Search results for: non-stationary stochastic optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3652

Search results for: non-stationary stochastic optimization

712 Floating Oral in Situ Gelling System of Anticancer Drug

Authors: Umme Hani, Mohammed Rahmatulla, Mohammed Ghazwani, Ali Alqahtani, Yahya Alhamhoom

Abstract:

Background and introduction: Neratinib is a potent anticancer drug used for the treatment of breast cancer. It is poorly soluble at higher pH, which tends to minimize the therapeutic effects in the lower gastrointestinal tract (GIT) leading to poor bioavailability. An attempt has been made to prepare and develop a gastro-retentive system of Neratinib to improve the drug bioavailability in the GIT by enhancing the gastric retention time. Materials and methods: In the present study a three-factor at two-level (23) factorial design based optimization was used to inspect the effects of three independent variables (factors) such as sodium alginate (A), sodium bicarbonate (B) and sodium citrate (C) on the dependent variables like in vitro gelation, in vitro floating, water uptake and percentage drug release. Results: All the formulations showed pH in the range 6.7 ±0.25 to 7.4 ±0.24, percentage drug content was observed to be 96.3±0.27 to 99.5 ±0.28%, in vitro gelation observed as gelation immediate remains for an extended period. Percentage of water uptake was in the range between 9.01±0.15 to 31.01±0.25%, floating lag time was estimated form 7±0.39 to 57±0.36 sec. F4 and F5 showed floating even after 12hrs. All formulations showed a release of around 90% drug release within 12hr. It was observed that the selected independent variables affect the dependent variables. Conclusion: The developed system may be a promising and alternative approach to augment gastric retention of drugs and enhances the therapeutic efficacy of the drug.

Keywords: neratinib, 2³ factorial design, sodium alginate, floating, in situ gelling system

Procedia PDF Downloads 163
711 Sustainable Manufacturing Industries and Energy-Water Nexus Approach

Authors: Shahbaz Abbas, Lin Han Chiang Hsieh

Abstract:

The significant population growth and climate change issues have contributed to the natural resources depletion and their sustainability in the future. Manufacturing industries have a substantial impact on every country’s economy, but the sustainability of the industrial resources is challenging, and the policymakers have been developing the possible solutions to manage the sustainability of industrial resources such as raw material, energy, water, and industrial supply chain. In order to address these challenges, nexus approach is one of the optimization and modelling techniques in the recent sustainable environmental research. The interactions between the nexus components acknowledge that all components are dependent upon each other, and they are interrelated; therefore, their sustainability is also associated with each other. In addition, the nexus concept does not only provide the resources sustainability but also environmental sustainability can be achieved through nexus approach by utilizing the industrial waste as a resource for the industrial processes. Based on energy-water nexus, this study has developed a resource-energy-water for the sugar industry to understand the interactions between sugarcane, energy, and water towards the sustainable sugar industry. In particular, the focus of the research is the Taiwanese sugar industry; however, the same approach can be adapted worldwide to optimize the sustainability of sugar industries. It has been concluded that there are significant interactions between sugarcane, energy consumption, and water consumption in the sugar industry to manage the scarcity of resources in the future. The interactions between sugarcane and energy also deliver a mechanism to reuse the sugar industrial waste as a source of energy, consequently validating industrial and environmental sustainability. The desired outcomes from the nexus can be achieved with the modifications in the policy and regulations of Taiwanese industrial sector.

Keywords: energy-water nexus, environmental sustainability, industrial sustainability, natural resource management

Procedia PDF Downloads 125
710 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 323
709 Estimation of Effective Radiation Dose Following Computed Tomography Urography at Aminu Kano Teaching Hospital, Kano Nigeria

Authors: Idris Garba, Aisha Rabiu Abdullahi, Mansur Yahuza, Akintade Dare

Abstract:

