Search results for: material flow analysis
32469 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies
Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar
Abstract:
Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.Keywords: microfluidic device, minitab, statistical optimization, response surface methodology
Procedia PDF Downloads 7632468 A Review of Spatial Analysis as a Geographic Information Management Tool
Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku
Abstract:
Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.Keywords: aspatial technique, buffer analysis, epidemiology, interpolation
Procedia PDF Downloads 32832467 Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral
Authors: R. Bensaada, M. Almansba, M. Ould Ouali, R. Ferhoum, N. E. Hannachi
Abstract:
The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated.Keywords: j-integral, critical-j, damage, fracture toughness
Procedia PDF Downloads 36132466 Unsteady Similarity Solution for a Slender Dry Patch in a Thin Newtonian Fluid Film
Authors: S. S. Abas, Y. M. Yatim
Abstract:
In this paper the unsteady, slender, symmetric dry patch in an infinitely wide and thin liquid film of Newtonian fluid draining under gravity down an inclined plane in the presence of strong surface-tension effect is considered. A similarity transformation, named a travelling-wave similarity solution is used to reduce the governing partial differential equation into the ordinary differential equation which is then solved numerically using a shooting method. The introduction of surface-tension effect on the flow leads to a fourth-order ordinary differential equation. The solution obtained predicts that the dry patch has a quartic shape and the free surface has a capillary ridge near the contact line which decays in an oscillatory manner far from it.Keywords: dry patch, Newtonian fluid, similarity solution, surface-tension effect, travelling-wave, unsteady thin-film flow
Procedia PDF Downloads 30632465 Natural Fibers Design Attributes
Authors: Brayan S. Pabón, R. Ricardo Moreno, Edith Gonzalez
Abstract:
Inside the wide Colombian natural fiber set is the banana stem leaf, known as Calceta de Plátano, which is a material present in several regions of the country and is a fiber extracted from the pseudo stem of the banana plant (Musa paradisiaca) as a regular maintenance process. Colombia had a production of 2.8 million tons in 2007 and 2008 corresponding to 8.2% of the international production, number that is growing. This material was selected to be studied because it is not being used by farmers due to it being perceived as a waste from the banana harvest and a propagation pest agent inside the planting. In addition, the Calceta does not have industrial applications in Colombia since there is not enough concrete knowledge that informs us about the properties of the material and the possible applications it could have. Based on this situation the industrial design is used as a link between the properties of the material and the need to transform it into industrial products for the market. Therefore, the project identifies potential design attributes that the banana stem leaf can have for product development. The methodology was divided into 2 main chapters: Methodology for the material recognition: -Data Collection, inquiring the craftsmen experience and bibliography. -Knowledge in practice, with controlled experiments and validation tests. -Creation of design attributes and material profile according to the knowledge developed. Moreover, the Design methodology: -Application fields selection, exploring the use of the attributes and the relation with product functions. -Evaluating the possible fields and selection of the optimum application. -Design Process with sketching, ideation, and product development. Different protocols were elaborated to qualitatively determine some material properties of the Calceta, and if they could be designated as design attributes. Once defined, performed and analyzed the validation protocols, 25 design attributes were identified and classified into 4 attribute categories (Environmental, Functional, Aesthetics and Technical) forming the material profile. Then, 15 application fields were defined based on the relation between functions of product and the use of the Calceta attributes. Those fields were evaluated to measure how much are being used the functional attributes. After fields evaluation, a final field was definedKeywords: banana stem leaf, Calceta de Plátano, design attributes, natural fibers, product design
Procedia PDF Downloads 26132464 Seismic Fragility of Weir Structure Considering Aging Degradation of Concrete Material
Authors: HoYoung Son, DongHoon Shin, WooYoung Jung
Abstract:
This study presented the seismic fragility framework of concrete weir structure subjected to strong seismic ground motions and in particular, concrete aging condition of the weir structure was taken into account in this study. In order to understand the influence of concrete aging on the weir structure, by using probabilistic risk assessment, the analytical seismic fragility of the weir structure was derived for pre- and post-deterioration of concrete. The performance of concrete weir structure after five years was assumed for the concrete aging or deterioration, and according to after five years’ condition, the elastic modulus was simply reduced about one–tenth compared with initial condition of weir structures. A 2D nonlinear finite element analysis was performed considering the deterioration of concrete in weir structures using ABAQUS platform, a commercial structural analysis program. Simplified concrete degradation was resulted in the increase of almost 45% of the probability of failure at Limit State 3, in comparison to initial construction stage, by analyzing the seismic fragility.Keywords: weir, FEM, concrete, fragility, aging
Procedia PDF Downloads 48632463 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame
Authors: Keyvan Ramin
Abstract:
The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve
Procedia PDF Downloads 38032462 Nanofibrous Ion Exchangers
Authors: Jaromír Marek, Jakub Wiener, Yan Wang
Abstract:
The main goal of this study was to find simple and industrially applicable production of ion exchangers based on nanofibrous polystyrene matrix and characterization of prepared material. Starting polystyrene nanofibers were sulfonated and crosslinked under appropriate conditions at the same time by sulfuric acid. Strongly acidic cation exchanger was obtained in such a way. The polymer matrix was made from polystyrene nanofibers prepared by Nanospider technology. Various types postpolymerization reactions and other methods of crosslinking were studied. Greatly different behavior between nano and microsize materials was observed. The final nanofibrous material was characterized and compared to common granular ion exchangers and available microfibrous ion exchangers. The sorption properties of nanofibrous ion exchangers were compared with the granular ion exchangers. For nanofibrous ion exchangers of comparable ion exchange capacity was observed considerably faster adsorption kinetics.Keywords: electrospinning, ion exchangers, nanofibers, polystyrene
Procedia PDF Downloads 26132461 Application of Biosensors in Forensic Analysis
Authors: Shirin jalili, Hadi Shirzad, Samaneh Nabavi, Somayeh Khanjani
Abstract:
Biosensors in forensic analysis are ideal biological tools that can be used for rapid and sensitive initial screening and testing to detect of suspicious components like biological and chemical agent in crime scenes. The wide use of different biomolecules such as proteins, nucleic acids, microorganisms, antibodies and enzymes makes it possible. These biosensors have great advantages such as rapidity, little sample manipulation and high sensitivity, also Because of their stability, specificity and low cost they have become a very important tool to Forensic analysis and detection of crime. In crime scenes different substances such as rape samples, Semen, saliva fingerprints and blood samples, act as a detecting elements for biosensors. On the other hand, successful fluid recovery via biosensor has the propensity to yield a highly valuable source of genetic material, which is important in finding the suspect. Although current biological fluid testing techniques are impaired for identification of body fluids. But these methods have disadvantages. For example if they are to be used simultaneously, Often give false positive result. These limitations can negatively result the output of a case through missed or misinterpreted evidence. The use of biosensor enable criminal researchers the highly sensitive and non-destructive detection of biological fluid through interaction with several fluid-endogenous and other biological and chemical contamination at the crime scene. For this reason, using of the biosensors for detecting the biological fluid found at the crime scenes which play an important role in identifying the suspect and solving the criminal.Keywords: biosensors, forensic analysis, biological fluid, crime detection
Procedia PDF Downloads 112432460 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects
Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho
Abstract:
This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.Keywords: pretreatment, sewage, solid waste, wastewater
Procedia PDF Downloads 47432459 Cycle-Oriented Building Components and Constructions Made from Paper Materials
Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider
Abstract:
The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources
Procedia PDF Downloads 28532458 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism
Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes
Abstract:
It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis
Procedia PDF Downloads 10732457 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate
Authors: Kwame B. O. Amoah
Abstract:
This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.Keywords: energy consumption, building energy analysis, energy retrofits, energy-efficiency
Procedia PDF Downloads 22632456 The Influence of Cellulose Nanocrystal (CNC) on the Mechanical Properties and Workability of Oil Well Cement
Authors: Mohammad Reza Dousti, Yaman Boluk, Vivek Bindiganavile
Abstract:
