Search results for: Artificial Bee Colony algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5320

Search results for: Artificial Bee Colony algorithm

100 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization

Procedia PDF Downloads 85
99 Incidences and Factors Associated with Perioperative Cardiac Arrest in Trauma Patient Receiving Anesthesia

Authors: Visith Siriphuwanun, Yodying Punjasawadwong, Suwinai Saengyo, Kittipan Rerkasem

Abstract:

Objective: To determine incidences and factors associated with perioperative cardiac arrest in trauma patients who received anesthesia for emergency surgery. Design and setting: Retrospective cohort study in trauma patients during anesthesia for emergency surgery at a university hospital in northern Thailand country. Patients and methods: This study was permitted by the medical ethical committee, Faculty of Medicine at Maharaj Nakorn Chiang Mai Hospital, Thailand. We clarified data of 19,683 trauma patients receiving anesthesia within a decade between January 2007 to March 2016. The data analyzed patient characteristics, traumas surgery procedures, anesthesia information such as ASA physical status classification, anesthesia techniques, anesthetic drugs, location of anesthesia performed, and cardiac arrest outcomes. This study excluded the data of trauma patients who had received local anesthesia by surgeons or monitoring anesthesia care (MAC) and the patient which missing more information. The factor associated with perioperative cardiac arrest was identified with univariate analyses. Multiple regressions model for risk ratio (RR) and 95% confidence intervals (CI) were used to conduct factors correlated with perioperative cardiac arrest. The multicollinearity of all variables was examined by bivariate correlation matrix. A stepwise algorithm was chosen at a p-value less than 0.02 was selected to further multivariate analysis. A P-value of less than 0.05 was concluded as statistically significant. Measurements and results: The occurrence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was 170.04 per 10,000 cases. Factors associated with perioperative cardiac arrest in trauma patients were age being more than 65 years (RR=1.41, CI=1.02–1.96, p=0.039), ASA physical status 3 or higher (RR=4.19–21.58, p < 0.001), sites of surgery (intracranial, intrathoracic, upper intra-abdominal, and major vascular, each p < 0.001), cardiopulmonary comorbidities (RR=1.55, CI=1.10–2.17, p < 0.012), hemodynamic instability with shock prior to receiving anesthesia (RR=1.60, CI=1.21–2.11, p < 0.001) , special techniques for surgery such as cardiopulmonary bypass (CPB) and hypotensive techniques (RR=5.55, CI=2.01–15.36, p=0.001; RR=6.24, CI=2.21–17.58, p=0.001, respectively), and patients who had a history of being alcoholic (RR=5.27, CI=4.09–6.79, p < 0.001). Conclusion: Incidence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was very high and correlated with many factors, especially age of patient and cardiopulmonary comorbidities, patient having a history of alcoholic addiction, increasing ASA physical status, preoperative shock, special techniques for surgery, and sites of surgery including brain, thorax, abdomen, and major vascular region. Anesthesiologists and multidisciplinary teams in pre- and perioperative periods should remain alert for warning signs of pre-cardiac arrest and be quick to manage the high-risk group of surgical trauma patients. Furthermore, a healthcare policy should be promoted for protecting against accidents in high-risk groups of the population as well.

Keywords: perioperative cardiac arrest, trauma patients, emergency surgery, anesthesia, factors risk, incidence

Procedia PDF Downloads 139
98 Roads and Agriculture: Impacts of Connectivity in Peru

Authors: Julio Aguirre, Yohnny Campana, Elmer Guerrero, Daniel De La Torre Ugarte

Abstract:

