Search results for: artificial neural network modeling
7226 Sensitivity Analysis of Pile-Founded Fixed Steel Jacket Platforms
Authors: Mohamed Noureldin, Jinkoo Kim
Abstract:
The sensitivity of the seismic response parameters to the uncertain modeling variables of pile-founded fixed steel jacket platforms are investigated using tornado diagram, first-order second-moment, and static pushover analysis techniques. The effects of both aleatory and epistemic uncertainty on seismic response parameters have been investigated for an existing offshore platform. The sources of uncertainty considered in the present study are categorized into three different categories: the uncertainties associated with the soil-pile modeling parameters in clay soil, the platform jacket structure modeling parameters, and the uncertainties related to ground motion excitations. It has been found that the variability in parameters such as yield strength or pile bearing capacity has almost no effect on the seismic response parameters considered, whereas the global structural response is highly affected by the ground motion uncertainty. Also, some uncertainty in soil-pile property such as soil-pile friction capacity has a significant impact on the response parameters and should be carefully modeled. Based on the results, it is highlighted that which uncertain parameters should be considered carefully and which can be assumed with reasonable engineering judgment during the early structural design stage of fixed steel jacket platforms.Keywords: fixed jacket offshore platform, pile-soil structure interaction, sensitivity analysis
Procedia PDF Downloads 3757225 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems
Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong
Abstract:
For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.Keywords: differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization
Procedia PDF Downloads 3967224 Modeling the Moment of Resistance Generated by an Ore-Grinding Mill
Authors: Marinka Baghdasaryan, Tigran Mnoyan
Abstract:
The pertinence of modeling the moment of resistance generated by the ore-grinding mill is substantiated. Based on the ranking of technological indices obtained in the result of the survey among the specialists of several beneficiating plants, the factors determining the level of the moment of resistance generated by the mill are revealed. A priori diagram of the ranks is obtained in which the factors are arranged in the descending order of the impact degree on the level of the moment. The obtained model of the moment of resistance shows the technological character of the operation modes of the ore-grinding mill and can be used for improving the operation modes of the system motor-mill and preventing the abnormal mode of the drive synchronous motor.Keywords: model, abnormal mode, mill, correlation, moment of resistance, rotational speed
Procedia PDF Downloads 4527223 Sustainable Manufacturing of Solenoid Valve Housing in Fiji: Fused Deposition Modeling (FDM) and Emergy Analysis
Authors: M. Hisham, S. Cabemaiwai, S. Prasad, T. Dauvakatini, R. Ananthanarayanan
Abstract:
A solenoid valve is an important part of many fluid systems. Its purpose is to regulate fluid flow in a machine. Due to the crucial role of the solenoid valve and its design intricacy, it is quite expensive to obtain in Fiji and is not manufactured locally. A concern raised by the local health industry is that the housing of the solenoid valve gets damaged when machines are continuously being used and this part of the valve is very costly to replace due to the lack of availability in Fiji and many other South Pacific region countries. This study explores the agile manufacturing of a solenoid coil housing using the Fused Deposition Modeling (FDM) process. An emergy study was carried out to analyze the feasibility and sustainability of producing the part locally after estimating a Unit Emergy Value (or emergy transformity) of 1.27E+05 sej/j for the electricity in Fiji. The total emergy of the process was calculated to be 3.05E+12 sej, of which a majority was sourced from imported services and materials. Renewable emergy sources contributed to just 16.04% of the total emergy. Therefore, the part is suitable to be manufactured in Fiji with a reasonable quality and a cost of $FJ 2.85. However, the loading on the local environment is found to be significant and therefore, alternative raw materials for the filament like recycled PET should be explored or alternative manufacturing processes may be analyzed before committing to fabricating the part using FDM in its analyzed state.Keywords: emergy analysis, fused deposition modeling, solenoid valve housing, sustainable production
Procedia PDF Downloads 317222 The Effect of Artificial Intelligence on Mobile Phones and Communication Systems
Authors: Ibram Khalafalla Roshdy Shokry
Abstract:
This paper gives service feel multiple get entry to (CSMA) verbal exchange model based totally totally on SoC format method. Such model can be used to guide the modelling of the complex c084d04ddacadd4b971ae3d98fecfb2a communique systems, consequently use of such communication version is an crucial method in the creation of excessive general overall performance conversation. SystemC has been selected as it gives a homogeneous format drift for complicated designs (i.e. SoC and IP based format). We use a swarm device to validate CSMA designed version and to expose how advantages of incorporating communication early within the layout process. The wireless conversation created via the modeling of CSMA protocol that may be used to attain conversation among all of the retailers and to coordinate get proper of entry to to the shared medium (channel).The device of automobiles with wi-fiwireless communique abilities is expected to be the important thing to the evolution to next era intelligent transportation