Background: CT urography (CTU) is efficient radiological examination for the evaluation of the urinary system disorders. However, patients are exposed to a significant radiation dose which is in a way associated with increased cancer risks. Objectives: To determine Computed Tomography Dose Index following CTU, and to evaluate organs equivalent doses. Materials and Methods: A prospective cohort study was carried at a tertiary institution located in Kano northwestern. Ethical clearance was sought and obtained from the research ethics board of the institution. Demographic, scan parameters and CT radiation dose data were obtained from patients that had CTU procedure. Effective dose, organ equivalent doses, and cancer risks were estimated using SPSS statistical software version 16 and CT dose calculator software. Result: A total of 56 patients were included in the study, consisting of 29 males and 27 females. The common indication for CTU examination was found to be renal cyst seen commonly among young adults (15-44yrs). CT radiation dose values in DLP, CTDI and effective dose for CTU were 2320 mGy cm, CTDIw 9.67 mGy and 35.04 mSv respectively. The probability of cancer risks was estimated to be 600 per a million CTU examinations. Conclusion: In this study, the radiation dose for CTU is considered significantly high, with increase in cancer risks probability. Wide radiation dose variations between patient doses suggest that optimization is not fulfilled yet. Patient radiation dose estimate should be taken into consideration when imaging protocols are established for CT urography.

Keywords: CT urography, cancer risks, effective dose, radiation exposure

Procedia PDF Downloads 345
708 Design Optimization of Miniature Mechanical Drive Systems Using Tolerance Analysis Approach

Authors: Eric Mxolisi Mkhondo

Abstract:

Geometrical deviations and interaction of mechanical parts influences the performance of miniature systems.These deviations tend to cause costly problems during assembly due to imperfections of components, which are invisible to a naked eye.They also tend to cause unsatisfactory performance during operation due to deformation cause by environmental conditions.One of the effective tools to manage the deviations and interaction of parts in the system is tolerance analysis.This is a quantitative tool for predicting the tolerance variations which are defined during the design process.Traditional tolerance analysis assumes that the assembly is static and the deviations come from the manufacturing discrepancies, overlooking the functionality of the whole system and deformation of parts due to effect of environmental conditions. This paper presents an integrated tolerance analysis approach for miniature system in operation.In this approach, a computer-aided design (CAD) model is developed from system’s specification.The CAD model is then used to specify the geometrical and dimensional tolerance limits (upper and lower limits) that vary component’s geometries and sizes while conforming to functional requirements.Worst-case tolerances are analyzed to determine the influenced of dimensional changes due to effects of operating temperatures.The method is used to evaluate the nominal conditions, and worse case conditions in maximum and minimum dimensions of assembled components.These three conditions will be evaluated under specific operating temperatures (-40°C,-18°C, 4°C, 26°C, 48°C, and 70°C). A case study on the mechanism of a zoom lens system is used to illustrate the effectiveness of the methodology.

Keywords: geometric dimensioning, tolerance analysis, worst-case analysis, zoom lens mechanism

Procedia PDF Downloads 165
707 Encapsulation of Probiotic Bacteria in Complex Coacervates

Authors: L. A. Bosnea, T. Moschakis, C. Biliaderis

Abstract:

Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells.

Keywords: probiotic, complex coacervation, whey, encapsulation

Procedia PDF Downloads 297
706 Quantification of Hydrogen Sulfide and Methyl Mercaptan in Air Samples from a Waste Management Facilities

Authors: R. F. Vieira, S. A. Figueiredo, O. M. Freitas, V. F. Domingues, C. Delerue-Matos

Abstract:

The presence of sulphur compounds like hydrogen sulphide and mercaptans is one of the reasons for waste-water treatment and waste management being associated with odour emissions. In this context having a quantifying method for these compounds helps in the optimization of treatment with the goal of their elimination, namely biofiltration processes. The aim of this study was the development of a method for quantification of odorous gases in waste treatment plants air samples. A method based on head space solid phase microextraction (HS-SPME) coupled with gas chromatography - flame photometric detector (GC-FPD) was used to analyse H2S and Metil Mercaptan (MM). The extraction was carried out with a 75-μm Carboxen-polydimethylsiloxane fiber coating at 22 ºC for 20 min, and analysed by a GC 2010 Plus A from Shimadzu with a sulphur filter detector: splitless mode (0.3 min), the column temperature program was from 60 ºC, increased by 15 ºC/min to 100 ºC (2 min). The injector temperature was held at 250 ºC, and the detector at 260 ºC. For calibration curve a gas diluter equipment (digital Hovagas G2 - Multi Component Gas Mixer) was used to do the standards. This unit had two input connections, one for a stream of the dilute gas and another for a stream of nitrogen and an output connected to a glass bulb. A 40 ppm H2S and a 50 ppm MM cylinders were used. The equipment was programmed to the selected concentration, and it automatically carried out the dilution to the glass bulb. The mixture was left flowing through the glass bulb for 5 min and then the extremities were closed. This method allowed the calibration between 1-20 ppm for H2S and 0.02-0.1 ppm and 1-3.5 ppm for MM. Several quantifications of air samples from inlet and outlet of a biofilter operating in a waste management facility in the north of Portugal allowed the evaluation the biofilters performance.