A well-developed transportation network is a necessary condition for a country to derive full benefits from good trade and macroeconomic policies. Road infrastructure plays a key role in the economic development of rural areas of developing countries; where agriculture is the main economic activity. The ability to move agricultural production from the place of production to the market, and then to the place of consumption, greatly influence the economic value of farming activities, and of the resources involved in the production process, i.e., labor and land. Consequently, investment in transportation networks contributes to enhance or overcome the natural advantages or disadvantages that topography and location have imposed over the agricultural sector. This is of particular importance when dealing with countries, like Peru, with a great topographic diversity. The objective of this research is to estimate the impacts of road infrastructure on the performance of the agricultural sector. Specific variables of interest are changes in travel time, shifts of production for self-consumption to production for the market, changes in farmers income, and impacts on the diversification of the agricultural sector. In the study, a cross-section model with instrumental variables is the central methodological instrument. The data is obtained from agricultural and transport geo-referenced databases, and the instrumental variable specification utilized is based on the Kruskal algorithm. The results show that the expansion of road connectivity reduced farmers' travel time by an average of 3.1 hours and the proportion of output sold in the market increases by up to 40 percentage points. The increase in connectivity has an unexpected increase in the districts index of diversification of agricultural production. The results are robust to the inclusion of year and region fixed-effects, and to control for geography (i.e., slope and altitude), population variables, and mining activity. Other results are also very eloquent. For example, a clear positive impact can be seen in access to local markets, but this does not necessarily correlate with an increase in the production of the sector. This can be explained by the fact that agricultural development not only requires provision of roads but additional complementary infrastructure and investments intended to provide the necessary conditions so that producers can offer quality products (improved management practices, timely maintenance of irrigation infrastructure, transparent management of water rights, among other factors). Therefore, complementary public goods are needed to enhance the effects of roads on the welfare of the population, beyond enabling them to increase their access to markets.

Keywords: agriculture devolepment, market access, road connectivity, regional development

Procedia PDF Downloads 170
97 Amphiphilic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Algae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofilm is a predominant lifestyle chosen by bacteria. Whether it is developed on an immerged surface or a mobile biofilm known as flocs, the bacteria within this form of life show properties different from its planktonic ones. Within the biofilm, the self-formed matrix of Extracellular Polymeric Substances (EPS) offers hydration, resources capture, enhanced resistance to antimicrobial agents, and allows cell-communication. Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint6 (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation7, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids9 to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge (BSV36, KLN47) or a zwitterionic polar-head group (SL386, MB2871) to prevent microfouling with marine bacteria. We also study the toxicity of these compounds in order to identify the most promising compound that must feature high anti-adhesive properties and a low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, bacterial biofilm, marine microfouling, non-toxic antifouling

Procedia PDF Downloads 109
96 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach

Authors: Zhuoran Li, Guan Qin

Abstract:

A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.

Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method

Procedia PDF Downloads 146
95 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 106
94 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring

Authors: Zheng Wang, Zhenhong Li, Jon Mills

Abstract:

Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.

Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring

Procedia PDF Downloads 129
93 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 103
92 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients

Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho

Abstract:

Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).

Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper

Procedia PDF Downloads 99
91 An Innovation Decision Process View in an Adoption of Total Laboratory Automation

Authors: Chia-Jung Chen, Yu-Chi Hsu, June-Dong Lin, Kun-Chen Chan, Chieh-Tien Wang, Li-Ching Wu, Chung-Feng Liu

Abstract:

With fast advances in healthcare technology, various total laboratory automation (TLA) processes have been proposed. However, adopting TLA needs quite high funding. This study explores an early adoption experience by Taiwan’s large-scale hospital group, the Chimei Hospital Group (CMG), which owns three branch hospitals (Yongkang, Liouying and Chiali, in order by service scale), based on the five stages of Everett Rogers’ Diffusion Decision Process. 1.Knowledge stage: Over the years, two weaknesses exists in laboratory department of CMG: 1) only a few examination categories (e.g., sugar testing and HbA1c) can now be completed and reported within a day during an outpatient clinical visit; 2) the Yongkang Hospital laboratory space is dispersed across three buildings, resulting in duplicated investment in analysis instruments and inconvenient artificial specimen transportation. Thus, the senior management of the department raised a crucial question, was it time to process the redesign of the laboratory department? 2.Persuasion stage: At the end of 2013, Yongkang Hospital’s new building and restructuring project created a great opportunity for the redesign of the laboratory department. However, not all laboratory colleagues had the consensus for change. Thus, the top managers arranged a series of benchmark visits to stimulate colleagues into being aware of and accepting TLA. Later, the director of the department proposed a formal report to the top management of CMG with the results of the benchmark visits, preliminary feasibility analysis, potential benefits and so on. 3.Decision stage: This TLA suggestion was well-supported by the top management of CMG and, finally, they made a decision to carry out the project with an instrument-leasing strategy. After the announcement of a request for proposal and several vendor briefings, CMG confirmed their laboratory automation architecture and finally completed the contracts. At the same time, a cross-department project team was formed and the laboratory department assigned a section leader to the National Taiwan University Hospital for one month of relevant training. 4.Implementation stage: During the implementation, the project team called for regular meetings to review the results of the operations and to offer an immediate response to the adjustment. The main project tasks included: 1) completion of the preparatory work for beginning the automation procedures; 2) ensuring information security and privacy protection; 3) formulating automated examination process protocols; 4) evaluating the performance of new instruments and the instrument connectivity; 5)ensuring good integration with hospital information systems (HIS)/laboratory information systems (LIS); and 6) ensuring continued compliance with ISO 15189 certification. 5.Confirmation stage: In short, the core process changes include: 1) cancellation of signature seals on the specimen tubes; 2) transfer of daily examination reports to a data warehouse; 3) routine pre-admission blood drawing and formal inpatient morning blood drawing can be incorporated into an automatically-prepared tube mechanism. The study summarizes below the continuous improvement orientations: (1) Flexible reference range set-up for new instruments in LIS. (2) Restructure of the specimen category. (3) Continuous review and improvements to the examination process. (4) Whether installing the tube (specimen) delivery tracks need further evaluation.

