Search results for: conventional gleason grading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3769

Search results for: conventional gleason grading

859 In-vitro Metabolic Fingerprinting Using Plasmonic Chips by Laser Desorption/Ionization Mass Spectrometry

Authors: Vadanasundari Vedarethinam, Kun Qian

Abstract:

The metabolic analysis is more distal over proteomics and genomics engaging in clinics and needs rationally distinct techniques, designed materials, and device for clinical diagnosis. Conventional techniques such as spectroscopic techniques, biochemical analyzers, and electrochemical have been used for metabolic diagnosis. Currently, there are four major challenges including (I) long-term process in sample pretreatment; (II) difficulties in direct metabolic analysis of biosamples due to complexity (III) low molecular weight metabolite detection with accuracy and (IV) construction of diagnostic tools by materials and device-based platforms for real case application in biomedical applications. Development of chips with nanomaterial is promising to address these critical issues. Mass spectroscopy (MS) has displayed high sensitivity and accuracy, throughput, reproducibility, and resolution for molecular analysis. Particularly laser desorption/ ionization mass spectrometry (LDI MS) combined with devices affords desirable speed for mass measurement in seconds and high sensitivity with low cost towards large scale uses. We developed a plasmonic chip for clinical metabolic fingerprinting as a hot carrier in LDI MS by series of chips with gold nanoshells on the surface through controlled particle synthesis, dip-coating, and gold sputtering for mass production. We integrated the optimized chip with microarrays for laboratory automation and nanoscaled experiments, which afforded direct high-performance metabolic fingerprinting by LDI MS using 500 nL of serum, urine, cerebrospinal fluids (CSF) and exosomes. Further, we demonstrated on-chip direct in-vitro metabolic diagnosis of early-stage lung cancer patients using serum and exosomes without any pretreatment or purifications. To our best knowledge, this work initiates a bionanotechnology based platform for advanced metabolic analysis toward large-scale diagnostic use.

Keywords: plasmonic chip, metabolic fingerprinting, LDI MS, in-vitro diagnostics

Procedia PDF Downloads 161
858 Reproducibility of Shear Strength Parameters Determined from CU Triaxial Tests: Evaluation of Results from Regression of Different Failure Stress Combinations

Authors: Henok Marie Shiferaw, Barbara Schneider-Muntau

Abstract:

Test repeatability and data reproducibility are a concern in many geotechnical laboratory tests due to inherent soil variability, inhomogeneous sample preparation and measurement inaccuracy. Test results on comparable test specimens vary to a considerable extent. Thus, also the derived shear strength parameters from triaxial tests are affected. In this contribution, we present the reproducibility of effective shear strength parameters from consolidated undrained triaxial tests on plain soil and cement-treated soil specimens. Six remolded test specimens were prepared for the plain soil and for the cement-treated soil. Conventional three levels of consolidation pressure testing were considered with an effective consolidation pressure of 100 kPa, 200 kPa and 300 kPa, respectively. At each effective consolidation pressure, two tests were done on comparable test specimens. Focus was laid on the same mean dry density and same water content during sample preparation for the two specimens. The cement-treated specimens were tested after 28 days of curing. Shearing of test specimens was carried out at a deformation rate of 0.4 mm/min after sample saturation at a back pressure of 900 kPa, followed by consolidation. The effective peak and residual shear strength parameters were then estimated from regression analysis of 21 different combinations of the failure stresses from the six tests conducted for both the plain soil and cement-treated soil samples. The 21 different stress combinations were constructed by picking three, four, five and six failure tresses at once at different combinations. Results indicate that the effective shear strength parameters estimated from the regression of different combinations of the failure stresses vary. Effective critical friction angle was found to be more consistent than effective peak friction angle with a smaller standard deviation. The reproducibility of the shear strength parameters for the cement-treated specimens was even lower than that of the untreated specimens.

Keywords: shear strength parameters, test repeatability, data reproducibility, triaxial soil testing, cement improvement of soils

Procedia PDF Downloads 31
857 Transverse Momentum Dependent Factorization and Evolution for Spin Physics

Authors: Bipin Popat Sonawane

Abstract:

