Search results for: CIK cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3133

Search results for: CIK cells

2833 Synthesis and Cytotoxic Activity of New Quinazolinone-Based Compounds against Human Breast Cancer Cell Line MCF-7

Authors: Maryam Zahedifard, Fadhil Lafta Faraj, Maryam Hajrezaie, Nazia Abdul Majid, Mahmood Ameen Abdulla, Hapipah Mohd Ali

Abstract:

In the current study, we prepared two new quinazoline schiff bases through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The chemical structures of both newly synthesized compounds (1 and 2) were confirmed by FT-IR and X-ray crystallography studies. The cytotoxic effect of compounds was investigated against MCF-7 human breast cancer cells. MTT results showed that (1) and (2) decreased the viability of MCF-7 cells in a time-dependent manner, exhibiting an IC50 value of 3.23 ± 0.28 µg/mL and 3.41 ± 0.34 µg/mL, respectively, after a 72-hours treatment period. In contrast, they did not show significant anti-proliferative effect towards MCF-10A normal breast cells and WRL-68 normal liver cells. We found a perturbation in mitochondrial membrane potential and increased cytochrome c release from the mitochondria to the cytosol, suggesting an activation of apoptosis by compounds, which was confirmed by activation of the initiator caspase-9 and the executioner caspases-3/7. (1) was also able to trigger extrinsic pathway via activation of caspase-8 and inhibition of NF-κB translocation. The acute toxicity test showed no toxicity effect of the compounds in rats. Our results showed that the selected synthesized compounds are highly potent to induce apoptosis in MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway.

Keywords: Quinazoline Schiff base, apoptosis, MCF-7 human breast cancer cell line, caspase, NF-κB translocation

Procedia PDF Downloads 467
2832 Expression of Interferon-Lambda Receptor-(IFN-λRα) in Mononuclear Phagocyte Cells (MPCs) Is Influenced by the Levels of Newly Discovered Type III IFN-λ4 in Vitro

Authors: Hashaam Akhtar

Abstract:

IFNλR1 and IL10R2 collectively construct a heterodimer, which is an acknowledged functional receptor for all type III interferons (IFNs). Expression of IFNλR1 is highly tissue specific, which can help in making type III IFNs a drug of choice as comparable to its analogue, type I IFNs, for treating hepatitis C in the near future. Although, expression of IFNλR1 also varies with the concentration of type I IFNs, but in this study it was shown that the expression of IFNλR1 varies with the protein titers of IFN-α, IFN-λ3 and the newly discovered IFN-λ4. High dosage of IFN-α reduces the expression of IFNλR1 in HepG2 cells, which can affect the antiviral activity of type III IFNs in vivo. We premeditated an experimental strategy to differentiate monocytes into dendritic cells (DCs), type I and type II macrophages in vitro and quantified the expression of the IFNλR1 by qPCR. The exposure of newly discovered IFN-λ4 to macrophages and DCs also raised the expression of its own receptor, which shows that expression of IFN-λ4 protein in hepatitis C patient may augment type I treatment and help ease off viral titers. The results of this study may contribute in some understanding towards the mechanisms involved in the selective expression of IFNLR1 and exceptionalities associated with the receptor.

Keywords: IFNLR1, Interferon Lambda 4 (IFN-λ4), Mononuclear Phagocyte Cells (MPCs), expression

Procedia PDF Downloads 360
2831 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model

Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer

Abstract:

Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.

Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy

Procedia PDF Downloads 155
2830 Investigation of Polymer Solar Cells Degradation Behavior Using High Defect States Influence Over Various Polymer Absorber Layers

Authors: Azzeddine Abdelalim, Fatiha Rogti

Abstract:

The degradation phenomenon in polymer solar cells (PCSs) has not been clearly explained yet. In fact, there are many causes that show up and influence these cells in a variety of ways. Also, there has been a growing concern over this degradation in the photovoltaic community. One of the main variables deciding PSCs photovoltaic output is defect states. In this research, devices modeling is carried out to analyze the multiple effects of degradation by applying high defect states (HDS) on ideal PSCs, mainly poly(3-hexylthiophene) (P3HT) absorber layer. Besides, a comparative study is conducted between P3HT and other PSCs by a simulation program called Solar Cell Capacitance Simulator (SCAPS). The adjustments to the defect parameters in several absorber layers explain the effect of HDS on the total output properties of PSCs. The performance parameters for HDS, quantum efficiency, and energy band were therefore examined. This research attempts to explain the degradation process of PSCs and the causes of their low efficiency. It was found that the defects often affect PSCs performance, but defect states have a little effect on output when the defect level is less than 1014cm-3, which gives similar performance values with P3HT cells when these defects is about 1019cm-3. The high defect states can cause up to 11% relative reduction in conversion efficiency of ideal P3HT. In the center of the band gap, defect states become more noxious. This approach is for one of the degradation processes potential of PSCs especially that use fullerene derivative acceptors.

