Search results for: model laws
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17490

Search results for: model laws

14580 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows

Authors: A. P. Joshi, H. V. Warrior, J. P. Panda

Abstract:

This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.

Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson critical number

Procedia PDF Downloads 167
14579 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
14578 Load Forecast of the Peak Demand Based on Both the Peak Demand and Its Location

Authors: Qais H. Alsafasfeh

Abstract:

The aim of this paper is to provide a forecast of the peak demand for the next 15 years for electrical distribution companies. The proposed methodology provides both the peak demand and its location for the next 15 years. This paper describes the Spatial Load Forecasting model used, the information provided by electrical distribution company in Jordan, the workflow followed, the parameters used and the assumptions made to run the model. The aim of this paper is to provide a forecast of the peak demand for the next 15 years for electrical distribution companies. The proposed methodology provides both the peak demand and its location for the next 15 years. This paper describes the Spatial Load Forecasting model used, the information provided by electrical distribution company in Jordan, the workflow followed, the parameters used and the assumptions made to run the model.

Keywords: load forecast, peak demand, spatial load, electrical distribution

Procedia PDF Downloads 495
14577 Attitudes of Health Personnel towards Patients as Expressed by Literate Adults in Ilorin Metropolis, Kwara State: Implications for Counseling

Authors: Yahaya Lasiele Alabi, Odebode Aminat Adeola

Abstract:

Attitudes of health personnel usually influence the speed of recovery. It is essential that professional counsellors investigate the attitude of health personnel toward patients. In view of this, this study examined attitudes of health personnel towards patients as expressed by literate adults in Ilorin metropolis, Kwara State. The study also examined the influence of gender, age, and educational qualification on the respondents’ views. A self designed instrument tittled ‘Attitude of Health Personnel towards Patients Questionnaire (AHPPQ)’ was used to collect data from six hundred respondents, who were selected through a two-stage sampling procedure. Four research questions were constructed while three null hypotheses were formulated and tested using t-test and ANOVA at 0.05 alpha level. The findings of the study showed that literate adults in Ilorin metropolis expressed that health personnel have negative attitude towards patients. It was also found out that there was no significant difference in the attitude of health personnel towards Patients as expressed by literate adults in Ilorin metropolis on the basis of gender, age, and educational qualification. Based on the findings of this study, recommendations were made that Government should formulate policies and laws that will promote disposition of positive attitudes toward patients by health personnel. Health Counsellors should be employed and involved in organisation of seminars and workshops from time to time in order to encourage health personnel to interract positively with patients.

Keywords: attitude, health personnel, patients, Kwara State

Procedia PDF Downloads 571
14576 An Extended Model for Sustainable Food and Nutrition Security in the Agrifood Sector

Authors: Ioannis Manikas

Abstract:

The increased consumer demand for environmentally friendly production and distribution practices and the stricter environmental regulations turned environmental aspects into important criteria in business decision-making. On the other hand, Food and Nutrition Security (FNS) has evolved dramatically during the last decades in theory and practice serving as a reference point for exchanging experiences among all agents involved in programs and projects to fostering policy and strategy development. Global pressures make it more important than ever to gain a better understanding of the contribution that agrifood businesses make to FNS and to examine ways to make them more resilient in an increasingly globalized and uncertain world. This study extends the standard three-dimensional model of sustainability to include two more dimensions: A technological dimension and a policy/political dimension. Apart from the economic, environmental and social dimensions regularly used in sustainability literature, the extended model will accurately represent the measures and policies addressing food and nutrition security.

Keywords: food and nutrition security, sustainability, food safety, resilience

Procedia PDF Downloads 339
14575 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging

Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig

Abstract:

A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.

Keywords: clogging, continuous casting, inclusion, simulation, submerged entry nozzle

Procedia PDF Downloads 283
14574 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method

Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng

Abstract:

Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.