Well cementing is one of the most crucial and important steps in any well completion. Oil well cement paste is employed to fill the annulus between the casing string and the well bore. However, since the cementing process takes place at the end of the drilling process, a satisfying and acceptable job may not be performed. During the cementing process, the cement paste must be pumped in the annulus, therefore concerns arise both in the workability and the flowability associated with the paste. On the other hand, the cement paste around the casing must demonstrate the adequate compressive strength in order to provide a suitable mechanical support for the casing and desirably prevent collapse of the formation. In this experimental study, the influence of cellulose nanocrystal particles on the workability, flowability and also mechanical properties of oil well cement paste has been investigated. The cementitious paste developed in this research is composed of water, class G oil well cement, bentonite and cellulose nanocrystals (CNC). Bentonite is used as a cross contamination component. Two method of testing were considered to understand the flow behavior of the samples: (1) a mini slump test and (2) a conventional flow table test were utilized to study the flowability of the cementitious paste under gravity and also under applied load (number of blows for the flow table test). Furthermore, the mechanical properties of hardened oil well cement paste dosed with CNC were assessed by performing a compression test on cylindrical specimens. Based on the findings in this study, the addition of CNC led to developing a more viscous cement paste with a reduced spread diameter. Also, by introducing a very small dosage of CNC particles (as an additive), a significant increase in the compressive strength of the oil well cement paste was observed.Keywords: cellulose nanocrystal, cement workability, mechanical properties, oil well cement
Procedia PDF Downloads 26332455 Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower
Authors: Usman Abubakar, Xiaoyuan Wang, Sayyed Haleem Shah, Sadiq Ur Rahman, Rabiu Saleh Zakariyya
Abstract:
High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding’s potting material and sleeve’s material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine’s electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine’s cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine’s winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM.Keywords: airflow network, axial ventilation, high-speed PMSM, thermal network
Procedia PDF Downloads 23732454 Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis
Authors: Qianqian He, Naian Liu, Xiaodong Xie, Linhe Zhang, Yang Zhang, Weidong Yan
Abstract:
In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS.Keywords: discrete fuel bed, fire spread, packing ratio, wildfire
Procedia PDF Downloads 14632453 Effect of Unbound Granular Materials Nonlinear Resilient Behaviour on Pavement Response and Performance of Low Volume Roads
Authors: Khaled Sandjak, Boualem Tiliouine
Abstract:
Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behaviour of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behaviour of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by falling weight deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated.Keywords: FWD backcalculations, finite element simulations, Nonlinear resilient behaviour, pavement response and performance, RLT test results, unbound granular materials
Procedia PDF Downloads 26532452 Piping Fragility Composed of Different Materials by Using OpenSees Software
Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju
Abstract:
A failure of the non-structural component can cause significant damages in critical facilities such as nuclear power plants and hospitals. Historically, it was reported that the damage from the leakage of sprinkler systems, resulted in the shutdown of hospitals for several weeks by the 1971 San Fernando and 1994 North Ridge earthquakes. In most cases, water leakages were observed at the cross joints, sprinkler heads, and T-joint connections in piping systems during and after the seismic events. Hence, the primary objective of this study was to understand the seismic performance of T-joint connections and to develop an analytical Finite Element (FE) model for the T-joint systems of 2-inch fire protection piping system in hospitals subjected to seismic ground motions. In order to evaluate the FE models of the piping systems using OpenSees, two types of materials were used: 1) Steel 02 materials and 2) Pinching 4 materials. Results of the current study revealed that the nonlinear moment-rotation FE models for the threaded T-joint reconciled well with the experimental results in both FE material models. However, the system-level fragility determined from multiple nonlinear time history analyses at the threaded T-joint was slightly different. The system-level fragility at the T-joint, determined by Pinching 4 material was more conservative than that of using Steel 02 material in the piping system.Keywords: fragility, t-joint, piping, leakage, sprinkler
Procedia PDF Downloads 30732451 Oil Palm Leaf and Corn Stalk, Mechanical Properties and Surface Characterization
Authors: Zawawi Daud
Abstract:
Agro waste can be defined as waste from agricultural plant. Oil palm leaf and corn stalk can be categorized as ago waste material. At first, the comparison between oil palm leaf and corn stalk by mechanical properties from soda pulping process. After that, focusing on surface characterization by Scanning Electron Microscopy (SEM). Both material have a potential due to mechanical properties (tensile, tear, burst and fold) and surface characterization but corn stalk shows more in strength and compactness due to fiber characterization compared to oil palm leaf. This study promoting the green technology in develop a friendly product and suitable to be used as an alternative pulp in paper making industry.Keywords: fiber, oil palm leaf, corn stalk, green technology
Procedia PDF Downloads 49332450 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink
Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai
Abstract:
This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink
Procedia PDF Downloads 39532449 Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis
Authors: Mahdieh Jajroudi
Abstract:
Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%.Keywords: biodistribution modeling, compartmental analysis, 177Lu labeled somatostatin analogues, neuroendocrine tumors
Procedia PDF Downloads 37232448 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 4132447 Temperature Effect on Corrosion and Erosion in Transfer Line Exchange by CFD
Authors: S. Hehni Meidani Behzad, Mokhtari Karchegani Amir, Mabodi Samad
Abstract:
There are some TLE (Transfer Line Exchanger) that their lifetime reduced to 4 years instead of 30 years and after 4 years, we saw corroded area on one part of those T.L.E. that named Oval header and this happened in condition that other parts of those TLE were safe and perfect. By using of thickness measurement devices, we find that thickness reduces unusually on that part and after research and doing computer analysis with fluent software, it was recognized that on that part, we have high temperature and when this out of range temperature adds to bad quality of water, corrosion increased with high rate on that part and after more research it became obviously that it case by more excess air in furnace that located before this T.L.E. that this more air case to consuming more fuel to reach same furnace temperature so it concluded that inner coil fluid temperature increased and after received to T.L.E, this case happened and deflector condition, creep in coil and material analysis confirmed that condition.Keywords: Transfer Line Exchanger (TLE), CFD, corrosion, erosion, tube, oval header
Procedia PDF Downloads 43132446 Cost Effectiveness of Slit-Viscoelastic Dampers for Seismic Retrofit of Structures
Authors: Minsung Kim, Jinkoo Kim
Abstract:
In order to reduce or eliminate seismic damage in structures, many researchers have investigated various energy dissipation devices. In this study, the seismic capacity and cost of a slit-viscoelastic seismic retrofit system composed of a steel slit plate and viscoelastic dampers connected in parallel are evaluated. The combination of the two different damping mechanisms is expected to produce enhanced seismic performance of the building. The analysis model of the system is first derived using various link elements in the nonlinear dynamic analysis software Perform 3D, and fragility curves of the structure retrofitted with the dampers are obtained using incremental dynamic analyses. The analysis results show that the displacement of the structure equipped with the hybrid dampers is smaller than that of the structure with slit dampers due to the enhanced self-centering capability of the system. It is also observed that the initial cost of hybrid system required for the seismic retrofit is smaller than that of the structure with viscoelastic dampers. Acknowledgement: This research was financially supported by the Ministry of Trade, Industry and Energy(MOTIE) and Korea Institute for Advancement of Technology(KIAT) through the International Cooperative R&D program(N043100016_Development of low-cost high-performance seismic energy dissipation devices using viscoelastic material).Keywords: damped cable systems, seismic retrofit, viscous dampers, self-centering
Procedia PDF Downloads 27332445 Mathematical Model to Simulate Liquid Metal and Slag Accumulation, Drainage and Heat Transfer in Blast Furnace Hearth
Authors: Hemant Upadhyay, Tarun Kumar Kundu
Abstract:
It is utmost important for a blast furnace operator to understand the mechanisms governing the liquid flow, accumulation, drainage and heat transfer between various phases in blast furnace hearth for a stable and efficient blast furnace operation. Abnormal drainage behavior may lead to high liquid build up in the hearth. Operational problems such as pressurization, low wind intake, and lower material descent rates, normally be encountered if the liquid levels in the hearth exceed a critical limit when Hearth coke and Deadman start to float. Similarly, hot metal temperature is an important parameter to be controlled in the BF operation; it should be kept at an optimal level to obtain desired product quality and a stable BF performance. It is not possible to carry out any direct measurement of above due to the hostile conditions in the hearth with