Search results for: matching optimization
818 Aerodynamic Modelling of Unmanned Aerial System through Computational Fluid Dynamics: Application to the UAS-S45 Balaam
Authors: Maxime A. J. Kuitche, Ruxandra M. Botez, Arthur Guillemin
Abstract:
As the Unmanned Aerial Systems have found diverse utilities in both military and civil aviation, the necessity to obtain an accurate aerodynamic model has shown an enormous growth of interest. Recent modeling techniques are procedures using optimization algorithms and statistics that require many flight tests and are therefore extremely demanding in terms of costs. This paper presents a procedure to estimate the aerodynamic behavior of an unmanned aerial system from a numerical approach using computational fluid dynamic analysis. The study was performed using an unstructured mesh obtained from a grid convergence analysis at a Mach number of 0.14, and at an angle of attack of 0°. The flow around the aircraft was described using a standard k-ω turbulence model. Thus, the Reynold Averaged Navier-Stokes (RANS) equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45 designed and manufactured by Hydra Technologies in Mexico. The lift, the drag, and the pitching moment coefficients were obtained at different angles of attack for several flight conditions defined in terms of altitudes and Mach numbers. The results obtained from the Computational Fluid Dynamics analysis were compared with the results obtained by using the DATCOM semi-empirical procedure. This comparison has indicated that our approach is highly accurate and that the aerodynamic model obtained could be useful to estimate the flight dynamics of the UAS-S45.Keywords: aerodynamic modelling, CFD Analysis, ANSYS FLUENT, UAS-S45
Procedia PDF Downloads 375817 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 442816 Improve Heat Pipes Thermal Performance In H-VAC Systems Using CFD Modeling
Authors: A. Ghanami, M.Heydari
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.Keywords: Heat pipe, HVAC system, Grooved Heat pipe, Heat pipe limits.
Procedia PDF Downloads 482815 Increasing Sustainability of Melanin Bio-Production Using Seawater
Authors: Harsha Thaira, Ritu Raval, Keyur Raval
Abstract:
Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production.Keywords: melanin, marine, bioprocess, pseudomonas
Procedia PDF Downloads 277814 Study of the Feasibility of Submerged Arc Welding(SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius
Authors: Ajay Biswas, Swapan Bhaumik, Saurav Datta, Abhijit Bhowmik
Abstract:
A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. voltage, wire feed rate, travel speed, and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.Keywords: submerged arc welding, zero degree celsius, Taguchi’s design of experiment, geometry of weldment
Procedia PDF Downloads 449813 Feasibility Study of Submerged Arc Welding (SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius
Authors: Ajay Biswas, Abhijit Bhowmik, Saurav Datta, Swapan Bhaumik
Abstract:
A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. Voltage, wire feed rate, travel speed and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.Keywords: geometry of weldment, submerged arc welding, Taguchi’s design of experiment, zero degree Celsius
Procedia PDF Downloads 433812 Supply Chain Network Design for Perishable Products in Developing Countries
Authors: Abhishek Jain, Kavish Kejriwal, V. Balaji Rao, Abhigna Chavda
Abstract:
Increasing environmental and social concerns are forcing companies to take a fresh view of the impact of supply chain operations on environment and society when designing a supply chain. A challenging task in today’s food industry is the distribution of high-quality food items throughout the food supply chain. Improper storage and unwanted transportation are the major hurdles in food supply chain and can be tackled by making dynamic storage facility location decisions with the distribution network. Since food supply chain in India is one of the biggest supply chains in the world, the companies should also consider environmental impact caused by the supply chain. This project proposes a multi-objective optimization model by integrating sustainability in decision-making, on distribution in a food supply chain network (SCN). A Multi-Objective Mixed-Integer Linear Programming (MOMILP) model between overall cost and environmental impact caused by the SCN is formulated for the problem. The goal of MOMILP is to determine the pareto solutions for overall cost and environmental impact caused by the supply chain. This is solved by using GAMS with CPLEX as third party solver. The outcomes of the project are pareto solutions for overall cost and environmental impact, facilities to be operated and the amount to be transferred to each warehouse during the time horizon.Keywords: multi-objective mixed linear programming, food supply chain network, GAMS, multi-product, multi-period, environment