Keywords: shot peen forming, process parameter, response surface model, numerical simulation

Procedia PDF Downloads 87
14573 Evaluating the Use of Digital Art Tools for Drawing to Enhance Artistic Ability and Improve Digital Skill among Junior School Students

Authors: Aber Salem Aboalgasm, Rupert Ward

Abstract:

This study investigated some results of the use of digital art tools by junior school children in order to discover if these tools could promote artistic ability and creativity. The study considers the ease of use and usefulness of the tools as well as how to assess artwork produced by digital means. As the use of these tools is a relatively new development in Art education, this study may help educators in their choice of which tools to use and when to use them. The study also aims to present a model for the assessment of students’ artistic development and creativity by studying their artistic activity. This model can help in determining differences in students’ creative ability and could be useful both for teachers, as a means of assessing digital artwork, and for students, by providing the motivation to use the tools to their fullest extent. Sixteen students aged nine to ten years old were observed and recorded while they used the digital drawing tools. The study found that, according to the students’ own statements, it was not the ease of use but the successful effects the tools provided which motivated the children to use them.

Keywords: artistic ability, creativity, drawing digital tool, TAM model, psychomotor domain

Procedia PDF Downloads 330
14572 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH₄⁺ -N), nitrite- nitrogen (NO₂⁻ -N), nitrate- nitrogen (NO₃⁻ -N), phosphate –phosphorus (PO₄³⁻ -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO₂⁻ -N, NO₃⁻ -N and 70% for NH₄⁺ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.

Keywords: aquaculture effluent, macrophytes, mathematical model, phytoremediation

Procedia PDF Downloads 225
14571 Assessing the Cumulative Impact of PM₂.₅ Emissions from Power Plants by Using the Hybrid Air Quality Model and Evaluating the Contributing Salient Factor in South Taiwan

Authors: Jackson Simon Lusagalika, Lai Hsin-Chih, Dai Yu-Tung

Abstract:

Particles with an aerodynamic diameter of 2.5 meters or less are referred to as "fine particulate matter" (PM₂.₅) are easily inhaled and can go deeper into the lungs than other particles in the atmosphere, where it may have detrimental health consequences. In this study, we use a hybrid model that combined CMAQ and AERMOD as well as initial meteorological fields from the Weather Research and Forecasting (WRF) model to study the impact of power plant PM₂.₅ emissions in South Taiwan since it frequently experiences higher PM₂.₅ levels. A specific date of March 3, 2022, was chosen as a result of a power outage that prompted the bulk of power plants to shut down. In some way, it is not conceivable anywhere in the world to turn off the power for the sole purpose of doing research. Therefore, this catastrophe involving a power outage and the shutdown of power plants offers a great occasion to evaluate the impact of air pollution driven by this power sector. As a result, four numerical experiments were conducted in the study using the Continuous Emission Data System (CEMS), assuming that the power plants continued to function normally after the power outage. The hybrid model results revealed that power plants have a minor impact in the study region. However, we examined the accumulation of PM₂.₅ in the study and discovered that once the vortex at 925hPa was established and moved to the north of Taiwan's coast, the study region experienced higher observed PM₂.₅ concentrations influenced by meteorological factors. This study recommends that decision-makers take into account not only control techniques, specifically emission reductions, but also the atmospheric and meteorological implications for future investigations.

Keywords: PM₂.₅ concentration, powerplants, hybrid air quality model, CEMS, Vorticity

Procedia PDF Downloads 76
14570 The Right to Receive Alternative Health Care as a Part of the Right to Health

Authors: Vera Lúcia Raposo

Abstract:

The right to health care – usually known as the right to health – is recognized in many national laws and Constitutions, as well as in international human rights documents. The kind of health care that citizens are entitled to receive, especially in the framework of the National Health Service, is usually identified with conventional medicine. However, since ancient times that a different form of medicine – alternative, traditional or nonconventional medicine – exists. In recent times it is attracting increasing interest, as it is demonstrated by the use of its specific knowledge either by pharmaceutical companies either by modern health technologies. Alternative medicine refers to a holistic approach to body and mind using herbal products, animal parts and minerals instead of technology and pharmaceutical drugs. These notes contributed to a sense of distrust towards it, accusing alternative medicine of being based on superstition and ignorance. However, and without denying that some particular practices lack indeed any kind of evidence or scientific grounds, the fact is that a substantial part of alternative medicine can actually produce satisfactory results. The paper will not advocate the substitution of conventional medicine by alternative medicine, but the complementation between the two and their specific knowledge. In terms of the right to health, as a fundamental right and a human right, this thesis leads to the implementation of a wider range of therapeutic choices for patients, who should be entitled to receive different forms of health care that complement one another, both in public and private health facilities. This scenario would demand a proper regulation for alternative medicine, which nowadays does not exist in most countries, but it is essential to protect patients and public health in general and to reinforce confidence in alternative medicine.