systems (ITS). The IEEE network has been continuously operating at the development of an wireless vehicular communication protocol for the enhancement of wi-fi get admission to in Vehicular surroundings (WAVE). Vehicular verbal exchange systems, known as V2X, help car to car (V2V) and automobile to infrastructure (V2I) communications. The wi-ficiencywireless of such communication systems relies upon on several elements, amongst which the encircling surroundings and mobility are prominent. as a result, this observe makes a speciality of the evaluation of the actual performance of vehicular verbal exchange with unique cognizance on the effects of the actual surroundings and mobility on V2X verbal exchange. It begins by wi-fi the actual most range that such conversation can guide and then evaluates V2I and V2V performances. The Arada LocoMate OBU transmission device changed into used to check and evaluate the effect of the transmission range in V2X verbal exchange. The evaluation of V2I and V2V communique takes the real effects of low and excessive mobility on transmission under consideration.Multiagent systems have received sizeable attention in numerous wi-fields, which include robotics, independent automobiles, and allotted computing, where a couple of retailers cooperate and speak to reap complicated duties. wi-figreen communication among retailers is a critical thing of these systems, because it directly influences their usual performance and scalability. This scholarly work gives an exploration of essential communication factors and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of those protocols across diverse situations. The studies additionally sheds light on rising tendencies within verbal exchange protocols for multiagent systems, together with the incorporation of device mastering strategies and the adoption of blockchain-based totally solutions to make sure comfy communique. those developments offer valuable insights into the evolving landscape of multiagent structures and their verbal exchange protocols.Keywords: communication, multi-agent systems, protocols, consensussystemC, modelling, simulation, CSMA
Procedia PDF Downloads 257221 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System
Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt
Abstract:
Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC
Procedia PDF Downloads 4967220 Tracy: A Java Library to Render a 3D Graphical Human Model
Authors: Sina Saadati, Mohammadreza Razzazi
Abstract:
Since Java is an object-oriented language, It can be used to solve a wide range of problems. One of the considerable usages of this language can be found in Agent-based modeling and simulation. Despite the significant power of Java, There is not an easy method to render a 3-dimensional human model. In this article, we are about to develop a library which helps modelers present a 3D human model and control it with Java. The library runs two server programs. The first one is a web page server that can connect to any browser and present an HTML code. The second server connects to the browser and controls the movement of the model. So, the modeler will be able to develop a simulation and display a good-looking human model without any knowledge of any graphical tools.Keywords: agent-based modeling and simulation, human model, graphics, Java, distributed systems
Procedia PDF Downloads 1117219 Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6
Authors: Yaser Miaji, Mohammed Aloryani
Abstract:
The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm.Keywords: traffic classification, IPv6, internet, application categorization
Procedia PDF Downloads 5657218 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network
Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang
Abstract:
The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.Keywords: critical message, DTN, navigation satellite, on-board, real-time
Procedia PDF Downloads 3437217 The Importance of Efficient and Sustainable Water Resources Management and the Role of Artificial Intelligence in Preventing Forced Migration
Authors: Fateme Aysin Anka, Farzad Kiani
Abstract:
Forced migration is a situation in which people are forced to leave their homes against their will due to political conflicts, wars and conflicts, natural disasters, climate change, economic crises, or other emergencies. This type of migration takes place under conditions where people cannot lead a sustainable life due to reasons such as security, shelter and meeting their basic needs. This type of migration may occur in connection with different factors that affect people's living conditions. In addition to these general and widespread reasons, water security and resources will be one that is starting now and will be encountered more and more in the future. Forced migration may occur due to insufficient or depleted water resources in the areas where people live. In this case, people's living conditions become unsustainable, and they may have to go elsewhere, as they cannot obtain their basic needs, such as drinking water, water used for agriculture and industry. To cope with these situations, it is important to minimize the causes, as international organizations and societies must provide assistance (for example, humanitarian aid, shelter, medical support and education) and protection to address (or mitigate) this problem. From the international perspective, plans such as the Green New Deal (GND) and the European Green Deal (EGD) draw attention to the need for people to live equally in a cleaner and greener world. Especially recently, with the advancement of technology, science and methods have become more efficient. In this regard, in this article, a multidisciplinary case model is presented by reinforcing the water problem with an engineering approach within the framework of the social dimension. It is worth