Keywords: biofiltration, hydrogen sulphide, mercaptans, quantification

Procedia PDF Downloads 476
705 Application of Value Engineering Approach for Improving the Quality and Productivity of Ready-Mixed Concrete Used in Construction and Hydraulic Projects

Authors: Adel Mohamed El-Baghdady, Walid Sayed Abdulgalil, Ahmad Asran, Ibrahim Nosier

Abstract:

This paper studies the effectiveness of applying value engineering to actual concrete mixtures. The study was conducted in the State of Qatar on a number of strategic construction projects with international engineering specifications for the 2022 World Cup projects. The study examined the concrete mixtures of Doha Metro project and the development of KAHRAMAA’s (Qatar Electricity and Water Company) Abu Funtas Strategic Desalination Plant, in order to generally improve the quality and productivity of ready-mixed concrete used in construction and hydraulic projects. The application of value engineering to such concrete mixtures resulted in the following: i) improving the quality of concrete mixtures and increasing the durability of buildings in which they are used; ii) reducing the waste of excess materials of concrete mixture, optimizing the use of resources, and enhancing sustainability; iii) reducing the use of cement, thus reducing CO₂ emissions which ensures the protection of environment and public health; iv) reducing actual costs of concrete mixtures and, in turn, reducing the costs of construction projects; and v) increasing the market share and competitiveness of concrete producers. This research shows that applying the methodology of value engineering to ready-mixed concrete is an effective way to save around 5% of the total cost of concrete mixtures supplied to construction and hydraulic projects, improve the quality according to the technical requirements and as per the standards and specifications for ready-mixed concrete, improve the environmental impact, and promote sustainability.

Keywords: value management, cost of concrete, performance, optimization, sustainability, environmental impact

Procedia PDF Downloads 354
704 Catalytic Effect on Eco Friendly Functional Material in Flame Retardancy of Cellulose

Authors: Md. Abdul Hannan

Abstract:

Two organophosphorus compounds, namely diethyloxymethyl-9-oxa-10- phosphaphenanthrene-10-oxide (DOPAC) and diethyl (2,2-diethoxyethyl) phosphonate (DPAC) were applied on cotton cellulose to impart non-carcinogenic and durable (in alkaline washing) flame retardant property to it. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used. Synergistic acidic catalyzing effect of NaH2PO4+H3PO4 and NaH2PO4+NH4H2PO4 was also investigated. Appreciable limiting oxygen index (LOI) value of 23.2% was achieved in case of the samples treated with flame retardant (FR) compound DPAC along with the combined acidic catalyzing effect. A distinguishing outcome of total heat of combustion (THC) 3.27 KJ/g was revealed during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. In respect of thermal degradation, low temperature dehydration in conjugation with sufficient amount of char residue (30.5%) was obtained in case of DPAC treated sample. Consistently, the temperature of peak heat release rate (TPHRR) (325°C) of DPAC treated sample supported the expected low temperature pyrolysis in condensed phase mechanism. Subsequent thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples. Furthermore, for both of the flame retardant compounds, effect of different catalysts, considering both individual and combined, effect of solvents and overall the optimization of the process parameters were studied in detail.

Keywords: cotton cellulose, organophosphorus flame retardant, acetal linkage, THC, HRR, PHHR, char residue, LOI

Procedia PDF Downloads 266
703 Heuristics for Optimizing Power Consumption in the Smart Grid

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Our increasing reliance on electricity, with inefficient consumption trends, has resulted in several economical and environmental threats. These threats include wasting billions of dollars, draining limited resources, and elevating the impact of climate change. As a solution, the smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing the peak power consumption under a fixed delay requirement is a significant problem in the smart grid. In addition, matching demand to supply is a key requirement for the success of the future electricity. In this work, we consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-Hard, we propose two versions of a heuristic algorithm for solving this problem. Our theoretical analysis and experimental results show that our proposed heuristics outperform existing methods by providing a better approximation to the optimal solution. In addition, we consider dynamic pricing methods to minimize the peak load and match demand to supply in the smart grid. Our contribution is the proposal of generic, as well as customized pricing heuristics to minimize the peak demand and match demand with supply. In addition, we propose optimal pricing algorithms that can be used when the maximum deadline period of the power jobs is relatively small. Finally, we provide theoretical analysis and conduct several experiments to evaluate the performance of the proposed algorithms.