Keywords: innovation decision process, total laboratory automation, health care

Procedia PDF Downloads 389
90 Effectiveness, Safety, and Tolerability Profile of Stribild® in HIV-1-infected Patients in the Clinical Setting

Authors: Heiko Jessen, Laura Tanus, Slobodan Ruzicic

Abstract:

Objectives: The efficacy of Stribild®, an integrase strand transfer inhibitor (INSTI) -based STR, has been evaluated in randomized clinical trials and it has demonstrated durable capability in terms of achieving sustained suppression of HIV-1 RNA-levels. However, differences in monitoring frequency, existing selection bias and profile of patients enrolled in the trials, may all result in divergent efficacy of this regimen in routine clinical settings. The aim of this study was to assess the virologic outcomes, safety and tolerability profile of Stribild® in a routine clinical setting. Methods: This was a retrospective monocentric analysis on HIV-1-infected patients, who started with or were switched to Stribild®. Virological failure (VF) was defined as confirmed HIV-RNA>50 copies/ml. The minimum time of follow-up was 24 weeks. The percentage of patients remaining free of therapeutic failure was estimated using the time-to-loss-of-virologic-response (TLOVR) algorithm, by intent-to-treat analysis. Results: We analyzed the data of 197 patients (56 ART-naïve and 141 treatment-experienced patients), who fulfilled the inclusion criteria. Majority (95.9%) of patients were male. The median time of HIV-infection at baseline was 2 months in treatment-naïve and 70 months in treatment-experienced patients. Median time [IQR] under ART in treatment-experienced patients was 37 months. Among the treatment-experienced patients 27.0% had already been treated with a regimen consisting of two NRTIs and one INSTI, whereas 18.4% of them experienced a VF. The median time [IQR] of virological suppression prior to therapy with Stribild® in the treatment-experienced patients was 10 months [0-27]. At the end of follow-up (median 33 months), 87.3% (95% CI, 83.5-91.2) of treatment-naïve and 80.3% (95% CI, 75.8-84.8) of treatment-experienced patients remained free of therapeutic failure. Considering only treatment-experienced patients with baseline VL<50 copies/ml, 83.0% (95% CI, 78.5-87.5) remained free of therapeutic failure. A total of 17 patients stopped treatment with Stribild®, 5.4% (3/56) of them were treatment-naïve and 9.9% (14/141) were treatment-experienced patients. The Stribild® therapy was discontinued in 2 (1.0%) because of VF, loss to follow-up in 4 (2.0%), and drug-drug interactions in 2 (1.0%) patients. Adverse events were in 7 (3.6%) patients the reason to switch from therapy with Stribild® and further 2 (1.0%) patients decided personally to switch. The most frequently observed adverse events were gastrointestinal side effects (20.0%), headache (8%), rash events (7%) and dizziness (6%). In two patients we observed an emergence of novel resistances in integrase-gene. The N155H evolved in one patient and resulted in VF. In another patient S119R evolved either during or shortly upon switch from therapy with Stribild®. In one further patient with VF two novel mutations in the RT-gene were observed when compared to historical genotypic test result (V106I/M and M184V), whereby it is not clear whether they evolved during or already before the switch to Stribild®. Conclusions: Effectiveness of Stribild® for treatment-naïve patients was consistent with data obtained in clinical trials. The safety and tolerability profile as well as resistance development confirmed clinical efficacy of Stribild® in a daily practice setting.