Keywords: alternative medicine, conventional medicine, patient’s rights, right to health

Procedia PDF Downloads 385
14569 Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell

Authors: Marco Avila Lopez, Hasnae Ait-Douchi, Silvia De Los Santos, Badr Eddine Lebrouhi, Pamela Ramírez Vidal

Abstract:

In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions.

Keywords: fuel cell, modelling, dynamic, thermal model, PEMFC

Procedia PDF Downloads 81
14568 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 91
14567 Closed-Form Solutions for Nanobeams Based on the Nonlocal Euler-Bernoulli Theory

Authors: Francesco Marotti de Sciarra, Raffaele Barretta

Abstract:

Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement are presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.

Keywords: Bernoulli-Euler beams, nanobeams, nonlocal elasticity, closed-form solutions

Procedia PDF Downloads 370
14566 A Development of Creative Instruction Model through Digital Media

Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom

Abstract:

This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.

Keywords: teaching learning model, digital media, creative instruction model, Bo Kluea school

Procedia PDF Downloads 143
14565 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients

Authors: Elena Carcano, James Ball

Abstract:

This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.

Keywords: hierarchical process, strategic plan, water emergency conditions, water supply

Procedia PDF Downloads 160
14564 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 148
14563 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
14562 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 254
14561 Environmental and Economic Impact of Mangrove Deforestation: Case Study of Vadamaradchy East, Sri Lanka

Authors: Kumaraamy Sasikumar

Abstract:

The study was conducted in Vadamarachchi-East in Sri Lanka. Data collection was done for a period of two months from June to July 2011. The main focus of this study was to examine factors contributing to mangrove deforestation within the study area, and resultant impacts from deforestation. The study found that, the main factors that have contributed to deforestation include: Long civil wars in the region, poverty which pushed people to clear the forest to earn income through the sale of firewood and timber among others, industrial development, increasing demand for farm and settlement land, limited knowledge within the local community, weak government polices and implementation strategies, and natural disasters especially the 2004 Tsunami destruction. The impacts presented are those that impact both on the environment and the economy including; loss of income sources, loss of biodiversity, climate change, desertification, conflicts in the use of forest products and loss of land productivity due to reduced fertility caused by soil erosion. However, a few strategies have been put in place by the government to ensure the sustainable use of mangrove forest products, though these have not proved successful in reducing deforestation. The recommendations make suggestions to the government and other stakeholders to work together in ensuring sustainable use of natural resources, for example implementing laws and regulations aimed at controlling deforestation among others.

Keywords: deforestation, impacts, actors, environment, economic, sustainable development

Procedia PDF Downloads 353
14560 The Effectiveness of Computerized Dynamic Listening Assessment Informed by Attribute-Based Mediation Model

Authors: Yaru Meng

Abstract:

The study contributes to the small but growing literature around computerized approaches to dynamic assessment (C-DA), wherein individual items are accompanied by mediating prompts. Mediation in the current computerized dynamic listening assessment (CDLA) was informed by an attribute-based mediation model (AMM) that identified the underlying L2 listening cognitive abilities and associated descriptors. The AMM served to focus mediation during C-DA on particular cognitive abilities with a goal of specifying areas of learner difficulty. 86 low-intermediate L2 English learners from a university in China completed three listening assessments, with an experimental group receiving the CLDA system and a control group a non-dynamic assessment. As an assessment, the use of the AMM in C-DA generated detailed diagnoses for each learner. In addition, both within- and between-group repeated ANOVA found greater gains at the level of specific attributes among C-DA learners over the course of a 5-week study. Directions for future research are discussed.