Keywords: heuristics, optimization, smart grid, peak demand, power supply

Procedia PDF Downloads 88
702 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance

Procedia PDF Downloads 332
701 Predictive Analytics in Oil and Gas Industry

Authors: Suchitra Chnadrashekhar

Abstract:

Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.

Keywords: hydrocarbon, information technology, SAS, predictive analytics

Procedia PDF Downloads 360
700 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 49
699 Smart Campus Digital Twin: Basic Framework - Current State, Trends and Challenges

Authors: Enido Fabiano de Ramos, Ieda Kanashiro Makiya, Francisco I. Giocondo Cesar

Abstract:

This study presents an analysis of the Digital Twin concept applied to the academic environment, focusing on the development of a Digital Twin Smart Campus Framework. Using bibliometric analysis methodologies and literature review, the research investigates the evolution and applications of the Digital Twin in educational contexts, comparing these findings with the advances of Industry 4.0. It was identified gaps in the existing literature and highlighted the need to adapt Digital Twin principles to meet the specific demands of a smart campus. By integrating Industry 4.0 concepts such as automation, Internet of Things, and real-time data analytics, we propose an innovative framework for the successful implementation of the Digital Twin in academic settings. The results of this study provide valuable insights for university campus managers, allowing for a better understanding of the potential applications of the Digital Twin for operations, security, and user experience optimization. In addition, our framework offers practical guidance for transitioning from a digital campus to a digital twin smart campus, promoting innovation and efficiency in the educational environment. This work contributes to the growing literature on Digital Twins and Industry 4.0, while offering a specific and tailored approach to transforming university campuses into smart and connected spaces, high demanded by Society 5.0 trends. It is hoped that this framework will serve as a basis for future research and practical implementations in the field of higher education and educational technology.

Keywords: smart campus, digital twin, industry 4.0, education trends, society 5.0

Procedia PDF Downloads 59
698 Success Factors for Innovations in SME Networks

Authors: J. Gochermann

Abstract:

Due to complex markets and products, and increasing need to innovate, cooperation between small and medium size enterprises arose during the last decades, which are not prior driven by process optimization or sales enhancement. Especially small and medium sized enterprises (SME) collaborate increasingly in innovation and knowledge networks to enhance their knowledge and innovation potential, and to find strategic partners for product and market development. These networks are characterized by dual objectives, the superordinate goal of the total network, and the specific objectives of the network members, which can cause target conflicts. Moreover, most SMEs do not have structured innovation processes and they are not accustomed to collaborate in complex innovation projects in an open network structure. On the other hand, SMEs have suitable characteristics for promising networking. They are flexible and spontaneous, they have flat hierarchies, and the acting people are not anonymous. These characteristics indeed distinguish them from bigger concerns. Investigation of German SME networks have been done to identify success factors for SME innovation networks. The fundamental network principles, donation-return and confidence, could be confirmed and identified as basic success factors. Further factors are voluntariness, adequate number of network members, quality of communication, neutrality and competence of the network management, as well as reliability and obligingness of the network services. Innovation and knowledge networks with an appreciable number of members from science and technology institutions need also active sense-making to bring different disciplines into successful collaboration. It has also been investigated, whether and how the involvement in an innovation network impacts the innovation structure and culture inside the member companies. The degree of reaction grows with time and intensity of commitment.

Keywords: innovation and knowledge networks, SME, success factors, innovation structure and culture

Procedia PDF Downloads 283
697 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation

Authors: A. Yanik, U. Aldemir

Abstract:

This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.