After 1988 Electron muon Collaboration (EMC) announcement of measurement of spin dependent structure function, it has been found that it has become a need to understand spin structure of a hadron. In the study of three-dimensional spin structure of a proton, we need to understand the foundation of quantum field theory in terms of electro-weak and strong theories using rigorous mathematical theories and models. In the process of understanding the inner dynamical stricture of proton we need understand the mathematical formalism in perturbative quantum chromodynamics (pQCD). In QCD processes like proton-proton collision at high energy we calculate cross section using conventional collinear factorization schemes. In this calculations, parton distribution functions (PDFs) and fragmentation function are used which provide the information about probability density of finding quarks and gluons ( partons) inside the proton and probability density of finding final hadronic state from initial partons. In transverse momentum dependent (TMD) PDFs and FFs, collectively called as TMDs, take an account for intrinsic transverse motion of partons. The TMD factorization in the calculation of cross sections provide a scheme of hadronic and partonic states in the given QCD process. In this study we review Transverse Momentum Dependent (TMD) factorization scheme using Collins-Soper-Sterman (CSS) Formalism. CSS formalism considers the transverse momentum dependence of the partons, in this formalism the cross section is written as a Fourier transform over a transverse position variable which has physical interpretation as impact parameter. Along with this we compare this formalism with improved CSS formalism. In this work we study the TMD evolution schemes and their comparison with other schemes. This would provide description in the process of measurement of transverse single spin asymmetry (TSSA) in hadro-production and electro-production of J/psi meson at RHIC, LHC, ILC energy scales. This would surely help us to understand J/psi production mechanism which is an appropriate test of QCD.

Keywords: QCD, PDF, TMD, CSS

Procedia PDF Downloads 69
856 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease

Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah

Abstract:

Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.

Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor

Procedia PDF Downloads 242
855 A Study on Improvement of the Torque Ripple and Demagnetization Characteristics of a PMSM

Authors: Yong Min You

Abstract:

The study on the torque ripple of Permanent Magnet Synchronous Motors (PMSMs) has been rapidly progressed, which effects on the noise and vibration of the electric vehicle. There are several ways to reduce torque ripple, which are the increase in the number of slots and poles, the notch of the rotor and stator teeth, and the skew of the rotor and stator. However, the conventional methods have the disadvantage in terms of material cost and productivity. The demagnetization characteristic of PMSMs must be attained for electric vehicle application. Due to rare earth supply issue, the demand for Dy-free permanent magnet has been increasing, which can be applied to PMSMs for the electric vehicle. Dy-free permanent magnet has lower the coercivity; the demagnetization characteristic has become more significant. To improve the torque ripple as well as the demagnetization characteristics, which are significant parameters for electric vehicle application, an unequal air-gap model is proposed for a PMSM. A shape optimization is performed to optimize the design variables of an unequal air-gap model. Optimal design variables are the shape of an unequal air-gap and the angle between V-shape magnets. An optimization process is performed by Latin Hypercube Sampling (LHS), Kriging Method, and Genetic Algorithm (GA). Finite element analysis (FEA) is also utilized to analyze the torque and demagnetization characteristics. The torque ripple and the demagnetization temperature of the initial model of 45kW PMSM with unequal air-gap are 10 % and 146.8 degrees, respectively, which are reaching a critical level for electric vehicle application. Therefore, the unequal air-gap model is proposed, and then an optimization process is conducted. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 7.7 %. In addition, the demagnetization temperature of the optimized model was also increased by 1.8 % while maintaining the efficiency. From these results, a shape optimized unequal air-gap PMSM has shown the usefulness of an improvement in the torque ripple and demagnetization temperature for the electric vehicle.

Keywords: permanent magnet synchronous motor, optimal design, finite element method, torque ripple

Procedia PDF Downloads 273
854 Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage measures, bidirectional excitation, spectral based IMs, R/C buildings

Procedia PDF Downloads 326
853 Effect of Foot Reflexology Treatment on Arterial Blood Gases among Mechanically Ventilated Patients

Authors: Maha Salah Abdullah Ismail, Manal S. Ismail, Amir M. Saleh

Abstract:

Reflexology treatment is a method for enhancing body relaxation. It is a widely recognized as an alternative therapy, effective for many health conditions. This study aimed to evaluate the effect of reflexology treatment on arterial blood gases among mechanically ventilated patients. A quasi-experimental (pre and post-test) research design was used. Research hypothesis was mechanically ventilated patients who will receive the reflexology treatment will have improvement in their arterial blood gases than those who will not. The current study was carried out in different Intensive Care Units at the Cairo University Hospitals. A purposeful sample of 100 adults’ mechanically ventilated patients was recruited over a period of three months of data collection. The participants were divided into two equally matched groups; (1) The study group who has received the routine care, in addition, two reflexology sessions on the feet, (2) The control group who has received only the routine care. One tool was utilized to collect data pertinent to the study; mechanically ventilated patients' data sheet that consists of demographic and medical data. Result: Majority (58% of the study group and 82% of the control group) were males, with mean age of 50.9 years in both groups. Patients who received the reflexology treatment significantly increase in the oxygen saturation pre second session (t=5.15, p=.000), immediate post sessions (t=4.4, p=.000) and post two hours (t= 4.7, p= .000). The study group was more likely to have lower PaO2 (F=5.025, p=.015), PaCo2 (F=4.952, p=.025) and higher HCo3 (F=15.211, p=.000) than the control group. Conclusion: This study results support the positive effect of reflexology treatment in improving some arterial blood gases among mechanically ventilated patients’ with the conventional therapy as in the study group there was increase in the oxygen saturation. In differences between groups there decrease PaO2, PaCo2 and increase HCo3 in the study group. Recommendation: Nurses should be trained how to demonstrate the foot reflexology among mechanically ventilated patients.