Keywords: degradation, high defect states, polymer solar cells, SCAPS-1D

Procedia PDF Downloads 63
2829 The Effect of Global Solar Variations on the Performance of n- AlGaAs/ p-GaAs Solar Cells

Authors: A. Guechi, M. Chegaar

Abstract:

This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%.The efficiency decrease with increasing atmospheric turbidity and air mass.

Keywords: AlGaAs/GaAs, solar cells, environmental parameters, spectral variation, SMARTS

Procedia PDF Downloads 374
2828 IL-23, an Inflammatory Cytokine, Decreased by Shark Cartilage and Vitamin A Oral Treatment in Patient with Gastric Cancer

Authors: Razieh Zarei, Hassan zm, Abolghasem Ajami, Darush Moslemi, Narges Afsary, Amrollah Mostafa-zade

Abstract:

Introduction: IL-23 is responsible for the differentiation and expansion of Th17/ThIL-17 cells from naive CD4+ T cells. Therefore, may be IL-23/IL17 axis involve in a variety of allergic and autoimmune diseases, such as RA, MS, inflammatory bowel disease (IBD), and asthma. TGF-β is also share for the differentiation Th17 producing IL-17 and CD4+CD25+Foxp3hiT regulatory cells from naïve CD4+ T cells which are involved in the regulation of immune response, maintaining immunological self-tolerance and immune homeostasis ,and the control of autoimmunity and cancer surveillance. Therefore, T regulatory cells play a key role in autoimmunity, allergy, cancer, infectious disease, and the induction of transplantation tolerance. Vitamin A and it's derivatives (retinoids) inhibit or reverse the carcinogenic process in some types of cancers in oral cavity,head and neck, breast, skin, liver, and blood cells. Shark is a murine organism and its cartilage has antitumor peptides to prevent angiogenesis, in vitro. Our purpose is whether simultaneous oral treatment vitamin A and shark cartilage can modulate IL-23/IL-17 and CD4CD25Foxp3 T regulatory cell/TGF-β pathways and Th1/Th2 immunity in patients with gastric cancer. Materials and Methods: First investigated an imbalanced supernatant of cytokines exist in patients with gastric cancer by ELISA. Associated with cytokines measuring such as IL-23,IL-17,TGF-β,IL-4 and γ-IFN, then flow cytometry was employed to determine whether the peripheral blood mononuclear cells such as CD4+CD25+Foxp3highT regulatory cells in patients with gastric cancer were changed correspondingly. Results: An imbalance between IL-17 secretion and TGF-β/Foxp3 t regulatory cell pathway and so, Th1 immunity (γ-IFN production) and TH2 immunity (IL-4 secretion) was not seen in patients with gastric cancer treated by vitamin A and shark cartilage. But, the simultaneously presented down-regulation of IL-23 indicated, at least cytokine level. Conclusion: Il-23, as a pro-angiogenesis cytokine, probably, help to tumor growth. Hence, suggested that down-regulation of IL-23, at least cytokine level, is useful for anti-tumor immune responses in patients with gastric cancer.

Keywords: IL-23/IL17 axis, TGF-β/CD4CD25Foxp3 T regulatory pathway, γ-IFN, IL-4, shark cartilage and gastric cancer

Procedia PDF Downloads 373
2827 Discriminant Function Based on Circulating Tumor Cells for Accurate Diagnosis of Metastatic Breast Cancer

Authors: Hatem A. El-Mezayen, Ahmed Abdelmajeed, Fatehya Metwally, Usama Elsaly, Salwa Atef

Abstract:

Tumor metastasis involves the dissemination of malignant cells into the basement membrane and vascular system contributes to the circulating pool of these markers. In this context our aim has been focused on development of a non-invasive. Circulating tumor cells (CTCs) represent a unique liquid biopsy carrying comprehensive biological information of the primary tumor. Herein, we sought to develop a novel score based on the combination of the most significant CTCs biomarkers with and routine laboratory tests for accurate detection of metastatic breast cancer. Methods: Cytokeratin 18 (CK18), Cytokeratin 19 (CK19), and CA15.3 were assayed in metastatic breast cancer (MBC) patients (75), non-MBC patients (50) and healthy control (20). Results: Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named MBC-CTCs = CA15.3 (U/L) × 0.08 + CK 18 % × 2.9 + CK19 × 3.1– 510. That function correctly classified 87% of metastatic breast cancer at cut-off value = 0.55. (i.e great than 0.55 indicates patients with metastatic breast cancer and less than 0.55 indicates patients with non-metastatic breast cancer). Conclusion: MBC-CTCs is a novel, non-invasive and simple can applied to discriminate patients with metastatic breast cancer.

Keywords: metastatic breast cancer, circulating tumor cells, cytokeratin, EpiCam

Procedia PDF Downloads 186
2826 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 160
2825 Study of a Cross-Flow Membrane to a Kidney Encapsulation Engineering Structures for Immunosuppression Filter

Authors: Sihyun Chae, Ryoto Arai, Waldo Concepcion, Paula Popescu

Abstract:

The kidneys perform an important role in the human hormones that regulate the blood pressure, produce an active form of vitamin D and control the production of red blood cells. Kidney disease can cause health problems, such as heart disease. Also, increase the chance of having a stroke or heart attack. There are mainly to types of treatments for kidney disease, dialysis, and kidney transplant. For a better quality of life, the kidney transplant is desirable. However, kidney transplant can cause antibody reaction and patients’ body would be attacked by immune system of their own. For solving that issue, patients with transplanted kidney always take immunosuppressive drugs which can hurt kidney as side effects. Patients willing to do a kidney transplant have a waiting time of 3.6 years in average searching to find an appropriate kidney, considering there are almost 96,380 patients waiting for kidney transplant. There is a promising method to solve these issues: bioartificial kidney. Our membrane is specially designed with unique perforations capable to filter the blood cells separating the white blood cells from red blood cells. White blood cells will not pass through the encapsulated kidney preventing the immune system to attack the new organ and eliminating the need of a matching donor. It is possible to construct life-time long encapsulation without needing pumps or a power supply on the cell’s separation method preventing futures surgeries due the Cross-Channel Flow inside the device. This technology allows the possibility to use an animal kidney, prevent cancer cells to spread through the body, arm and leg transplants in the future. This project aims to improve the quality of life of patients with kidney disease.

Keywords: kidney encapsulation, immunosuppression filter, leukocyte filter, leukocyte

Procedia PDF Downloads 176
2824 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol

Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya

Abstract:

Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.

Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol

Procedia PDF Downloads 228
2823 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation

Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi

Abstract:

For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.

Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)

Procedia PDF Downloads 207
2822 Comprehending the Relationship between the Red Blood Cells of a Protein 4.1 -/- Patient and Those of Healthy Controls: A Comprehensive Analysis of Tandem Mass Spectrometry Data

Authors: Ahmed M. Hjazi, Bader M. Hjazi

Abstract:

Protein 4.1 is a crucial component of complex interactions between the cytoskeleton and other junctional complex proteins. When the gene encoding this protein is altered, resulting in reduced expression, or when the protein is absent, the red cell undergoes a significant structural change. This research aims to achieve a deeper comprehension of the biochemical effects of red cell protein deficiency. A Tandem Mass Spectrometry Analysis (TMT-MS/MS) of patient cells lacking protein 4.1 compared to three healthy controls was achieved by the Proteomics Institute of the University of Bristol. The SDS-PAGE and Western blotting were utilized on the original patient sample and controls to partially confirm TMT MS/MS data analysis of the protein-4.1-deficient cells. Compared to healthy controls, protein levels in samples lacking protein 4.1 had a significantly higher concentration of proteins that probably originated from reticulocytes. This could occur if the patient has an elevated reticulocyte count. The increase in chaperone and reticulocyte-associated proteins was most notable in this study. This may result from elevated quantities of reticulocytes in patients with hereditary elliptocytosis.