Keywords: bridge structures, passive control, seismic, semi-active control, viscous damping

Procedia PDF Downloads 242
696 Optimization of Reaction Parameters' Influences on Production of Bio-Oil from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in a Fluidized Bed Reactor

Authors: Chayanoot Sangwichien, Taweesak Reungpeerakul, Kyaw Thu

Abstract:

Oil palm mills in Southern Thailand produced a large amount of biomass solid wastes. Lignocellulose biomass is the main source for production of biofuel which can be combined or used as an alternative to fossil fuels. Biomass composed of three main constituents of cellulose, hemicellulose, and lignin. Thermochemical conversion process applied to produce biofuel from biomass. Pyrolysis of biomass is the best way to thermochemical conversion of biomass into pyrolytic products (bio-oil, gas, and char). Operating parameters play an important role to optimize the product yields from fast pyrolysis of biomass. This present work concerns with the modeling of reaction kinetics parameters for fast pyrolysis of empty fruit bunch in the fluidized bed reactor. A global kinetic model used to predict the product yields from fast pyrolysis of empty fruit bunch. The reaction temperature and vapor residence time parameters are mainly affected by product yields of EFB pyrolysis. The reaction temperature and vapor residence time parameters effects on empty fruit bunch pyrolysis are considered at the reaction temperature in the range of 450-500˚C and at a vapor residence time of 2 s, respectively. The optimum simulated bio-oil yield of 53 wt.% obtained at the reaction temperature and vapor residence time of 450˚C and 2 s, 500˚C and 1 s, respectively. The simulated data are in good agreement with the reported experimental data. These simulated data can be applied to the performance of experiment work for the fast pyrolysis of biomass.

Keywords: kinetics, empty fruit bunch, fast pyrolysis, modeling

Procedia PDF Downloads 215
695 Modeling of Virtual Power Plant

Authors: Muhammad Fanseem E. M., Rama Satya Satish Kumar, Indrajeet Bhausaheb Bhavar, Deepak M.

Abstract:

Keeping the right balance of electricity between the supply and demand sides of the grid is one of the most important objectives of electrical grid operation. Power generation and demand forecasting are the core of power management and generation scheduling. Large, centralized producing units were used in the construction of conventional power systems in the past. A certain level of balance was possible since the generation kept up with the power demand. However, integrating renewable energy sources into power networks has proven to be a difficult challenge due to its intermittent nature. The power imbalance caused by rising demands and peak loads is negatively affecting power quality and dependability. Demand side management and demand response were one of the solutions, keeping generation the same but altering or rescheduling or shedding completely the load or demand. However, shedding the load or rescheduling is not an efficient way. There comes the significance of virtual power plants. The virtual power plant integrates distributed generation, dispatchable load, and distributed energy storage organically by using complementing control approaches and communication technologies. This would eventually increase the utilization rate and financial advantages of distributed energy resources. Most of the writing on virtual power plant models ignored technical limitations, and modeling was done in favor of a financial or commercial viewpoint. Therefore, this paper aims to address the modeling intricacies of VPPs and their technical limitations, shedding light on a holistic understanding of this innovative power management approach.

Keywords: cost optimization, distributed energy resources, dynamic modeling, model quality tests, power system modeling

Procedia PDF Downloads 63
694 Organotin (IV) Based Complexes as Promiscuous Antibacterials: Synthesis in vitro, in Silico Pharmacokinetic, and Docking Studies

Authors: Wajid Rehman, Sirajul Haq, Bakhtiar Muhammad, Syed Fahad Hassan, Amin Badshah, Muhammad Waseem, Fazal Rahim, Obaid-Ur-Rahman Abid, Farzana Latif Ansari, Umer Rashid

Abstract:

Five novel triorganotin (IV) compounds have been synthesized and characterized. The tin atom is penta-coordinated to assume trigonal-bipyramidal geometry. Using in silico derived parameters; the objective of our study is to design and synthesize promiscuous antibacterials potent enough to combat resistance. Among various synthesized organotin (IV) complexes, compound 5 was found as potent antibacterial agent against various bacterial strains. Further lead optimization of drug-like properties was evaluated through in silico predictions. Data mining and computational analysis were utilized to derive compound promiscuity phenomenon to avoid drug attrition rate in designing antibacterials. Xanthine oxidase and human glucose- 6-phosphatase were found as only true positive off-target hits by ChEMBL database and others utilizing similarity ensemble approach. Propensity towards a-3 receptor, human macrophage migration factor and thiazolidinedione were found as false positive off targets with E-value 1/4> 10^-4 for compound 1, 3, and 4. Further, displaying positive drug-drug interaction of compound 1 as uricosuric was validated by all databases and docked protein targets with sequence similarity and compositional matrix alignment via BLAST software. Promiscuity of the compound 5 was further confirmed by in silico binding to different antibacterial targets.