Keywords: arterial blood gases, foot, mechanical ventilated patient, reflexology

Procedia PDF Downloads 206
852 Advantages of Utilizing Post-Tensioned Stress Ribbon Systems in Long Span Roofs

Authors: Samih Ahmed, Guayente Minchot, Fritz King, Mikael Hallgren

Abstract:

The stress ribbon system has numerous advantages that include but are not limited to increasing overall stiffness, control deflections, and reduction of materials consumption, which in turn, reduces the load and the cost. Nevertheless, its use is usually limited to bridges, in particular, pedestrian bridges; this can be attributed to the insufficient space that buildings' usually have for end supports, and/or back- stayed cables, that can accommodate the expected high pull-out forces occurring at the cables' ends. In this work, the roof of Västerås Travel Center, which will become one of the longest cable suspended roofs in the world, was chosen as a case study. The aim was to investigate the optimal technique to model the post-tensioned stress ribbon system for the roof structure using the FEM software SAP2000 and to assess any possible reduction in the pull-out forces, deflections, and concrete stresses. Subsequently, a conventional cable suspended roof was simulated using SAP2000, and compared to the post-tension stress ribbon system in order to examine the potential of the latter. Moreover, the effects of temperature loads and support movements on the final design loads were examined. Based on the study, a few practical recommendations concerning the construction method and the iterative design process, required to meet the architectural geometrical demands, are stated by the authors. The results showed that the post-tensioned stress ribbon system reduces the concrete stresses, overall deflections, and more importantly, reduces the pull-out forces and the vertical reactions at both ends by up to 16% and 11%, respectively, which substantially reduces the design forces for the support structures. The magnitude of these reductions was found to be highly correlated to the applied prestressing force, making the size of the prestressing force a key factor in the design.

Keywords: cable suspended, post-tension, roof structure, SAP2000, stress ribbon

Procedia PDF Downloads 158
851 Postoperative Budesonide Nasal Irrigation vs Normal Saline Irrigation for Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis

Authors: Rakan Hassan M. Alzahrani, Ziyad Alzahrani, Bader Bashrahil, Abdulrahman Elyasi, Abdullah a Ghaddaf, Rayan Alzahrani, Mohammed Alkathlan, Nawaf Alghamdi, Dakheelallah Almutairi

Abstract:

Background: Corticosteroid irrigations, which regularly involve the off-label use of budesonide mixed with normal saline in high volume Sino-nasal irrigations, have been more commonly used in the management of post-operative chronic rhinosinusitis (CRS). Objective: This article attempted to measure the efficacy of post-operative budesonide nasal irrigation compared to normal saline-alone nasal irrigation in the management of chronic rhinosinusitis (CRS) through a systematic review and meta-analysis of randomized controlled trials (RCTs). Methods: The databases PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched by two independent authors. Only RCTs comparing budesonide irrigation to normal saline alone irrigation for CRS with or without polyposis after functional endoscopic sinus surgery (FESS) were eligible. A random effect analysis model of the reported CRS-related quality of life (QOL) measures and the objective endoscopic assessment scales of the disease was done. Results: Only 6 RCTs met the eligibility criteria, with a total number of participants of 356. Compared to normal saline irrigation, budesonide nasal irrigation showed statically significant improvements in both the CRS-related quality of life (QOL) and the endoscopic findings (MD= -4.22 confidence interval [CI]: -5.63, -2.82 [P < 0.00001]), (SMD= -0.50 confidence interval [CI]: -0.93, -0.06 [P < 0.03]) respectively. Conclusion: Both intervention arms showed improvements in CRS-related QOL and endoscopic findings in post-FESS chronic rhinosinusitis with or without polyposis. However, budesonide irrigation seems to have a slight edge over conventional normal saline irrigation with no reported serious side effects, including hypothalamic-pituitary-adrenal (HPA) axis suppression.

Keywords: Budesonide, chronic rhinosinusitis, corticosteroids, nasal irrigation, normal saline

Procedia PDF Downloads 76
850 A Microsurgery-Specific End-Effector Equipped with a Bipolar Surgical Tool and Haptic Feedback

Authors: Hamidreza Hoshyarmanesh, Sanju Lama, Garnette R. Sutherland

Abstract:

In tele-operative robotic surgery, an ideal haptic device should be equipped with an intuitive and smooth end-effector to cover the surgeon’s hand/wrist degrees of freedom (DOF) and translate the hand joint motions to the end-effector of the remote manipulator with low effort and high level of comfort. This research introduces the design and development of a microsurgery-specific end-effector, a gimbal mechanism possessing 4 passive and 1 active DOFs, equipped with a bipolar forceps and haptic feedback. The robust gimbal structure is comprised of three light-weight links/joint, pitch, yaw, and roll, each consisting of low-friction support and a 2-channel accurate optical position sensor. The third link, which provides the tool roll, was specifically designed to grip the tool prongs and accommodate a low mass geared actuator together with a miniaturized capstan-rope mechanism. The actuator is able to generate delicate torques, using a threaded cylindrical capstan, to emulate the sense of pinch/coagulation during conventional microsurgery. While the tool left prong is fixed to the rolling link, the right prong bears a miniaturized drum sector with a large diameter to expand the force scale and resolution. The drum transmits the actuator output torque to the right prong and generates haptic force feedback at the tool level. The tool is also equipped with a hall-effect sensor and magnet bar installed vis-à-vis on the inner side of the two prongs to measure the tooltip distance and provide an analogue signal to the control system. We believe that such a haptic end-effector could significantly increase the accuracy of telerobotic surgery and help avoid high forces that are known to cause bleeding/injury.

Keywords: end-effector, force generation, haptic interface, robotic surgery, surgical tool, tele-operation

Procedia PDF Downloads 117
849 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation

Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton

Abstract:

Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.

Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication

Procedia PDF Downloads 170
848 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 326
847 Biochemical Characterization and Structure Elucidation of a New Cytochrome P450 Decarboxylase

Authors: Leticia Leandro Rade, Amanda Silva de Sousa, Suman Das, Wesley Generoso, Mayara Chagas Ávila, Plinio Salmazo Vieira, Antonio Bonomi, Gabriela Persinoti, Mario Tyago Murakami, Thomas Michael Makris, Leticia Maria Zanphorlin

Abstract:

Alkenes have an economic appeal, especially in the biofuels field, since they are precursors for drop-in biofuels production, which have similar chemical and physical properties to the conventional fossil fuels, with no oxygen in their composition. After the discovery of the first P450 CYP152 OleTJE in 2011, reported with its unique property of decarboxylating fatty acids (FA), by using hydrogen peroxide as a cofactor and producing 1-alkenes as the main product, the scientific and technological interest in this family of enzymes vastly increased. In this context, the present work presents a new decarboxylase (OleTRN) with low similarity with OleTJE (32%), its biochemical characterization, and structure elucidation. As main results, OleTRN presented a high yield of expression and purity, optimum reaction conditions at 35 °C and pH from 6.5 to 8.0, and higher specificity for oleic acid. Besides that, structure-guided mutations were performed and according to the functional characterizations, it was observed that some mutations presented different specificity and chemoselectivity by varying the chain-length of FA substrates from 12 to 20 carbons. These results are extremely interesting from a biotechnological perspective as those characteristics could diversify the applications and contribute to designing better cytochrome P450 decarboxylases. Considering that peroxygenases have the potential activity of decarboxylating and hydroxylating fatty acids and that the elucidation of the intriguing mechanistic involved in the decarboxylation preferential from OleTJE is still a challenge, the elucidation of OleTRN structure and the functional characterizations of OleTRN and its mutants contribute to new information about CYP152. Besides that, the work also contributed to the discovery of a new decarboxylase with a different selectivity profile from OleTJE, which allows a wide range of applications.

Keywords: P450, decarboxylases, alkenes, biofuels

Procedia PDF Downloads 201
846 Submarine Topography and Beach Survey of Gang-Neung Port in South Korea, Using Multi-Beam Echo Sounder and Shipborne Mobile Light Detection and Ranging System

Authors: Won Hyuck Kim, Chang Hwan Kim, Hyun Wook Kim, Myoung Hoon Lee, Chan Hong Park, Hyeon Yeong Park

Abstract:

We conducted submarine topography & beach survey from December 2015 and January 2016 using multi-beam echo sounder EM3001(Kongsberg corporation) & Shipborne Mobile LiDAR System. Our survey area were the Anmok beach in Gangneung, South Korea. We made Shipborne Mobile LiDAR System for these survey. Shipborne Mobile LiDAR System includes LiDAR (RIEGL LMS-420i), IMU ((Inertial Measurement Unit, MAGUS Inertial+) and RTKGNSS (Real Time Kinematic Global Navigation Satellite System, LEIAC GS 15 GS25) for beach's measurement, LiDAR's motion compensation & precise position. Shipborne Mobile LiDAR System scans beach on the movable vessel using the laser. We mounted Shipborne Mobile LiDAR System on the top of the vessel. Before beach survey, we conducted eight circles IMU calibration survey for stabilizing heading of IMU. This exploration should be as close as possible to the beach. But our vessel could not come closer to the beach because of latency objects in the water. At the same time, we conduct submarine topography survey using multi-beam echo sounder EM3001. A multi-beam echo sounder is a device observing and recording the submarine topography using sound wave. We mounted multi-beam echo sounder on left side of the vessel. We were equipped with a motion sensor, DGNSS (Differential Global Navigation Satellite System), and SV (Sound velocity) sensor for the vessel's motion compensation, vessel's position, and the velocity of sound of seawater. Shipborne Mobile LiDAR System was able to reduce the consuming time of beach survey rather than previous conventional methods of beach survey.