Keywords: computerized dynamic assessment, effectiveness, English as foreign language listening, attribute-based mediation model

Procedia PDF Downloads 224
14559 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: evolutionary computation, feature selection, classification, clustering

Procedia PDF Downloads 371
14558 Effectiveness Factor for Non-Catalytic Gas-Solid Pyrolysis Reaction for Biomass Pellet Under Power Law Kinetics

Authors: Haseen Siddiqui, Sanjay M. Mahajani

Abstract:

Various important reactions in chemical and metallurgical industries fall in the category of gas-solid reactions. These reactions can be categorized as catalytic and non-catalytic gas-solid reactions. In gas-solid reaction systems, heat and mass transfer limitations put an appreciable influence on the rate of the reaction. The consequences can be unavoidable for overlooking such effects while collecting the reaction rate data for the design of the reactor. Pyrolysis reaction comes in this category that involves the production of gases due to the interaction of heat and solid substance. Pyrolysis is also an important step in the gasification process and therefore, the gasification reactivity majorly influenced by the pyrolysis process that produces the char, as a feed for the gasification process. Therefore, in the present study, a non-isothermal transient 1-D model is developed for a single biomass pellet to investigate the effect of heat and mass transfer limitations on the rate of pyrolysis reaction. The obtained set of partial differential equations are firstly discretized using the concept of ‘method of lines’ to obtain a set of ordinary differential equation with respect to time. These equations are solved, then, using MATLAB ode solver ode15s. The model is capable of incorporating structural changes, porosity variation, variation in various thermal properties and various pellet shapes. The model is used to analyze the effectiveness factor for different values of Lewis number and heat of reaction (G factor). Lewis number includes the effect of thermal conductivity of the solid pellet. Higher the Lewis number, the higher will be the thermal conductivity of the solid. The effectiveness factor was found to be decreasing with decreasing Lewis number due to the fact that smaller Lewis numbers retard the rate of heat transfer inside the pellet owing to a lower rate of pyrolysis reaction. G factor includes the effect of the heat of reaction. Since the pyrolysis reaction is endothermic in nature, the G factor takes negative values. The more the negative value higher will be endothermic nature of the pyrolysis reaction. The effectiveness factor was found to be decreasing with more negative values of the G factor. This behavior can be attributed to the fact that more negative value of G factor would result in more energy consumption by the reaction owing to a larger temperature gradient inside the pellet. Further, the analytical expressions are also derived for gas and solid concentrations and effectiveness factor for two limiting cases of the general model developed. The two limiting cases of the model are categorized as the homogeneous model and unreacted shrinking core model.

Keywords: effectiveness factor, G-factor, homogeneous model, lewis number, non-catalytic, shrinking core model

Procedia PDF Downloads 138
14557 QSAR, Docking and E-pharmacophore Approach on Novel Series of HDAC Inhibitors with Thiophene Linker as Anticancer Agents

Authors: Harish Rajak, Preeti Patel

Abstract:

HDAC inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. The 3D-QSAR and Pharmacophore modeling studies were performed to identify important pharmacophoric features and correlate 3D-chemical structure with biological activity. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with well-assigned HDAC inhibitory activity was used for 3D-QSAR model development. Best 3D-QSAR model, which is a five PLS factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811) and standard deviation (0.0952). Molecular docking were performed using Histone Deacetylase protein (PDB ID: 1t69) and prepared series of hydroxamic acid based HDAC inhibitors. Docking study of compound 43 show significant binding interactions Ser 276 and oxygen atom of dioxine cap region, Gly 151 and amino group and Asp 267 with carboxyl group of CONHOH, which are essential for anticancer activity. On docking, most of the compounds exhibited better glide score values between -8 to -10.5. We have established structure activity correlation using docking, energetic based pharmacophore modelling, pharmacophore and atom based 3D QSAR model. The results of these studies were further used for the design and testing of new HDAC analogs.

Keywords: Docking, e-pharmacophore, HDACIs, QSAR, Suberoylanilidehydroxamic acid.

