the discussion of inference. One of the key epistemological issues is one regarding justification. The study about the nature of derivation of knowledge from available evidence, and the nature of the evidence itself, are integral parts of the discipline called Indian logic. But if we contrast the western tradition of thought with the Indian one, we can find that the Indian logic has got some peculiar features which may be shown to deal with the problems identified by the feminist scholars in western thought culture more plausibly. The tradition of western logic, starting from Aristotle, has been maintaining sharp differences between two forms of reasoning, namely, deductive and inductive. These two different forms of reasoning have been theorised and dealt with separately within the domain of the study called ‘logic.’ There are various philosophical problems that are raised around concepts and issues regarding both deductive and inductive reasoning. Indian logic does not distinguish between deduction and induction as thought patterns, but their distinction is very usual to make in the western tradition. Though there can be found various interpretations about this peculiarity of Indian thought pattern, these mixed patterns were actually very close to the cross-cultural pattern in which human beings would tend to argue or infer from the available data or evidence. The feminist theories can successfully operate in the domain of lived experience if they make use of such a mixed pattern of reasoning or inference. By offering sound inferential knowledge on contextual evidences, the Indian thought pattern is potent to serve the feminist purposes in a meaningful way.

Keywords: feminist thought, Indian logic, inference, justification, mixed thought pattern

Procedia PDF Downloads 72
10704 Static Output Feedback Control of a Two-Wheeled Inverted Pendulum Using Sliding Mode Technique

Authors: Yankun Yang, Xinggang Yan, Konstantinos Sirlantzis, Gareth Howells

Abstract:

This paper presents a static output feedback sliding mode control method to regulate a two-wheeled inverted pendulum system with considerations of matched and unmatched uncertainties. A sliding surface is designed and the associated sliding motion stability is analysed based on the reduced-order dynamics. A static output sliding mode control law is synthesised to drive the system to the sliding surface and maintain a sliding motion afterwards. The nonlinear bounds on the uncertainties are employed in the stability analysis and control design to improve the robustness. The simulation results demonstrate the effectiveness of the proposed control.

Keywords: two-wheeled inverted pendulum, output feedback sliding mode control, nonlinear systems, robotics

Procedia PDF Downloads 218
10703 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith

Abstract:

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Keywords: exoskeleton- upper limb system, model free terminal sliding mode, gravity compensation, robustness analysis

Procedia PDF Downloads 112