Keywords: Anmok, beach survey, Shipborne Mobile LiDAR System, submarine topography

Procedia PDF Downloads 427
845 Effect of Lithium Bromide Concentration on the Structure and Performance of Polyvinylidene Fluoride (PVDF) Membrane for Wastewater Treatment

Authors: Poojan Kothari, Yash Madhani, Chayan Jani, Bharti Saini

Abstract:

The requirements for quality drinking and industrial water are increasing and water resources are depleting. Moreover large amount of wastewater is being generated and dumped into water bodies without treatment. These have made improvement in water treatment efficiency and its reuse, an important agenda. Membrane technology for wastewater treatment is an advanced process and has become increasingly popular in past few decades. There are many traditional methods for tertiary treatment such as chemical coagulation, adsorption, etc. However recent developments in membrane technology field have led to manufacturing of better quality membranes at reduced costs. This along with the high costs of conventional treatment processes, high separation efficiency and relative simplicity of the membrane treatment process has made it an economically viable option for municipal and industrial purposes. Ultrafiltration polymeric membranes can be used for wastewater treatment and drinking water applications. The proposed work focuses on preparation of one such UF membrane - Polyvinylidene fluoride (PVDF) doped with LiBr for wastewater treatment. Majorly all polymeric membranes are hydrophobic in nature. This property leads to repulsion of water and hence solute particles occupy the pores, decreasing the lifetime of a membrane. Thus modification of membrane through addition of small amount of salt such as LiBr helped us attain certain characteristics of membrane, which can then be used for wastewater treatment. The membrane characteristics are investigated through measuring its various properties such as porosity, contact angle and wettability to find out the hydrophilic nature of the membrane and morphology (surface as well as structure). Pure water flux, solute rejection and permeability of membrane is determined by permeation experiments. A study of membrane characteristics with various concentration of LiBr helped us to compare its effectivity.

Keywords: Lithium bromide (LiBr), morphology, permeability, Polyvinylidene fluoride (PVDF), solute rejection, wastewater treatment

Procedia PDF Downloads 146
844 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 331
843 Gas While Drilling (GWD) Classification in Betara Complex; An Effective Approachment to Optimize Future Candidate of Gumai Reservoir

Authors: I. Gusti Agung Aditya Surya Wibawa, Andri Syafriya, Beiruny Syam

Abstract:

Gumai Formation which acts as regional seal for Talang Akar Formation becomes one of the most prolific reservoir in South Sumatra Basin and the primary exploration target in this area. Marine conditions were eventually established during the continuation of transgression sequence leads an open marine facies deposition in Early Miocene. Marine clastic deposits where calcareous shales, claystone and siltstones interbedded with fine-grained calcareous and glauconitic sandstones are the domination of lithology which targeted as the hydrocarbon reservoir. All this time, the main objective of PetroChina’s exploration and production in Betara area is only from Lower Talang Akar Formation. Successful testing in some exploration wells which flowed gas & condensate from Gumai Formation, opened the opportunity to optimize new reservoir objective in Betara area. Limitation of conventional wireline logs data in Gumai interval is generating technical challenge in term of geological approach. A utilization of Gas While Drilling indicator initiated with the objective to determine the next Gumai reservoir candidate which capable to increase Jabung hydrocarbon discoveries. This paper describes how Gas While Drilling indicator is processed to generate potential and non-potential zone by cut-off analysis. Validation which performed by correlation and comparison with well logs, Drill Stem Test (DST), and Reservoir Performance Monitor (RPM) data succeed to observe Gumai reservoir in Betara Complex. After we integrated all of data, we are able to generate a Betara Complex potential map and overlaid with reservoir characterization distribution as a part of risk assessment in term of potential zone presence. Mud log utilization and geophysical data information successfully covered the geological challenges in this study.

Keywords: Gumai, gas while drilling, classification, reservoir, potential

Procedia PDF Downloads 354
842 The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures

Authors: Radhwane Boudjelthia

Abstract:

The most recent earthquakes that occurred in the world and particularly in Algeria, have killed thousands of people and severe damage. The example that is etched in our memory is the last earthquake in the regions of Boumerdes and Algiers (Boumerdes earthquake of May 21, 2003). For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation" to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes.