Procedia PDF Downloads 301
14556 Delusive versus Genuine Needs: Examining Human Needs within the Islamic Framework of Orbit of Needs

Authors: Abdolmoghset Banikamal

Abstract:

This study looks at the issue of human needs from Islamic perspectives. The key objective of the study is to contribute in regulating the persuasion of needs. It argues that all needs are not necessarily genuine, rather a significant part of them are delusive. To distinguish genuine needs from delusive ones, the study suggests looking at the purpose of the persuasion of that particular need as a key criterion. In doing so, the paper comes with a model namely Orbit of Needs. The orbit has four circles. The central one is a necessity, followed by comfort, beautification, and exhibition. According to the model, all those needs that fall into one of the first three circles in terms of purpose are genuine, while any need which falls into the fourth circle is delusive.

Keywords: desire, human need, Islam, orbit of needs

Procedia PDF Downloads 284
14555 Diesel Engine Performance Optimization to Reduce Fuel Consumption and Emissions Issues

Authors: hadi kargar, bahador shabani

Abstract:

In this article, 16 cylinder motor combustion CFD modeling with a diameter of 165 mm and 195 mm along the way to help the FIRE software to optimize its function to work. A three-dimensional model of the processes that formed inside the cylinder made that involves mixing the fuel and air, ignition and spraying. In this three-dimensional model, all chemical species, density of air fuel spraying and spray with full profile intended to detailed results from mixing the fuel and air, igniting the ignition advance, spray, and mixed media in different times and get fit by moving the piston. Optimal selection of the model for the shape of the piston and spraying fuel specifications (including the management of spraying, the number of azhneh hole, start time of spraying and spraying angle) to achieve the best fuel consumption and minimal pollution. The spray hole 6 and 7 in three different configurations with five spraying and gives the best geometry and various performances in the simulation. 6 hole spray angle, finally spraying 72.5 degrees and two forms of spraying a better performance in comparison with other items of their own.

Keywords: spray, FIRE, CFD, optimize, diesel engine

Procedia PDF Downloads 419
14554 Analysis of the Decoupling Relationship between Urban Green Development and the Level of Regional Integration Based on the Tapio Model

Authors: Ruoyu Mao

Abstract:

Exploring the relationship between urban green development and regional integration level is of great significance for realising regional high quality and sustainable development. Based on the Tapio decoupling model and the theoretical framework of urban green development and regional integration, this paper builds an analysis system, makes a quantitative analysis of urban green development and regional integration level in a certain period, and discusses the relationship between the two. It also takes China's Yangtze River Delta urban agglomeration as an example to study the degree of decoupling, the type of decoupling, and the trend of the evolution of the spatio-temporal pattern of decoupling between the level of urban green development and the level of regional integration in the period of 2014-2021, with the aim of providing a useful reference for the future development of the region.

Keywords: regional integration, urban green development, Tapio decoupling model, Yangtze River Delta urban agglomeration

Procedia PDF Downloads 43
14553 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation

Authors: A. T. Kuda, J. J. Dayya, A. Jimoh

Abstract:

This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.

Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations

Procedia PDF Downloads 302
14552 A Risk Assessment for the Small Hive Beetle Based on Meteorological Standard Measurements

Authors: J. Junk, M. Eickermann

Abstract:

The Small Hive Beetle, Aethina tumida (Coleoptera: Nitidulidae) is a parasite for honey bee colonies, Apis mellifera, and was recently introduced to the European continent, accidentally. Based on the literature, a model was developed by using regional meteorological variables (daily values of minimum, maximum and mean air temperature as well as mean soil temperature at 50 mm depth) to calculate the time-point of hive invasion by A. tumida in springtime, the development duration of pupae as well as the number of generations of A. tumida per year. Luxembourg was used as a test region for our model for 2005 to 2013. The model output indicates a successful surviving of the Small Hive Beetle in Luxembourg with two up to three generations per year. Additionally, based on our meteorological data sets a first migration of SHB to apiaries can be expected from mid of March up to April. Our approach can be transferred easily to other countries to estimate the risk potential for a successful introduction and spreading of A. tumida in Western Europe.

Keywords: Aethina tumida, air temperature, larval development, soil temperature

Procedia PDF Downloads 116
14551 Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure

Authors: Safa'a M. Rasheed, Saba A. Gheni, Wadood T. Mohamed

Abstract:

Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results.

Keywords: wastewater, phenol, pulsing flow, wet oxidation, high pressure

Procedia PDF Downloads 137