Keywords: ART, HIV, integrase inhibitor, stribild

Procedia PDF Downloads 259
89 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 100
88 Human Immuno-Deficiency Virus Co-Infection with Hepatitis B Virus and Baseline Cd4+ T Cell Count among Patients Attending a Tertiary Care Hospital, Nepal

Authors: Soma Kanta Baral

Abstract:

Background: Since 1981, when the first AIDS case was reported, worldwide, more than 34 million people have been infected with HIV. Almost 95 percent of the people infected with HIV live in developing countries. As HBV & HIV share similar routes of transmission by sexual intercourse or drug use by parenteral injection, co-infection is common. Because of the limited access to healthcare & HIV treatment in developing countries, HIV-infected individuals are present late for care. Enumeration of CD4+ T cell count at the time of diagnosis has been useful to initiate the therapy in HIV infected individuals. The baseline CD4+ T cell count shows high immunological variability among patients. Methods: This prospective study was done in the serology section of the Department of Microbiology over a period of one year from august 2012 to July 2013. A total of 13037 individuals subjected for HIV test were included in the study comprising of 4982 males & 8055 females. Blood sample was collected by vein puncture aseptically with standard operational procedure in clean & dry test-tube. All blood samples were screened for HIV as described by WHO algorithm by Immuno-chromatography rapid kits. Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. After informed consent, HIV positive individuals were screened for HBsAg by Immuno-chromatography rapid kits (Hepacard). Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. EDTA blood samples were collected from the HIV sero-positive individuals for baseline CD4+ T count. Then, CD4+ T cells count was determined by using FACS Calibur Flow Cytometer (BD). Results: Among 13037 individuals screened for HIV, 104 (0.8%) were found to be infected comprising of 69(66.34%) males & 35 (33.65%) females. The study showed that the high infection was noted in housewives (28.7%), active age group (30.76%), rural area (56.7%) & in heterosexual route (80.9%) of transmission. Out of total HIV infected individuals, distribution of HBV co-infection was found to be 6(5.7%). All co- infected individuals were married, male, above the age of 25 years & heterosexual route of transmission. Baseline CD4+ T cell count of HIV infected patient was found higher (mean CD4+ T cell count; 283cells/cu.mm) than HBV co-infected patients (mean CD4+ T cell count; 91 cells/cu.mm). Majority (77.2%) of HIV infected & all co-infected individuals were presented in our center late (CD4+ T cell count;< 350/cu. mm) for diagnosis and care. Majority of co- infected 4 (80%) were late presented with advanced AIDS stage (CD4+ count; <200/cu.mm). Conclusions: The study showed a high percentage of HIV sero-positive & co- infected individuals. Baseline CD4+ T cell count of majority of HIV infected individuals was found to be low. Hence, more sustained and vigorous awareness campaigns & counseling still need to be done in order to promote early diagnosis and management.

Keywords: HIV/AIDS, HBsAg, co-infection, CD4+

Procedia PDF Downloads 186
87 Perception of Tactile Stimuli in Children with Autism Spectrum Disorder

Authors: Kseniya Gladun

Abstract:

Tactile stimulation of a dorsal side of the wrist can have a strong impact on our attitude toward physical objects such as pleasant and unpleasant impact. This study explored different aspects of tactile perception to investigate atypical touch sensitivity in children with autism spectrum disorder (ASD). This study included 40 children with ASD and 40 healthy children aged 5 to 9 years. We recorded rsEEG (sampling rate of 250 Hz) during 20 min using EEG amplifier “Encephalan” (Medicom MTD, Taganrog, Russian Federation) with 19 AgCl electrodes placed according to the International 10–20 System. The electrodes placed on the left, and right mastoids served as joint references under unipolar montage. The registration of EEG v19 assignments was carried out: frontal (Fp1-Fp2; F3-F4), temporal anterior (T3-T4), temporal posterior (T5-T6), parietal (P3-P4), occipital (O1-O2). Subjects were passively touched by 4 types of tactile stimuli on the left wrist. Our stimuli were presented with a velocity of about 3–5 cm per sec. The stimuli materials and procedure were chosen for being the most "pleasant," "rough," "prickly" and "recognizable". Type of tactile stimulation: Soft cosmetic brush - "pleasant" , Rough shoe brush - "rough", Wartenberg pin wheel roller - "prickly", and the cognitive tactile stimulation included letters by finger (most of the patient’s name ) "recognizable". To designate the moments of the stimuli onset-offset, we marked the moment when the moment of the touch began and ended; the stimulation was manual, and synchronization was not precise enough for event-related measures. EEG epochs were cleaned from eye movements by ICA-based algorithm in EEGLAB plugin for MatLab 7.11.0 (Mathwork Inc.). Muscle artifacts were cut out by manual data inspection. The response to tactile stimuli was significantly different in the group of children with ASD and healthy children, which was also depended on type of tactile stimuli and the severity of ASD. Amplitude of Alpha rhythm increased in parietal region to response for only pleasant stimulus, for another type of stimulus ("rough," "thorny", "recognizable") distinction of amplitude was not observed. Correlation dimension D2 was higher in healthy children compared to children with ASD (main effect ANOVA). In ASD group D2 was lower for pleasant and unpleasant compared to the background in the right parietal area. Hilbert transform changes in the frequency of the theta rhythm found only for a rough tactile stimulation compared with healthy participants only in the right parietal area. Children with autism spectrum disorders and healthy children were responded to tactile stimulation differently with specific frequency distribution alpha and theta band in the right parietal area. Thus, our data supports the hypothesis that rsEEG may serve as a sensitive index of altered neural activity caused by ASD. Children with autism have difficulty in distinguishing the emotional stimuli ("pleasant," "rough," "prickly" and "recognizable").

Keywords: autism, tactile stimulation, Hilbert transform, pediatric electroencephalography

Procedia PDF Downloads 223
86 Functional Analysis of Variants Implicated in Hearing Loss in a Cohort from Argentina: From Molecular Diagnosis to Pre-Clinical Research

Authors: Paula I. Buonfiglio, Carlos David Bruque, Lucia Salatino, Vanesa Lotersztein, Sebastián Menazzi, Paola Plazas, Ana Belén Elgoyhen, Viviana Dalamón

Abstract:

Hearing loss (HL) is the most prevalent sensorineural disorder affecting about 10% of the global population, with more than half due to genetic causes. About 1 in 500-1000 newborns present congenital HL. Most of the patients are non-syndromic with an autosomal recessive mode of inheritance. To date, more than 100 genes are related to HL. Therefore, the Whole-exome sequencing (WES) technique has become a cost-effective alternative approach for molecular diagnosis. Nevertheless, new challenges arise from the detection of novel variants, in particular missense changes, which can lead to a spectrum of genotype-to-phenotype correlations, which is not always straightforward. In this work, we aimed to identify the genetic causes of HL in isolated and familial cases by designing a multistep approach to analyze target genes related to hearing impairment. Moreover, we performed in silico and in vivo analyses in order to further study the effect of some of the novel variants identified in the hair cell function using the zebrafish model. A total of 650 patients were studied by Sanger Sequencing and Gap-PCR in GJB2 and GJB6 genes, respectively, diagnosing 15.5% of sporadic cases and 36% of familial ones. Overall, 50 different sequence variants were detected. Fifty of the undiagnosed patients with moderate HL were tested for deletions in STRC gene by Multiplex ligation-dependent probe amplification technique (MLPA), leading to 6% of diagnosis. After this initial screening, 50 families were selected to be analyzed by WES, achieving diagnosis in 44% of them. Half of the identified variants were novel. A missense variant in MYO6 gene detected in a family with postlingual HL was selected to be further analyzed. A protein modeling with AlphaFold2 software was performed, proving its pathogenic effect. In order to functionally validate this novel variant, a knockdown phenotype rescue assay in zebrafish was carried out. Injection of wild-type MYO6 mRNA in embryos rescued the phenotype, whereas using the mutant MYO6 mRNA (carrying c.2782C>A variant) had no effect. These results strongly suggest the deleterious effect of this variant on the mobility of stereocilia in zebrafish neuromasts, and hence on the auditory system. In the present work, we demonstrated that our algorithm is suitable for the sequential multigenic approach to HL in our cohort. These results highlight the importance of a combined strategy in order to identify candidate variants as well as the in silico and in vivo studies to analyze and prove their pathogenicity and accomplish a better understanding of the mechanisms underlying the physiopathology of the hearing impairment.