Keywords: earthquake, building, seismic forces, displacement, resonance, response

Procedia PDF Downloads 126
841 A Method for Precise Vertical Position of the Implant When Using Computerized Surgical Guides and Bone Reduction

Authors: Abraham Finkelman

Abstract:

Computerized Surgical Guides have been proven to be a predictable way to perform dental implants, with a relatively high accuracy in comparison to a treatment plan. When using the CSG Bone supported, it allows us to make the necessary changes of the hard tissue prior to the implant placement and after the implant placement. The CSG gives us an accurate position for the drilling, and during the implant placement it allows us to alter the vertical position of the implant altering the final position of the abutment and avoiding any risk of any damage to the adjacent anatomical structures. Any Changes required to the bone level can be done prior to the fixation of the CSG using a reduction guide, which incur extra surgical fees and the need of a second surgical guide. Any changes of the bone level after the implant placement are at the risk of damaging the implant neck surface. The technique consists of a universal system that allows us to remove the excess bone around the implant sockets prior to the implant placement which then enables us to place the implant in the vertical position with accuracy as planned with the CSG. The systems consist of a hollow pin of different sizes and diameters. Depending on the implant system that we are using. Length sizes are from 6mm-16mm and a diameter of 2.6mm-4.8mm. Upon the completion of the drilling, the pin is then inserted into the implant socket-using the insertion tool. Once the insertion tool has unscrewed the pin, we can continue with the bone reduction. The bone reduction can be done using conventional methods upon the removal of all the excess bone around the pin. The insertion tool is then screwed into the pin and the pin is then removed. We now, have the new bone level at the crest of the implant socket which is our mark for the vertical position of the implant. In some cases, when we are locating the implant very close to anatomical structures, any form of deviation to the vertical position of the implant during the surgery, can cause damage to such anatomical structures, creating irreversible damages such as paresthesia or dysesthesia of the mandibular nerve. If we are planning for immediate loading and we have done our temporary restauration in base of our computerized plan, deviation in the vertical position of the implant will affect the position of the abutment, affecting the accuracy of the temporary prosthesis, extending the working time till we adapt the prosthesis to the new position.

Keywords: bone reduction, computer aided navigation, dental implant placement, surgical guides

Procedia PDF Downloads 329
840 Enhancing Health Information Management with Smart Rings

Authors: Bhavishya Ramchandani

Abstract:

A little electronic device that is worn on the finger is called a smart ring. It incorporates mobile technology and has features that make it simple to use the device. These gadgets, which resemble conventional rings and are usually made to fit on the finger, are outfitted with features including access management, gesture control, mobile payment processing, and activity tracking. A poor sleep pattern, an irregular schedule, and bad eating habits are all part of the problems with health that a lot of people today are facing. Diets lacking fruits, vegetables, legumes, nuts, and whole grains are common. Individuals in India also experience metabolic issues. In the medical field, smart rings will help patients with problems relating to stomach illnesses and the incapacity to consume meals that are tailored to their bodies' needs. The smart ring tracks all bodily functions, including blood sugar and glucose levels, and presents the information instantly. Based on this data, the ring generates what the body will find to be perfect insights and a workable site layout. In addition, we conducted focus groups and individual interviews as part of our core approach and discussed the difficulties they're having maintaining the right diet, as well as whether or not the smart ring will be beneficial to them. However, everyone was very enthusiastic about and supportive of the concept of using smart rings in healthcare, and they believed that these rings may assist them in maintaining their health and having a well-balanced diet plan. This response came from the primary data, and also working on the Emerging Technology Canvas Analysis of smart rings in healthcare has led to a significant improvement in our understanding of the technology's application in the medical field. It is believed that there will be a growing demand for smart health care as people become more conscious of their health. The majority of individuals will finally utilize this ring after three to four years when demand for it will have increased. Their daily lives will be significantly impacted by it.

Keywords: smart ring, healthcare, electronic wearable, emerging technology

Procedia PDF Downloads 62
839 The Attitudinal Effects of Dental Hygiene Students When Changing Conventional Practices of Preventive Therapy in the Dental Hygiene Curriculum

Authors: Shawna Staud, Mary Kaye Scaramucci

Abstract:

Objective: Rubber cup polishing has been a traditional method of preventative therapy in dental hygiene treatment. Newer methods such as air polishing have changed the way dental hygiene care is provided, yet this technique has not been embraced by students in the program nor by practitioners in the workforce. Students entering the workforce tend to follow office protocol and are limited in confidence to introduce technologies learned in the curriculum. This project was designed to help students gain confidence in newer skills and encourage private practice settings to adopt newer technologies for patient care. Our program recently introduced air polishing earlier in the program before the rubber cup technique to determine if students would embrace the technology to become leading-edge professionals when they enter the marketplace. Methods: The class of 2022 was taught the traditional method of polishing in the first-year curriculum and air polishing in the second-year curriculum. The class of 2023 will be taught the air polishing method in the first-year curriculum and the traditional method of polishing in the second-year curriculum. Pre- and post-graduation survey data will be collected from both cohorts. Descriptive statistics and pre and post-paired t-tests with alpha set at .05 to compare pre and post-survey results will be used to assess data. Results: This study is currently in progress, with a completion date of October 2023. The class of 2022 completed the pre-graduation survey in the spring of 2022. The post-gradation survey will be sent out in October 2022. The class of 2023 cohort will be surveyed in the spring of 2023 and October 2023. Conclusion: Our hypothesis is students who are taught air polishing first will be more inclined to adopt that skill in private practice, thereby embracing newer technology and improving oral health care.