Procedia PDF Downloads 320811 The Review of Permanent Downhole Monitoring System
Abstract:
With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield
Procedia PDF Downloads 79810 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm
Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan
Abstract:
Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing
Procedia PDF Downloads 165809 Self-Selected Intensity and Discounting Rates of Exercise in Comparison with Food and Money in Healthy Adults
Authors: Tamam Albelwi, Robert Rogers, Hans-Peter Kubis
Abstract:
Background: Exercise is widely acknowledged as a highly important health behavior, which reduces risks related to lifestyle diseases like type 2 diabetes, cardiovascular disease. However, exercise adherence is low in high-risk groups and sedentary lifestyle is more the norm than the exception. Expressed reasons for exercise participation are often based on delayed outcomes related to health threats and benefits but also enjoyment. Whether exercise is perceived as rewarding is well established in animal literature but the evidence is sparse in humans. Additionally, the question how stable any reward is perceived with time delays is an important question influencing decision-making (in favor or against a behavior). For the modality exercise, this has not been examined before. We, therefore, investigated the discounting of pre-established self-selected exercise compared with established rewards of food and money with a computer-based discounting paradigm. We hypothesized that exercise will be discounted like an established reward (food and money); however, we expect that the discounting rate is similar to a consumable reward like food. Additionally, we expected that individuals’ characteristics like preferred intensity, physical activity and body characteristics are associated with discount rates. Methods: 71 participants took part in four sessions. The sessions were designed to let participants select their preferred exercise intensity on a treadmill. Participants were asked to adjust their speed for optimizing pleasantness over an exercise period of up to 30 minutes, heart rate and pleasantness rating was measured. In further sessions, the established exercise intensity was modified and tested on perceptual validity. In the last exercise session rates of perceived exertion was measured on the preferred intensity level. Furthermore, participants filled in questionnaires related to physical activity, mood, craving, and impulsivity and answered choice questions on a bespoke computer task to establish discounting rates of their preferred exercise (kex), their favorite food (kfood) and a value-matching amount of money (kmoney). Results: Participants self-selected preferred speed was 5.5±2.24 km/h, at a heart rate of 120.7±23.5, and perceived exertion scale of 10.13±2.06. This shows that participants preferred a light exercise intensity with low to moderate cardiovascular strain based on perceived pleasantness. Computer assessment of discounting rates revealed that exercise was quickly discounted like a consumable reward, no significant difference between kfood and kex (kfood =0.322±0.263; kex=0.223±0.203). However, kmoney (kmoney=0.080±0.02) was significantly lower than the rates of exercise and food. Moreover, significant associations were found between preferred speed and kex (r=-0.302) and between physical activity levels and preferred speed (r=0.324). Outcomes show that participants perceived and discounted self-selected exercise like an established reward (food and money) but was discounted more like consumable rewards. Moreover, exercise discounting was quicker in individuals who preferred lower speeds, being less physically active. This may show that in a choice conflict between exercise and food the delay of exercise (because of distance) might disadvantage exercise as the chosen behavior particular in sedentary people. Conclusion: exercise can be perceived as a reward and is discounted quickly in time like food. Pleasant exercise experience is connected to low to moderate cardiovascular and perceptual strain.Keywords: delay discounting, exercise, temporal discounting, time perspective
Procedia PDF Downloads 271808 Sustainable Project Management Necessarily Implemented in the Chinese Wine Market Due to Climate Variation
Authors: Ruixin Zhang, Joel Carboni, Songchenchen Gong
Abstract:
Since the Sustainable Development Goals (SDGs) officially became the 17 development goals set by the United Nations in 2015, it has become an inevitable trend in project management development globally. Since Sustainability and glob-alization are the main focus and trends in the 21st century, project management contains system-based optimization, and or-ganizational humanities, environmental protection, and economic development. As a populous country globally, with the advanced development of economy and technology, China becomes one of the biggest markets in the wine industry. However, the develop-ment of society also brings specific environmental issues. Climate changes have already brought severe impacts on the Chinese wine market, including consumer behavior, wine production activities, and organizational humanities. Therefore, the implementation of sustainable project management in Chinese wine market is essential. Surveys based analysis is the primary method to interpret how the climate variation effect the Chinese wine market and the importance of sustainable project management implementation for green market growth in China. This paper proposes the CWW Conceptual model that can be used in the wine industry, the new 7 Drivers Model, and SPM Framework to interpret the main drivers that impact project management implementation in the wine industry and to offer the directions to wine companies in China which would help them to achieve the green growth.Keywords: project management, sustainability, green growth, climate changes, Chinese wine market
Procedia PDF Downloads 127807 Optimization of the Drinking Water Treatment Process
Authors: M. Farhaoui, M. Derraz
Abstract:
Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage the sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20 and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96% and 99.47% respectively for low, medium and high turbidity levels.Keywords: coagulation process, coagulant dose, sludge, turbidity removal
Procedia PDF Downloads 336806 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications
Authors: S. V. N. Pammi, Soon-Gil Yoon
Abstract:
In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics
Procedia PDF Downloads 308805 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 211804 Fusion Neutron Generator Dosimetry and Applications for Medical, Security, and Industry
Authors: Kaouther Bergaui, Nafaa Reguigui, Charles Gary
Abstract:
Characterization and the applications of deuterium-deuterium (DD) neutron generator developed by Adelphie technology and acquired by the National Centre of Nuclear Science and Technology (NCNST) were presented in this work. We study the performance of the neutron generator in terms of neutron yield, production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. We provide the design and optimization of the PGNAA chamber and thus give insight into the capabilities of the planned PGNAA facility. Additional non-destructive techniques were studied employing the DD neutron generator, such as PGNAA and neutron radiography: The PGNAA is used for determining the concentration of 10B in Si and SiO2 matrices by using a germanium detector HPGe and the results obtained are compared with PGNAA system using a Sodium Iodide detector (NaI (Tl)); Neutron radiography facility was tested and simulated, using a camera device CCD and simulated by the Monte Carlo code; and the explosive detection system (EDS) also simulated using the Monte Carlo code. The study allows us to show that the new models of DD neutron generators are feasible and that superior-quality neutron beams could be produced and used for various applications. The feasibility of Boron neutron capture therapy (BNCT) for cancer treatment using a neutron generator was assessed by optimizing Beam Shaping Assembly (BSA) on a phantom using Monte-Carlo (MCNP6) simulations.Keywords: neutron generator deuterium-deuterium, Monte Carlo method, radiation, neutron flux, neutron activation analysis, born, neutron radiography, explosive detection, BNCT
Procedia PDF Downloads 194803 The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores
Authors: Natheer Alatawneh
Abstract:
The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores.Keywords: alternating core losses, electric machines, finite element analysis, rotational core losses
Procedia PDF Downloads 252802 Key Aroma Compounds as Predictors of Pineapple Sensory Quality
Authors: Jenson George, Thoa Nguyen, Garth Sanewski, Craig Hardner, Heather Eunice Smyth
Abstract:
Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers.Keywords: Ananas comosus, pineapple, flavour, volatile organic compounds, aroma, Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA).