Keywords: diagnosis, genetics, hearing loss, in silico analysis, in vivo analysis, WES, zebrafish

Procedia PDF Downloads 53
85 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces

Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur

Abstract:

In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.

Keywords: aerodynamic, bi-dimensional, vegetation, synergistic

Procedia PDF Downloads 239
84 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 67
83 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images

Authors: Shenlun Chen, Leonard Wee

Abstract:

Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.

Keywords: colorectal cancer, differentiation, survival analysis, tumor grading

Procedia PDF Downloads 109
82 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 87
81 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang

Abstract:

Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.

Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI

Procedia PDF Downloads 244
80 Transient Heat Transfer: Experimental Investigation near the Critical Point

Authors: Andreas Kohlhepp, Gerrit Schatte, Wieland Christoph, Spliethoff Hartmut

Abstract:

In recent years the research of heat transfer phenomena of water and other working fluids near the critical point experiences a growing interest for power engineering applications. To match the highly volatile characteristics of renewable energies, conventional power plants need to shift towards flexible operation. This requires speeding up the load change dynamics of steam generators and their heating surfaces near the critical point. In dynamic load transients, both a high heat flux with an unfavorable ratio to the mass flux and a high difference in fluid and wall temperatures, may cause problems. It may lead to deteriorated heat transfer (at supercritical pressures), dry-out or departure from nucleate boiling (at subcritical pressures), all cases leading to an extensive rise of temperatures. For relevant technical applications, the heat transfer coefficients need to be predicted correctly in case of transient scenarios to prevent damage to the heated surfaces (membrane walls, tube bundles or fuel rods). In transient processes, the state of the art method of calculating the heat transfer coefficients is using a multitude of different steady-state correlations for the momentarily existing local parameters for each time step. This approach does not necessarily reflect the different cases that may lead to a significant variation of the heat transfer coefficients and shows gaps in the individual ranges of validity. An algorithm was implemented to calculate the transient behavior of steam generators during load changes. It is used to assess existing correlations for transient heat transfer calculations. It is also desirable to validate the calculation using experimental data. By the use of a new full-scale supercritical thermo-hydraulic test rig, experimental data is obtained to describe the transient phenomena under dynamic boundary conditions as mentioned above and to serve for validation of transient steam generator calculations. Aiming to improve correlations for the prediction of the onset of deteriorated heat transfer in both, stationary and transient cases the test rig was specially designed for this task. It is a closed loop design with a directly electrically heated evaporation tube, the total heating power of the evaporator tube and the preheater is 1MW. To allow a big range of parameters, including supercritical pressures, the maximum pressure rating is 380 bar. The measurements contain the most important extrinsic thermo-hydraulic parameters. Moreover, a high geometric resolution allows to accurately predict the local heat transfer coefficients and fluid enthalpies.

Keywords: departure from nucleate boiling, deteriorated heat transfer, dryout, supercritical working fluid, transient operation of steam generators

Procedia PDF Downloads 197
79 Using Scilab® as New Introductory Method in Numerical Calculations and Programming for Computational Fluid Dynamics (CFD)

Authors: Nicoly Coelho, Eduardo Vieira Vilas Boas, Paulo Orestes Formigoni

Abstract:

Faced with the remarkable developments in the various segments of modern engineering, provided by the increasing technological development, professionals of all educational areas need to overcome the difficulties generated due to the good understanding of those who are starting their academic journey. Aiming to overcome these difficulties, this article aims at an introduction to the basic study of numerical methods applied to fluid mechanics and thermodynamics, demonstrating the modeling and simulations with its substance, and a detailed explanation of the fundamental numerical solution for the use of finite difference method, using SCILAB, a free software easily accessible as it is free and can be used for any research center or university, anywhere, both in developed and developing countries. It is known that the Computational Fluid Dynamics (CFD) is a necessary tool for engineers and professionals who study fluid mechanics, however, the teaching of this area of knowledge in undergraduate programs faced some difficulties due to software costs and the degree of difficulty of mathematical problems involved in this way the matter is treated only in postgraduate courses. This work aims to bring the use of DFC low cost in teaching Transport Phenomena for graduation analyzing a small classic case of fundamental thermodynamics with Scilab® program. The study starts from the basic theory involving the equation the partial differential equation governing heat transfer problem, implies the need for mastery of students, discretization processes that include the basic principles of series expansion Taylor responsible for generating a system capable of convergence check equations using the concepts of Sassenfeld, finally coming to be solved by Gauss-Seidel method. In this work we demonstrated processes involving both simple problems solved manually, as well as the complex problems that required computer implementation, for which we use a small algorithm with less than 200 lines in Scilab® in heat transfer study of a heated plate in rectangular shape on four sides with different temperatures on either side, producing a two-dimensional transport with colored graphic simulation. With the spread of computer technology, numerous programs have emerged requiring great researcher programming skills. Thinking that this ability to program DFC is the main problem to be overcome, both by students and by researchers, we present in this article a hint of use of programs with less complex interface, thus enabling less difficulty in producing graphical modeling and simulation for DFC with an extension of the programming area of experience for undergraduates.