Keywords: antibacterial activity, drug promiscuity, ADMET prediction, metallo-pharmaceutical, antimicrobial resistance

Procedia PDF Downloads 504
693 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN

Procedia PDF Downloads 128
692 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum

Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas

Abstract:

Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.

Keywords: microalgae, illumination, nitrate uptake, flashing light effect

Procedia PDF Downloads 113
691 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 497
690 Urban Transport Demand Management Multi-Criteria Decision Using AHP and SERVQUAL Models: Case Study of Nigerian Cities

Authors: Suleiman Hassan Otuoze, Dexter Vernon Lloyd Hunt, Ian Jefferson

Abstract:

Urbanization has continued to widen the gap between demand and resources available to provide resilient and sustainable transport services in many fast-growing developing countries' cities. Transport demand management is a decision-based optimization concept for both benchmarking and ensuring efficient use of transport resources. This study assesses the service quality of infrastructure and mobility services in the Nigerian cities of Kano and Lagos through five dimensions of quality (i.e., Tangibility, Reliability, Responsibility, Safety Assurance and Empathy). The methodology adopts a hybrid AHP-SERVQUAL model applied on questionnaire surveys to gauge the quality of satisfaction and the views of experts in the field. The AHP results prioritize tangibility, which defines the state of transportation infrastructure and services in terms of satisfaction qualities and intervention decision weights in the two cities. The results recorded ‘unsatisfactory’ indices of quality of performance and satisfaction rating values of 48% and 49% for Kano and Lagos, respectively. The satisfaction indices are identified as indicators of low performances of transportation demand management (TDM) measures and the necessity to re-order priorities and take proactive steps towards infrastructure. The findings pilot a framework for comparative assessment of recognizable standards in transport services, best ethics of management and a necessity of quality infrastructure to guarantee both resilient and sustainable urban mobility.

Keywords: transportation demand management, multi-criteria decision support, transport infrastructure, service quality, sustainable transport

Procedia PDF Downloads 224
689 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna

Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh

Abstract:

Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.

Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation

Procedia PDF Downloads 205
688 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater

Procedia PDF Downloads 387
687 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants

Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey

Abstract:

The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.

Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model

Procedia PDF Downloads 143
686 Optimization of Smart Beta Allocation by Momentum Exposure

Authors: J. B. Frisch, D. Evandiloff, P. Martin, N. Ouizille, F. Pires

Abstract:

Smart Beta strategies intend to be an asset management revolution with reference to classical cap-weighted indices. Indeed, these strategies allow a better control on portfolios risk factors and an optimized asset allocation by taking into account specific risks or wishes to generate alpha by outperforming indices called 'Beta'. Among many strategies independently used, this paper focuses on four of them: Minimum Variance Portfolio, Equal Risk Contribution Portfolio, Maximum Diversification Portfolio, and Equal-Weighted Portfolio. Their efficiency has been proven under constraints like momentum or market phenomenon, suggesting a reconsideration of cap-weighting.
 To further increase strategy return efficiency, it is proposed here to compare their strengths and weaknesses inside time intervals corresponding to specific identifiable market phases, in order to define adapted strategies depending on pre-specified situations. 
Results are presented as performance curves from different combinations compared to a benchmark. If a combination outperforms the applicable benchmark in well-defined actual market conditions, it will be preferred. It is mainly shown that such investment 'rules', based on both historical data and evolution of Smart Beta strategies, and implemented according to available specific market data, are providing very interesting optimal results with higher return performance and lower risk.
 Such combinations have not been fully exploited yet and justify present approach aimed at identifying relevant elements characterizing them.

Keywords: smart beta, minimum variance portfolio, equal risk contribution portfolio, maximum diversification portfolio, equal weighted portfolio, combinations

Procedia PDF Downloads 340
685 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation

Procedia PDF Downloads 153
684 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System

Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer

Abstract:

The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.

Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling

Procedia PDF Downloads 246
683 The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture

Authors: Zoran Herceg, Višnja Stulić, Anet Režek Jambrak, Tomislava Vukušić

Abstract:

Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation.

Keywords: electrical discharge plasma, escherichia coli MG 1655, inactivation, point-to-plate electrode configuration

Procedia PDF Downloads 432