Keywords: luggage handling system at world’s largest pilgrimage center

Procedia PDF Downloads 101
838 The Feasibility of a Protected Launch Site near Melkbosstrand for a Public Transport Ferry across Table Bay, Cape Town

Authors: Mardi Falck, André Theron

Abstract:

Traffic congestion on the Northern side of Table Bay is a major problem. In Gauteng, the implementation of the Gautrain between Pretoria and Johannesburg, solved their traffic congestion. In 2002 two entrepreneurs endeavoured to implement a hovercraft ferry service across the bay from Table View to the Port of Cape Town. However, the EIA process proved that disgruntled residents from the area did not agree with their location for a launch site. 17 years later the traffic problem has not gone away, but instead the congestion has increased. While property prices in the City Bowl of Cape Town are ever increasing, people tend to live more on the outskirts of the CBD and commute to work. This means more vehicles on the road every day and the public transport services cannot keep up with the demand. For this reason, the study area of the previous hovercraft plans is being extended further North. The study’s aim is thus to determine the feasibility of a launch site North of Bloubergstrand to launch and receive a public transport ferry across Table Bay. The feasibility is being established by researching ferry services across the world and on what makes them successful. Different types of ferries and their operational capacities in terms of weather and waves are researched and by establishing the offshore and nearshore wind and wave climate for the area, an appropriate protected launch site is determined. It was concluded that travel time could potentially be halved. A hovercraft proved to be the most feasible ferry type, because it does not require a conventional harbour. Other types of vessels require a protected launch site because of the wave climate. This means large breakwaters that influence the cost substantially. The Melkbos Cultural Centre proved to be the most viable option for the location of the launch site, because it already has buildings and infrastructure. It is recommended that, if a harbour is chosen for the proposed ferry service, it could be used for more services like fishing, eco-tourism and leisure. Further studies are recommended to optimise the feasibility of such a harbour.

Keywords: Cape Town, ferry, public, Table Bay

Procedia PDF Downloads 152
837 Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases

Authors: B. M. Pardeshi

Abstract:

Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux* 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, India, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed.

Keywords: instrumental neutron activation analysis, atomic absorption spectroscopy, medicinal plants, trace elemental analysis, mineral contents

Procedia PDF Downloads 331
836 Investigation of the Growth Kinetics of Phases in Ni–Sn System

Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul

Abstract:

Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.

Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system

Procedia PDF Downloads 306
835 Effective Factors on Self-Care in Women with Osteoporosis: A Study with Content Analysis Approach

Authors: Arezoo Fallahi, Siamak Derakhshan, Parvaneh Taymoori, Babak Nematshahrbabaki

Abstract:

Background: Osteoporosis, the most common metabolic bone disease, is an important health care issue. Not only the cost of disease is high but also is one of the causes of disability and mortality and effect on quality of life. Although self-care is effective on disease, s control and treatment but still effective factors on self-care of patient, s viewpoint have not been survey. The aim of this study was to explore effective factors on self-care in women with osteoporosis. Materials and methods: This study was done by conventional content analysis approach in year 2014. Through purposeful sampling 15 women referred to bone mass densitometry centers participated in this study. Inclusion criteria were: Women older than 50 years old with osteoporosis, final diagnosis of osteoporosis for over six –month period, T-score index below -2.5 (lower back or hip), drug use by patients with a physician’s prescription, ability in speaking and attending to participate in the study. Data was collected by face to face and group semi-structure deep interviews and analyzed via content analysis method. To support of rigor of data, criteria credibility, confirmability and transferability were used. Results: during data analysis five categories developed: “hope and disability in the face of illness”, “mutual roles of physician”, “role of family” and “administrative centers and organizations”. To perform self-care behaviors, the participations of this study emphasized on pay attention to their own healthy, regarding patients' rights by physician, pay attention to women's health by men, and the role of media especially radio and television. Conclusion: the finding of the study showed that women’s responsibility with osteoporosis for their health is not a factor but it is multifactorial. Increasing life expectancy in patients, attention to patients needs by physician, increasing health promotion programs in the media and enhancing role of family may provide conditions and infrastructure to empowerment women in doing self-care behavior.