Procedia PDF Downloads 57801 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics
Authors: C. S. Saini
Abstract:
The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.Keywords: black gram, corn flour, extrusion, physical characteristics
Procedia PDF Downloads 479800 Case Analysis of Bamboo Based Social Enterprises in India-Improving Profitability and Sustainability
Authors: Priyal Motwani
Abstract:
The current market for bamboo products in India is about Rs. 21000 crores and is highly unorganised and fragmented. In this study, we have closely analysed the structure and functions of a major bamboo craft based organisation in Kerela, India and elaborated about its value chain, product mix, pricing strategy and supply chain, collaborations and competitive landscape. We have identified six major bottlenecks that are prevalent in such organisations, based on the Indian context, in relation to their product mix, asset management, and supply chain- corresponding waste management and retail network. The study has identified that the target customers for the bamboo based products and alternative revenue streams (eco-tourism, microenterprises, training), by carrying out secondary and primary research (5000 sample space), that can boost the existing revenue by 150%. We have then recommended an optimum product mix-covering premium, medium and low valued processing, for medium sized bamboo based organisations, in accordance with their capacity to maximize their revenue potential. After studying such organisations and their counter parts, the study has established an optimum retail network, considering B2B, B2C physical and online retail, to maximize their sales to their target groups. On the basis of the results obtained from the analysis of the future and present trends, our study gives recommendations to improve the revenue potential of bamboo based organisation in India and promote sustainability.Keywords: bamboo, bottlenecks, optimization, product mix, retail network, value chain
Procedia PDF Downloads 217799 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity
Authors: Emma K. Sales
Abstract:
Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments; 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit. Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.Keywords: DNA, SSR analysis, genotype, genetic diversity, cultivars
Procedia PDF Downloads 454798 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 189797 Cleaner Production Options for Fishery Wastes Around Lake Tana-Ethiopia
Authors: Abate Getnet Demisash, Beshatu Taye Hatew, Ababo Geleta Gudisa
Abstract:
As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity and setting up cleaner production option for the site with experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area and some of the main reasons raised were they have no option than doing this for discharging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in generation rate of 72,822.61 kg per year which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33% and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization which involves biodiesel production was chosen as a potential method. Laboratory scale experiments were performed to produce renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p and 153°C flash points which shows the product has values in compliance with American Society for Testing and Materials (ASTM) standards.Keywords: biodiesel, cleaner production, renewable energy, clean energy, waste to energy
Procedia PDF Downloads 142796 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 281795 Technology Valuation of Unconventional Gas R&D Project Using Real Option Approach
Authors: Young Yoon, Jinsoo Kim
Abstract:
The adoption of information and communication technologies (ICT) in all industry is growing under industry 4.0. Many oil companies also are increasingly adopting ICT to improve the efficiency of existing operations, take more accurate and quicker decision making and reduce entire cost by optimization. It is true that ICT is playing an important role in the process of unconventional oil and gas development and companies must take advantage of ICT to gain competitive advantage. In this study, real option approach has been applied to Unconventional gas R&D project to evaluate ICT of them. Many unconventional gas reserves such as shale gas and coal-bed methane(CBM) has developed due to technological improvement and high energy price. There are many uncertainties in unconventional development on the three stage(Exploration, Development, Production). The traditional quantitative benefits-cost method, such as net present value(NPV) is not sufficient for capturing ICT value. We attempted to evaluate the ICT valuation by applying the compound option model; the model is applied to real CBM project case, showing how it consider uncertainties. Variables are treated as uncertain and a Monte Carlo simulation is performed to consider variables effect. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).Keywords: information and communication technologies, R&D, real option, unconventional gas
Procedia PDF Downloads 229794 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model
Authors: Carlos Caro, Ernest Blade, Nestor Rojas
Abstract:
This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model
Procedia PDF Downloads 522793 Removal of Heavy Metals by KOH Activated Diplotaxis harra Biomass: Experimental Design Optimization
Authors: H. Tounsadi, A. Khalidi, M. Abdennouri, N. Barka
Abstract:
The objective of this study was to produce high quality activated carbons from Diplotaxis harra biomass by potassium hydroxide activation and their application for heavy metals removal. To reduce the number of experiments, full factorial experimental design at two levels were carried out to occur optimal preparation conditions and better conditions for the removal of cadmium and cobalt ions from aqueous solutions. The influence of different variables during the activation process, such as carbonization temperature, activation temperature, activation time and impregnation ratio (g KOH/g carbon) have been investigated, and the best production conditions were determined. The experimental results showed that removal of cadmium and cobalt ions onto activated carbons was more sensitive to methylene blue index instead of iodine number. Although, the removal of cadmium and cobalt ions is more influenced by activation temperature with a negative effect followed by the impregnation ratio with a positive impact. Based on the statistical data, the best conditions for the removal of cadmium and cobalt by prepared activated carbons have been established. The maximum iodine number and methylene blue index obtained under these conditions and the greater sorption capacities for cadmium and cobalt were investigated. These sorption capacities were greater than those of a commercial activated carbon used in water treatment.Keywords: activated carbon, cadmium, cobalt, Diplotaxis harra, experimental design, potassium hydroxide
Procedia PDF Downloads 201792 The Design of Fire in Tube Boiler
Authors: Yoftahe Nigussie
Abstract:
This report presents a final year project pertaining to the design of Fire tube boiler for the purpose of producing saturated steam. The objective of the project is to produce saturated steam for different purpose with a capacity of 2000kg/h at 12bar design pressure by performing a design of a higher performance fire tube boiler that considered the requirements of cost minimization and parameters improvement. This is mostly done in selection of appropriate material for component parts, construction materials and production methods in different steps of analysis. In the analysis process, most of the design parameters are obtained by iterating with related formulas like selection of diameter of tubes with overall heat transfer coefficient optimization, and the other selections are also as like considered. The number of passes is two because of the size and area of the tubes and shell. As the analysis express by using heavy oil fuel no6 with a higher heating value of 44000kJ/kg and lower heating value of 41300kJ/kg and the amount of fuel consumed 140.37kg/hr. and produce 1610kw of heat with efficiency of 85.25%. The flow of the fluid is a cross flow because of its own advantage and the arrangement of the tube in-side the shell is welded with the tube sheet, and the tube sheet is attached with the shell and the end by using a gasket and weld. The design of the shell, using European Standard code section, is as like pressure vessel by considering the weight, including content and the supplementary accessories such as lifting lugs, openings, ends, man hole and supports with detail and assembly drawing.Keywords: steam generation, external treatment, internal treatment, steam velocity
Procedia PDF Downloads 97791 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater
Authors: Abimbola M. Enitan, J. Adeyemo
Abstract:
Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling
Procedia PDF Downloads 270790 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network
Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry
Abstract:
The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network
Procedia PDF Downloads 293789 A Constrained Model Predictive Control Scheme for Simultaneous Control of Temperature and Hygrometry in Greenhouses
Authors: Ayoub Moufid, Najib Bennis, Soumia El Hani
Abstract:
The objective of greenhouse climate control is to improve the culture development and to minimize the production costs. A greenhouse is an open system to external environment and the challenge is to regulate the internal climate despite the strong meteorological disturbances. The internal state of greenhouse considered in this work is defined by too relevant and coupled variables, namely inside temperature and hygrometry. These two variables are chosen to describe the internal state of greenhouses due to their importance in the development of plants and their sensitivity to external climatic conditions, sources of weather disturbances. A multivariable model is proposed and validated by considering a greenhouse as black-box system and the least square method is applied to parameters identification basing on collected experimental measures. To regulate the internal climate, we propose a Model Predictive Control (MPC) scheme. This one considers the measured meteorological disturbances and the physical and operational constraints on the control and state variables. A successful feasibility study of the proposed controller is presented, and simulation results show good performances despite the high interaction between internal and external variables and the strong external meteorological disturbances. The inside temperature and hygrometry are tracking nearly the desired trajectories. A comparison study with an On/Off control applied to the same greenhouse confirms the efficiency of the MPC approach to inside climate control.Keywords: climate control, constraints, identification, greenhouse, model predictive control, optimization
Procedia PDF Downloads 206