chemically aggressive hot liquids. The objective here is to develop a mathematical model to simulate the variation in hot metal / slag accumulation and temperature during the tapping of the blast furnace based on the computed drainage rate, production rate, mass balance, heat transfer between metal and slag, metal and solids, slag and solids as well as among the various zones of metal and slag itself. For modeling purpose, the BF hearth is considered as a pressurized vessel, filled with solid coke particles. Liquids trickle down in hearth from top and accumulate in voids between the coke particles which are assumed thermally saturated. A set of generic mass balance equations gives the amount of metal and slag intake in hearth. A small drainage (tap hole) is situated at the bottom of the hearth and flow rate of liquids from tap hole is computed taking in account the amount of both the phases accumulated their level in hearth, pressure from gases in the furnace and erosion behaviors of tap hole itself. Heat transfer equations provide the exchange of heat between various layers of liquid metal and slag, and heat loss to cooling system through refractories. Based on all that information a dynamic simulation is carried out which provides real time information of liquids accumulation in hearth before and during tapping, drainage rate and its variation, predicts critical event timings during tapping and expected tapping temperature of metal and slag on preset time intervals. The model is in use at JSPL, India BF-II and its output is regularly cross-checked with actual tapping data, which are in good agreement.Keywords: blast furnace, hearth, deadman, hotmetal
Procedia PDF Downloads 18832444 Heat Accumulation in Soils of Belarus
Authors: Maryna Barushka, Aleh Meshyk
Abstract:
The research analyzes absolute maximum soil temperatures registered at 36 gauge stations in Belarus from 1950 to 2013. The main method applied in the research is cartographic, in particular, trend surface analysis. Warming that had never been so long and intensive before started in 1988. The average temperature in January and February of that year exceeded the norm by 7-7.5 С, in March and April by 3-5С. In general, that year, as well as the year of 2008, happened to be the hottest ones in the whole period of instrumental observation. Yearly average air temperature in Belarus in those years was +8.0-8.2 С, which exceeded the norm by 2.0 – 2.2 С. The warming has been observed so far. The only exception was in 1996 when the yearly average air temperature in Belarus was below normal by 0.5 С. In Belarus the value of trend line of standard temperature deviation in the warmest months (July-August) has been positive for the past 25 years. In 2010 absolute maximum air and soil temperature exceeded the norm at 15 gauge stations in Belarus. The structure of natural processes includes global, regional, and local constituents. Trend surface analysis of the investigated characteristics makes it possible to determine global, regional, and local components. Linear trend surface shows the occurrence of weather deviations on a global scale, outside Belarus. Maximum soil temperature appears to be growing in the south-west direction with the gradient of 5.0 С. It is explained by the latitude factor. Polynomial trend surfaces show regional peculiarities of Belarus. Extreme temperature regime is formed due to some factors. The prevailing one is advection of turbulent flow of the ground layer of the atmosphere. In summer influence of the Azores High producing anticyclones is great. The Gulf Stream current forms the values of temperature trends in a year period. The most intensive flow of the Gulf Stream in the second half of winter and the second half of summer coincides with the periods of maximum temperature trends in Belarus. It is possible to estimate a local component of weather deviations in the analysis of the difference in values of the investigated characteristics and their trend surfaces. Maximum positive deviation (up to +4 С) of averaged soil temperature corresponds to the flat terrain in Pripyat Polesie, Brest Polesie, and Belarusian Poozerie Area. Negative differences correspond to the higher relief which partially compensates extreme heat regime of soils. Another important factor for maximum soil temperature in these areas is peat-bog soils with the least albedo of 8-15%. As yearly maximum soil temperature reaches 40-60 С, this could be both negative and positive factors for Belarus’s environment and economy. High temperature causes droughts resulting in crops dying and soil blowing. On the other hand, vegetation period has lengthened thanks to bigger heat resources, which allows planting such heat-loving crops as melons and grapes with appropriate irrigation. Thus, trend surface analysis allows determining global, regional, and local factors in accumulating heat in the soils of Belarus.Keywords: soil, temperature, trend surface analysis, warming
Procedia PDF Downloads 13532443 The Effect of Metal Transfer Modes on Mechanical Properties of 3CR12 Stainless Steel
Authors: Abdullah Kaymakci, Daniel M. Madyira, Ntokozo Nkwanyana
Abstract:
The effect of metal transfer modes on mechanical properties of welded 3CR12 stainless steel were investigated. This was achieved by butt welding 10 mm thick plates of 3CR12 in different positions while varying the welding positions for different metal transfer modes. The ASME IX: 2010 (Welding and Brazing Qualifications) code was used as a basis for welding variables. The material and the thickness of the base metal were kept constant together with the filler metal, shielding gas and joint types. The effect of the metal transfer modes on the microstructure and the mechanical properties of the 3CR12 steel was then investigated as it was hypothesized that the change in welding positions will affect the transfer modes partly due to the effect of gravity. The microscopic examination revealed that the substrate was characterized by dual phase microstructure, that is, alpha phase and beta phase grain structures. Using the spectroscopic examination results and the ferritic factor calculation had shown that the microstructure was expected to be ferritic-martensitic during air cooling process. The tested tensile strength and Charpy impact energy were measured to be 498 MPa and 102 J which were in line with mechanical properties given in the material certificate. The heat input in the material was observed to be greater than 1 kJ/mm which is the limiting factor for grain growth during the welding process. Grain growths were observed in the heat affected zone of the welded materials. Ferritic-martensitic microstructure was observed in the microstructure during the microscopic examination. The grain growth altered the mechanical properties of the test material. Globular down hand had higher mechanical properties than spray down hand. Globular vertical up had better mechanical properties than globular vertical down.Keywords: welding, metal transfer modes, stainless steel, microstructure, hardness, tensile strength
Procedia PDF Downloads 25432442 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite
Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi
Abstract:
Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction
Procedia PDF Downloads 16432441 Characterization of Penicillin V Acid and Its Related Compounds by HPLC
Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul
Abstract:
Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.Keywords: characterization, HPLC, Penicillin V acid, related substances
Procedia PDF Downloads 28032440 The Characterization and Optimization of Bio-Graphene Derived From Oil Palm Shell Through Slow Pyrolysis Environment and Its Electrical Conductivity and Capacitance Performance as Electrodes Materials in Fast Charging Supercapacitor Application
Authors: Nurhafizah Md. Disa, Nurhayati Binti Abdullah, Muhammad Rabie Bin Omar
Abstract:
This research intends to identify the existing knowledge gap because of the lack of substantial studies to fabricate and characterize bio-graphene created from Oil Palm Shell (OPS) through the means of pre-treatment and slow pyrolysis. By fabricating bio-graphene through OPS, a novel material can be found to procure and used for graphene-based research. The characterization of produced bio-graphene is intended to possess a unique hexagonal graphene pattern and graphene properties in comparison to other previously fabricated graphene. The OPS will be fabricated by pre-treatment of zinc chloride (ZnCl₂) and iron (III) chloride (FeCl3), which then induced the bio-graphene thermally by slow pyrolysis. The pyrolizer's final temperature and resident time will be set at 550 °C, 5/min, and 1 hour respectively. Finally, the charred product will be washed with hydrochloric acid (HCL) to remove metal residue. The obtained bio-graphene will undergo different analyses to investigate the physicochemical properties of the two-dimensional layer of carbon atoms with sp2 hybridization hexagonal lattice structure. The analysis that will be taking place is Raman Spectroscopy (RAMAN), UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). In retrospect, RAMAN is used to analyze three key peaks found in graphene, namely D, G, and 2D peaks, which will evaluate the quality of the bio-graphene structure and the number of layers generated. To compare and strengthen graphene layer resolves, UV-VIS may be used to establish similar results of graphene layer from last layer analysis and also characterize the types of graphene procured. A clear physical image of graphene can be obtained by analyzation of TEM in order to study structural quality and layers condition and SEM in order to study the surface quality and repeating porosity pattern. Lastly, establishing the crystallinity of the produced bio-graphene, simultaneously as an oxygen contamination factor and thus pristineness of the graphene can be done by XRD. In the conclusion of this paper, this study is able to obtain bio-graphene through OPS as a novel material in pre-treatment by chloride ZnCl₂ and FeCl3 and slow pyrolization to provide a characterization analysis related to bio-graphene that will be beneficial for future graphene-related applications. The characterization should yield similar findings to previous papers as to confirm graphene quality.Keywords: oil palm shell, bio-graphene, pre-treatment, slow pyrolysis
Procedia PDF Downloads 89