Keywords: women, osteoporosis, self-care, content analysis

Procedia PDF Downloads 461
834 Numerical Investigation of Fluid Outflow through a Retinal Hole after Scleral Buckling

Authors: T. Walczak, J. K. Grabski, P. Fritzkowski, M. Stopa

Abstract:

Objectives of the study are i) to perform numerical simulations that permit an analysis of the dynamics of subretinal fluid when an implant has induced scleral intussusception and ii) assess the impact of the physical parameters of the model on the flow rate. Computer simulations were created using finite element method (FEM) based on a model that takes into account the interaction of a viscous fluid (subretinal fluid) with a hyperelastic body (retina). The purpose of the calculation was to investigate the dependence of the flow rate of subretinal fluid through a hole in the retina on different factors such as viscosity of subretinal fluid, material parameters of the retina, and the offset of the implant from the retina’s hole. These simulations were performed for different speeds of eye movement that reflect the behavior of the eye when reading, REM, and saccadic movements. Similar to other works in the field of subretinal fluid flow, it was assumed stationary, single sided, forced fluid flow in the considered area simulating the subretinal space. Additionally, a hyperelastic material model of the retina and parameterized geometry of the considered model was adopted. The calculations also examined the influence the direction of the force of gravity due to the position of the patient’s head on the trend of outflow of fluid. The simulations revealed that fluid outflow from the retina becomes significant with eyeball movement speed of 100°/sec. This speed is greater than in the case of reading but is four times less than saccadic movement. The increase of viscosity of the fluid increased beneficial effect. Further, the simulation results suggest that moderate eye movement speed is optimal and that the conventional prescription of the avoidance of routine eye movement following retinal detachment surgery should be relaxed. Additionally, to verify numerical results, some calculations were repeated with use of meshless method (method of fundamental solutions), which is relatively fast and easy to implement. The paper has been supported by 02/21/DSPB/3477 grant.

Keywords: CFD simulations, FEM analysis, meshless method, retinal detachment

Procedia PDF Downloads 340
833 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan

Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang

Abstract:

Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.

Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan

Procedia PDF Downloads 160
832 An Intelligent Steerable Drill System for Orthopedic Surgery

Authors: Wei Yao

Abstract:

A steerable and flexible drill is needed in orthopaedic surgery. For example, osteoarthritis is a common condition affecting millions of people for which joint replacement is an effective treatment which improves the quality and duration of life in elderly sufferers. Conventional surgery is not very accurate. Computer navigation and robotics can help increase the accuracy. For example, In Total Hip Arthroplasty (THA), robotic surgery is currently practiced mainly on acetabular side helping cup positioning and orientation. However, femoral stem positioning mostly uses hand-rasping method rather than robots for accurate positioning. The other case for using a flexible drill in surgery is Anterior Cruciate Ligament (ACL) Reconstruction. The majority of ACL Reconstruction failures are primarily caused by technical mistakes and surgical errors resulting from drilling the anatomical bone tunnels required to accommodate the ligament graft. The proposed new steerable drill system will perform orthopedic surgery through curved tunneling leading to better accuracy and patient outcomes. It may reduce intra-operative fractures, dislocations, early failure and leg length discrepancy by making possible a new level of precision. This technology is based on a robotically assisted, steerable, hand-held flexible drill, with a drill-tip tracking device and a multi-modality navigation system. The critical differentiator is that this robotically assisted surgical technology now allows the surgeon to prepare 'patient specific' and more anatomically correct 'curved' bone tunnels during orthopedic surgery rather than drilling straight holes as occurs currently with existing surgical tools. The flexible and steerable drill and its navigation system for femoral milling in total hip arthroplasty had been tested on sawbones to evaluate the accuracy of the positioning and orientation of femoral stem relative to the pre-operative plan. The data show the accuracy of the navigation system is better than traditional hand-rasping method.

Keywords: navigation, robotic orthopedic surgery, steerable drill, tracking

Procedia PDF Downloads 165
831 The Examination And Assurance Of The Microbiological Safety Pertaining To Raw Milk And its Derived Processed Products

Authors: Raana Babadi Fathipour

Abstract:

The production of dairy holds significant importance in the sustenance of billions of individuals worldwide, as they rely on milk and its derived products for daily consumption. In addition to being a source of essential nutrients crucial for human well-being, such as proteins, fats, vitamins, and minerals; dairy items are witnessing an increasing demand worldwide. Amongst all the factors contributing to the quality and safety assurance of dairy products, the strong focus lies on maintaining high standards in raw milk procurement. Raw milk serves as an externally nutritious medium for various microorganisms due to its inherent properties. This poses a considerable challenge for the dairy industry in ensuring that microbial contamination is minimized throughout every stage of the value chain. Despite implementing diverse process technologies—both conventional and innovative—the occurrence of microbial spoilage still results in substantial losses within this industry context. Moreover, milk and dairy products have been associated with numerous cases of foodborne illnesses across the globe. Various pathogens such as Salmonella serovars, Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and enterotoxin producing Staphylococcus aureus are commonly identified as the culprits behind these outbreaks in the dairy industry. The effective management of food safety within this sector necessitates a proactive and risk-based approach to reform. However, this strategy presents difficulties for developing nations where informal value chains dominate the dairy sector. Whether operating on a small or large scale or falling within formal or informal realms, it is imperative that the dairy industry adheres to principles of good hygiene practices and good manufacturing practices. Additionally, identifying and managing potential sources of contamination is crucial in mitigating challenges pertaining to quality and safety precautions.

Keywords: dairy value chain, microbial contamination, food safety, hygiene

Procedia PDF Downloads 69
830 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 401