Keywords: hereditary elliptocytosis, protein 4.1, red cells, tandem mass spectrometry data.

Procedia PDF Downloads 56
2821 Continuum-Based Modelling Approaches for Cell Mechanics

Authors: Yogesh D. Bansod, Jiri Bursa

Abstract:

The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.

Keywords: cell mechanics, computational models, continuum approach, mechanical models

Procedia PDF Downloads 336
2820 Optimization of Laser Doping Selective Emitter for Silicon Solar Cells

Authors: Meziani Samir, Moussi Abderrahmane, Chaouchi Sofiane, Guendouzi Awatif, Djema Oussama

Abstract:

Laser doping has a large potential for integration into silicon solar cell technologies. The ability to process local, heavily diffused regions in a self-aligned manner can greatly simplify processing sequences for the fabrication of selective emitter. The choice of laser parameters for a laser doping process with 532nm is investigated. Solid state lasers with different power and speed were used for laser doping. In this work, the aim is the formation of selective emitter solar cells with a reduced number of technological steps. In order to have a highly doped localized emitter region, we used a 532 nm laser doping. Note that this region will receive the metallization of the Ag grid by screen printing. For this, we use SOLIDWORKS software to design a single type of pattern for square silicon cells. Sheet resistances, phosphorus doping concentration and silicon bulk lifetimes of irradiated samples are presented. Additionally, secondary ion mass spectroscopy (SIMS) profiles of the laser processed samples were acquired. Scanning electron microscope and optical microscope images of laser processed surfaces at different parameters are shown and compared.

Keywords: laser doping, selective emitter, silicon, solar cells

Procedia PDF Downloads 67
2819 Role of Interleukin 6 on Cell Differentiations in Stem Cells Isolated from Human Exfoliated Deciduous Teeth

Authors: Nunthawan Nowwarote, Waleerat Sukarawan, Prasit Pavasant, Thanaphum Osathanon

Abstract:

Interleukin 6 (IL-6) is a multifunctional cytokine, regulating various biological responses in several tissues. A Recent study shows that IL-6 plays a role in stemness maintenance in stem cells isolated from human exfoliated deciduous teeth (SHEDs). However, the role of IL-6 on cell differentiation in SHEDs remains unknown. The present study investigated the effect of IL-6 on SHEDs differentiation. Cells were isolated from dental pulp tissues of human deciduous teeth. Flow cytometry was used to determined mesenchymal stem cell marker expression, and the multipotential differentiation (osteogenic, adipogenic and neurogenic lineage ) was also determined. The mRNA was determined using real-time quantitative polymerase chain reaction, and the phenotypes were confirmed by chemical and immunofluorescence staining. Results demonstrated that SHEDs expressed CD44, CD73, CD90, CD105 but not CD45. Further, the up-regulation of osteogenic, adipogenic and neurogenic marker genes was observed upon maintaining cells in osteogenic, adipogenic and neurogenic induction medium, respectively. The addition of IL-6 induced osteogenic by up-regulated osteogenic marker gene also increased in vitro mineralization. Under neurogenic medium supplement with IL-6, up-regulated neurogenic marker. Whereas, an addition of IL-6 attenuated adipogenic differentiation by SHEDs. In conclusion, this evidence implies that IL-6 may participate in cells differentiation ability of SHEDs.

Keywords: SHEDs, IL-6, cell differentiations, dental pulp

Procedia PDF Downloads 147
2818 Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells

Authors: K. Mardaleishvili, G. Loladze, G. Shatirishivili, D. Chakhunashvili, A. Vishnevskaya, Z. Kakabadze

Abstract:

Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient.

Keywords: facial bones, osteoblastoma, stem cells, transplantation

Procedia PDF Downloads 399
2817 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 176
2816 Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro

Authors: Prativa Das, Lay Poh Tan

Abstract:

Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro.

Keywords: electrospinning, collagen-I and fibronectin, surface modification of fiber, LX-2 cells, liver fibrosis

Procedia PDF Downloads 99
2815 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects

Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa

Abstract:

Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.

Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture

Procedia PDF Downloads 154
2814 The Role of Moringa oleifera Extract Leaves in Inducing Apoptosis in Breast Cancer Cell Line

Authors: V. Yurina, H. Sujuti, E. Rahmani, A. R. Nopitasari

Abstract:

Breast cancer has the highest prevalence cancer in women. Moringa leaves (M. oleifera) contain quercetin, kaempferol, and benzyl isothiocyanate which can enhance induction of apoptosis. This research aimed to study the role of the leaf extract of Moringa to increase apoptosis in breast cancer cell line, MCF-7 cells. This research used in vitro experimental, post-test only, control group design on breast cancer cells MCF-7 in vitro. Moringa leaves were extracted by maceration method with ethanol 70%. Cells were treated with drumstick leaves extract on 1100, 2200, and 4400 μg/ml for Hsp27 and caspase-9 expression (immunocytochemistry) and apoptosis (TUNEL assay) test. The results of this study found that the IC50 2200 µg/ml. Moringa leaves extract can significantly increase the expression of caspase-9 (p<0.05) and decreased Hsp 27 expression (p<0.05). Moreover it can increase apoptosis (p<0.05) significantly in MCF-7 cells. The conclusion of this study is Moringa leaves extract is able to increase the expression of caspase-9, decrease Hsp27 expression and increase apoptosis in breast cancer cell-line MCF-7.

Keywords: apoptosis, breast cancer, caspase-9, Hsp27, Moringa oleifera

Procedia PDF Downloads 506
2813 Investigating the Role of Circular RNA GATAD2A on H1N1 Replication

Authors: Tianqi Yu, Yingnan Ding, Yina Zhang, Yulan Liu, Yahui Li, Jing Lei, Jiyong Zhou, Suquan Song, Boli Hu

Abstract:

Circular RNAs (circRNAs) play critical roles in various diseases. However, whether and how circular RNA regulates influenza A virus (IAV) infection is unknown. Here, we studied the role of circular RNA GATA Zinc Finger Domain Containing 2A (circ-GATAD2A) in the replication of IAV H1N1 in A549 cells. Circ-GATAD2A was formed upon H1N1 infection. Knockdown of circ-GATAD2A in A549 cells enhanced autophagy and inhibited H1N1 replication. By contrast, overexpression of circ-GATAD2A impaired autophagy and promoted H1N1 replication. Similarly, knockout of vacuolar protein sorting 34 (VPS34) blocked autophagy and increased H1N1 replication. However, the expression of circ-GATAD2A could not further enhance H1N1 replication in VPS34 knockout cells. Collectively, these data indicated that circ-GATAD2A promotes the replication of H1N1 by inhibiting autophagy.

Keywords: autophagy, circ-GATAD2A, H1N1, replication

Procedia PDF Downloads 130
2812 Colonization of Embrionic Gonads of Nile Tilapia by Giant Gourami Testicular Germ Cells

Authors: Irma Andriani, Ita Djuwita, Komar Sumantadinata, Alimuddin

Abstract:

The recent study has been conducted to develop testicular germ cell transplantation as a tool for preservation and propagation of male germ-plasm from endangered fish species, as well as to produce surrogate broodstock of commercially valuable fish. Giant gourami testis had been used as a model for donor and Nile tilapia larvae as recipient. We developed testicular cell xenotransplantation by optimizing the timing of intraperitoneal cell transplantation to recipient larvae aged 1, 3, 5 and 7 days post hatching (dph). Freshly isolated testis of giant gourami weighing 600–800 g were minced in dissociation medium and then incubated for 3 hours in room temperature to collect monodisperce cell suspension. Donor cells labeled with PKH 26 were transplanted into the peritoneal cavity of Nile tilapia larvae using glass micropipettes. Parameters observed were survival rate of Nile tilapia larvae at 24 hours post transplantation (pt) and colonization efficiency of donor cells at 2 and 3 months pt. The incorporated donor cells were observed under fluorescent microscope. The result showed that the lowest survival rate at 24 hours pt was 1 dph larvae (82.74±6.76%) and the highest survival rate were 3 and 5 dph larvae (95.00±5.00% and 95.00±2.50%, respectively). The highest colonization efficiency was on 3 dph larvae (61.1±34.71%) and the lowest colonization efficiency was on 7 dph larvae (19.43±17.33%). In conclusion, 3 dph Nile tilapia larvae was the best recipient for giant gourami testicular germ cells xenotransplantation.