Keywords: numerical methods, finite difference method, heat transfer, Scilab

Procedia PDF Downloads 343
78 Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays

Authors: Alessandro Evangelista, Vito M. Manghisi, Michele Gattullo, Enricoandrea Laviola

Abstract:

In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360.

Keywords: augmented reality, situation awareness, virtual reality, visualization design

Procedia PDF Downloads 98
77 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 31
76 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction

Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini

Abstract:

Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.

Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable

Procedia PDF Downloads 253
75 Vortex Control by a Downstream Splitter Plate in Psudoplastic Fluid Flow

Authors: Sudipto Sarkar, Anamika Paul

Abstract:

Pseudoplastic (n<1, n is the power index) fluids have great importance in food, pharmaceutical and chemical process industries which require a lot of attention. Unfortunately, due to its complex flow behavior inadequate research works can be found even in laminar flow regime. A practical problem is solved in the present research work by numerical simulation where we tried to control the vortex shedding from a square cylinder using a horizontal splitter plate placed at the downstream flow region. The position of the plate is at the centerline of the cylinder with varying distance from the cylinder to calculate the critical gap-ratio. If the plate is placed inside this critical gap, the vortex shedding from the cylinder suppressed completely. The Reynolds number considered here is in unsteady laminar vortex shedding regime, Re = 100 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid). Flow behavior has been studied for three different gap-ratios (G/a = 2, 2.25 and 2.5, where G is the gap between cylinder and plate) and for a fluid with three different flow behavior indices (n =1, 0.8 and 0.5). The flow domain is constructed using Gambit 2.2.30 and this software is also used to generate the mesh and to impose the boundary conditions. For G/a = 2, the domain size is considered as 37.5a × 16a with 316 × 208 grid points in the streamwise and flow-normal directions respectively after a thorough grid independent study. Fine and equal grid spacing is used close to the geometry to capture the vortices shed from the cylinder and the boundary layer developed over the flat plate. Away from the geometry meshes are unequal in size and stretched out. For other gap-ratios, proportionate domain size and total grid points are used with similar kind of mesh distribution. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain boundary conditions are used for the simulation. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. Discretized forms of fully conservative 2-D unsteady Navier Stokes equations are then solved by Ansys Fluent 14.5. SIMPLE algorithm written in finite volume method is selected for this purpose which is a default solver inculcate in Fluent. The results obtained for Newtonian fluid flow agree well with previous works supporting Fluent’s usefulness in academic research. A thorough analysis of instantaneous and time-averaged flow fields are depicted both for Newtonian and pseudoplastic fluid flow. It has been observed that as the value of n reduces the stretching of shear layers also reduce and these layers try to roll up before the plate. For flow with high pseudoplasticity (n = 0.5) the nature of vortex shedding changes and the value of critical gap-ratio reduces. These are the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: CFD, pseudoplastic fluid flow, wake-boundary layer interactions, critical gap-ratio

Procedia PDF Downloads 77
74 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 38
73 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic

Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar

Abstract:

Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.

Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement

Procedia PDF Downloads 56
72 Risks beyond Cyber in IoT Infrastructure and Services

Authors: Mattias Bergstrom

Abstract:

Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.

Keywords: IoT, security, infrastructure, SCADA, blockchain, AI

Procedia PDF Downloads 68
71 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma

Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.

Keywords: deconvolution, imaging, microenvironment, PDAC

Procedia PDF Downloads 94