Keywords: xenotransplantation, testicular germ cell, giant gourami, Nile tilapia, colonization efficiency

Procedia PDF Downloads 560
2811 Experimental Study of Boost Converter Based PV Energy System

Authors: T. Abdelkrim, K. Ben Seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa

Abstract:

This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC micro controller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.

Keywords: boost converter, microcontroller, photovoltaic power generation, shading cells

Procedia PDF Downloads 848
2810 Effect of Varying Scaffold Architecture and Porosity of Calcium Alkali Orthophosphate Based-Scaffolds for Bone Tissue Engineering

Authors: D. Adel, F. Giacomini, R. Gildenhaar, G. Berger, C. Gomes, U. Linow, M. Hardt, B. Peleskae, J. Günster, A. Houshmand, M. Stiller, A. Rack, K. Ghaffar, A. Gamal, M. El Mofty, C. Knabe

Abstract:

The goal of this study was to develop 3D scaffolds from a silica containing calcium alkali orthophosphate utilizing two different fabrication processes, first a replica technique namely the Schwartzwalder Somers method (SSM), and second 3D printing, i.e. Rapid prototyping (RP). First, the mechanical and physical properties of the scaffolds (porosity, compressive strength, and solubility) was assessed and second their potential to facilitate homogenous colonization with osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture. To this end murine and rat calavarie osteoblastic cells were dynamically seeded on both scaffold types under perfusion with concentrations of 3 million cells. The amount of cells and extracellular matrix as well as osteogenic marker expression was evaluated using hard tissue histology, immunohistochemistry, and histomorphometric analysis. Total porosities of both scaffolds were 86.9 % and 50% for SSM and RP respectively, Compressive strength values were 0.46 ± 0.2 MPa for SSM and 6.6± 0.8 MPa for RP. Regarding the cellular behavior, RP scaffolds displayed a higher cell and matrix percentage of 24.45%. Immunoscoring yielded strong osteocalcin expression of cells and matrix in RP scaffolds and a moderate expression in SSM scaffolds. 3D printed RP scaffolds displayed superior mechanical and biological properties compared to SSM. 3D printed scaffolds represent excellent candidates for bone tissue engineering.

Keywords: calcium alkali orthophosphate, extracellular matrix mineralization, osteoblast differentiation, rapid prototyping, scaffold

Procedia PDF Downloads 301
2809 Effectiveness of Homoeopathic Medicine Conium Maculatum 200 C for Management of Pyuria

Authors: Amir Ashraf

Abstract:

Homoeopathy is an alternative system of medicine discovered by German physician Samuel Hahnemann in 1796. It has been used by several people for various health conditions globally for more than last 200 years. In India, homoeopathy is considered as a major system of alternative medicine. Homoeopathy is found effective in various medical conditions including Pyuria. Pyuria is the condition in which pus cells are found in urine. Homoeopathy is very useful for reducing pus cells, and homeopathically potentized Conium Mac (Hemlock) is an important remedy commonly used for reducing pyuria. Aim: To reduce the amount pus cells found in urine using Conium Mac 200C. Methods: Design. Small N Design. Samples: Purposive Sampling with 5 cases diagnosed as pyuria. Tools: Personal Data Schedule and ICD-10 Criteria for Pyuria. Techniques: Potentized homoeopathic medicine, Conium Mac 200th potency is used. Statistical Analysis: The statistical analyses were done using non-parametric tests. Results: There is significant pre/post difference has been identified. Conclusion: Homoeopathic potency, Conium Mac 200 C is effective in reducing the increased level of pus cells found in urine samples.

Keywords: homoeopathy, alternative medicine, Pyuria, Conim Mac, small N design, non-parametric tests, homeopathic physician, Ashirvad Hospital, Kannur

Procedia PDF Downloads 302
2808 Anti-TNF: Possibilities of Rising Anti-Phosphorylcholine Antibodies

Authors: Md. Mizanur Rahman, Anquan Liu, Anna Frostegård, Johan Frostegård

Abstract:

The role of the human immune system is essential in cardiovascular diseases and atherosclerosis. Activated cells in atherosclerosis produce abundant amounts of cytokines, but the exact mechanisms involved in the effects of these inflammatory cytokines are not clear in atherosclerosis. In a large clinical cohort, we have previously determined that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with both development of atherosclerosis and also a low risk of cardiovascular disease. Further, we reported that rheumatoid arthritis patients who were non-responders to TNF-inhibitors, where those with low anti-PC levels. Upon anti-TNF treatment, anti-PC levels increased. We, therefore, hypothesised that proinflammatory cytokines such as TNF could play a role in anti-PC regulation. Peripheral blood mononuclear cells (PBMC) were cultured with or without TNF and anti-TNF. The cell supernatants were collected after six days for ELISA measurements. In separate experiments, cells were cultured for 24 hours in both polystyrene plates and ELISPOT plates under a similar condition for ELISA and ELISPOT assays respectively. Total RNA was extracted after 6 hours of cell culture to perform RT-qPCR. Cell viability was confirmed by trypan blue staining and MTT assays. ELISA measurements detected less than 40% of anti-PC in TNF-treated cells, in comparison to control cells, whereas anti-PC production was recovered by anti-TNF treatment. ELISPOT assays showed that TNF suppresses anti-PC production by inhibiting anti-PC producing B-cells. In addition, RT-qPCR and ELISA showed that TNF also has effects also on B-cell activation as BAFF expression was inhibited by TNF treatment. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC is a protection marker for atherosclerosis development. Our findings show that TNF is a negative regulator of anti-PC production. Immune modulation and rising of anti-PC could be of major significance for the patients.

Keywords: anti-PC, Anti-TNF, atherosclerosis, cardiovascular diseases, phosphorylecholine

Procedia PDF Downloads 218
2807 Fabrication of Graphene Oxide Based Planar Hetero-Junction Perovskite Solar Cells

Authors: Khursheed Ahmad, Shaikh M. Mobin

Abstract:

In this work, we have developed a highly stable planar heterojunction perovskite solar cells (PSCs) with a architecture (ITO/GO/PEDOT:PSS/MAPbI3/PCBM/Carbon tape). The PSCs was fabricated under air using GO/PEDOT:PSS as hole transport layer while the carbon tape used as a back contact to complete the device. The fabricated PSCs device exhibited good stability and performance in terms of power conversion efficiency of 5.2%. The PSCs devices were exposed to ambient condition for 4 days which shows excellent stability confirmed by XRD analysis. We believed that the stability of the planar heterojunction perovskite solar cell may be due the presence of GO which inhibits the direct contact between PEDOT:PSS and MAPbI3.

Keywords: graphene oxide, perovskite solar cells, hole transport layer, PEDOT:PSS

Procedia PDF Downloads 155
2806 Temporal Changes of Heterogeneous Subpopulations of Human Adipose-Derived Stromal/Stem Cells in vitro

Authors: Qiuyue Peng, Vladimir Zachar

Abstract:

The application of adipose-derived stromal/stem cells (ASCs) in regenerative medicine is gaining more awareness due to their advanced translational potential and abundant source preparations. However, ASC-based translation has been confounded by high subpopulation heterogeneity, causing ambiguity about its precise therapeutic value. Some phenotypes defined by a unique combination of positive and negative surface markers have been found beneficial to the required roles. Therefore, the immunophenotypic repertoires of cultured ASCs and temporal changes of distinct subsets were investigated in this study. ASCs from three donors undergoing cosmetic liposuction were cultured in standard culturing methods, and the co-expression patterns based on the combination of selected markers at passages 1, 4, and 8 were analyzed by multi-chromatic flow cytometry. The results showed that the level of heterogeneity of subpopulations of ASCs became lower by in vitro expansion. After a few passages, most of the CD166⁺/CD274⁺/CD271⁺ based subpopulations converged to CD166 single positive cells. Meanwhile, these CD29⁺CD201⁺ double-positive cells, in combination with CD36/Stro-1 expression or without, feathered only the major epitopes and maintained prevailing throughout the whole process. This study suggested that, upon in vitro expansion, the phenotype repertoire of ASCs redistributed and stabilized in a way that cells co-expressing exclusively the strong markers remained dominant. These preliminary findings provide a general overview of the distribution of heterogeneous subsets residents within human ASCs during expansion in vitro. It is a critical step to fully characterize ASCs before clinical application, although the biological effects of heterogeneous subpopulations still need to be clarified.

Keywords: adipose-derived stromal/stem cells, heterogeneity, immunophenotype, subpopulations

Procedia PDF Downloads 85
2805 Peptidoglycan Vaccine-On-Chip against a Lipopolysaccharide-Induced Experimental Sepsis Model

Authors: Katerina Bakela, Ioanna Zerva, Irene Athanassakis

Abstract:

Lipopolysaccharide (LPS) is commonly used in murine sepsis models, which are largely associated with immunosuppression (incretion of MDSCs cells and Tregs, imbalance of inflammatory/anti-inflammatory cytokines) and collapse of the immune system. After adapting the LPS treatment to the needs of locally bred BALB/c mice, the present study explored the protective role of Micrococcus luteus peptidoglycan (PG) pre-activated vaccine-on chip in endotoxemia. The established protocol consisted of five daily intraperitoneal injections of 0.2mg/g LPS. Such protocol allowed longer survival, necessary in the prospect of the therapeutic treatment application. The so-called vaccine-on-chip consists of a 3-dimensional laser micro-texture Si-scaffold loaded with BALB/c mouse macrophages and activated in vitro with 1μg/ml PG, which exert its action upon subcutaneous implantation. The LPS treatment significantly decreased CD4+, CD8+, CD3z+, and CD19+ cells, while increasing myeloid-derived suppressor cells (MDSCs), CD25+, and Foxp3+ cells. These results were accompanied by increased arginase-1 activity in spleen cell lysates and production of IL-6, TNF-a, and IL-18 while acquiring severe sepsis phenotype as defined by the murine sepsis scoring. The in vivo application of PG pre-activated vaccine-on chip significantly decreased the percent of CD11b+, Gr1+, CD25+, Foxp3+ cells, and arginase-1 activity in the spleen of LPS-treated animals, while decreasing IL-6 and TNF-a in the serum, allowing survival to all animals tested and rescuing the severity of sepsis phenotype. In conclusion, these results reveal a promising mode of action of PG pre-activated vaccine-on chip in LPS endotoxemia, strengthening; thus, the use of treatment is septic patients.

Keywords: myeloid-derived suppressor cells, peptidoglycan, sepsis, Si-scaffolds

Procedia PDF Downloads 111
2804 Comparison of Bismuth-Based Nanoparticles as Radiosensitization Agents for Radiotherapy

Authors: Merfat Algethami, Anton Blencowe, Bryce Feltis, Stephen Best, Moshi Geso

Abstract:

Nano-materials with high atomic number atoms have been demonstrated to enhance the effective radiation dose and thus potentially could improve therapeutic efficacy in radiotherapy. The optimal nanoparticulate agents require high X-ray absorption coefficients, low toxicity, and should be cost effective. The focus of our research is the development of a nanoparticle therapeutic agent that can be used in radiotherapy to provide optimal enhancement of the radiation effects on the target. In this study, we used bismuth (Bi) nanoparticles coated with starch and bismuth sulphide nanoparticles (Bi2S3) coated with polyvinylpyrrolidone (PVP). These NPs are of low toxicity and are one of the least expensive heavy metal-based nanoparticles. The aims of this study were to synthesise Bi2S3 and Bi NPs, and examine their cytotoxicity to human lung adenocarcinoma epithelial cells (A549). The dose enhancing effects of NPs on A549 cells were examined at both KV and MV energies. The preliminary results revealed that bismuth based nanoparticles show increased radio-sensitisation of cells, displaying dose enhancement with KV X-ray energies and to a lesser degree for the MV energies. We also observed that Bi NPs generated a greater dose enhancement effect than Bi2S3 NPs in irradiated A549 cells. The maximum Dose Enhancement Factor (DEF) was obtained at lower energy KV range when cells treated with Bi NPs (1.5) compared to the DEF of 1.2 when cells treated with Bi2S3NPs. Less radiation dose enhancement was observed when using high energy MV beam with higher DEF value of Bi NPs treatment (1.26) as compared to 1.06 DEF value with Bi2S3 NPs. The greater dose enhancement was achieved at KV energy range, due the effect of the photoelectric effect which is the dominant process of interaction of X-ray. The cytotoxic effect of Bi NPs on enhancing the X-ray dose was higher due to the higher amount of elemental Bismuth present in Bi NPs compared to Bi2S3 NPs. The results suggest that Bismuth based NPs can be considered as valuable dose enhancing agents when used in clinical applications.

Keywords: A549 lung cancer cells, Bi2S3 nanoparticles, dose enhancement effect, radio-sensitising agents

Procedia PDF Downloads 245