emphasizing that this problem is largely linked to climate change and the lack of a sustainable water management perspective. As a matter of fact, the United Nations Development Agency (UNDA) draws attention to this problem in its universally accepted sustainable development goals. Therefore, an artificial intelligence-based approach has been applied to solve this problem by focusing on the water management problem. The most general but also important aspect in the management of water resources is its correct consumption. In this context, the artificial intelligence-based system undertakes tasks such as water demand forecasting and distribution management, emergency and crisis management, water pollution detection and prevention, and maintenance and repair control and forecasting.Keywords: water resource management, forced migration, multidisciplinary studies, artificial intelligence
Procedia PDF Downloads 867216 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 2277215 A Simulation Modeling Approach for Optimization of Storage Space Allocation in Container Terminal
Authors: Gamal Abd El-Nasser A. Said, El-Sayed M. El-Horbaty
Abstract:
Container handling problems at container terminals are NP-hard problems. This paper presents an approach using discrete-event simulation modeling to optimize solution for storage space allocation problem, taking into account all various interrelated container terminal handling activities. The proposed approach is applied on a real case study data of container terminal at Alexandria port. The computational results show the effectiveness of the proposed model for optimization of storage space allocation in container terminal where 54% reduction in containers handling time in port is achieved.Keywords: container terminal, discrete-event simulation, optimization, storage space allocation
Procedia PDF Downloads 3267214 Technology for Good: Deploying Artificial Intelligence to Analyze Participant Response to Anti-Trafficking Education
Authors: Ray Bryant
Abstract:
3Strands Global Foundation (3SGF), a non-profit with a mission to mobilize communities to combat human trafficking through prevention education and reintegration programs, launched a groundbreaking study that calls out the usage and benefits of artificial intelligence in the war against human trafficking. Having gathered more than 30,000 stories from counselors and school staff who have gone through its PROTECT Prevention Education program, 3SGF sought to develop a methodology to measure the effectiveness of the training, which helps educators and school staff identify physical signs and behaviors indicating a student is being victimized. The program further illustrates how to recognize and respond to trauma and teaches the steps to take to report human trafficking, as well as how to connect victims with the proper professionals. 3SGF partnered with Levity, a leader in no-code Artificial Intelligence (AI) automation, to create the research study utilizing natural language processing, a branch of artificial intelligence, to measure the effectiveness of their prevention education program. By applying the logic created for the study, the platform analyzed and categorized each story. If the story, directly from the educator, demonstrated one or more of the desired outcomes; Increased Awareness, Increased Knowledge, or Intended Behavior Change, a label was applied. The system then added a confidence level for each identified label. The study results were generated with a 99% confidence level. Preliminary results show that of the 30,000 stories gathered, it became overwhelmingly clear that a significant majority of the participants now have increased awareness of the issue, demonstrated better knowledge of how to help prevent the crime, and expressed an intention to change how they approach what they do daily. In addition, it was observed that approximately 30% of the stories involved comments by educators expressing they wish they’d had this knowledge sooner as they can think of many students they would have been able to help. Objectives Of Research: To solve the problem of needing to analyze and accurately categorize more than 30,000 data points of participant feedback in order to evaluate the success of a human trafficking prevention program by using AI and Natural Language Processing. Methodologies Used: In conjunction with our strategic partner, Levity, we have created our own NLP analysis engine specific to our problem. Contributions To Research: The intersection of AI and human rights and how to utilize technology to combat human trafficking.Keywords: AI, technology, human trafficking, prevention
Procedia PDF Downloads 597213 Comparison of Two Artificial Accelerated Weathering Methods of Larch Wood with Natural Weathering in Exterior Conditions
Authors: I. Sterbova, E. Oberhofnerova, M. Panek, M. Pavelek
Abstract:
With growing popularity, wood of European larch (Larix decidua, Mill.) is being more often applied into the exterior, usually as facade elements, also without surface treatment. The aim of this work was to compare two laboratory tests of artificial accelerated weathering of wood with two ways of natural weathering in the exterior. To assess changes in selected surface characteristics of larch wood, accelerated weathering methods in the Xenotest and UV chamber were used, both in combination with temperature cycling, for 6 weeks. They were compared with natural weathering results at exposition under 45° and 90° in the exterior for 12 months. The changes of colour, gloss, contact angle of water and also changes in visual characteristics were evaluated. The results of wood surfaces changes after 6 weeks of accelerated weathering in Xenotest are closer to 12 months of natural weathering in the exterior at an angle of 90° compared to the UV chamber testing. The results, especially the colour changes, of the samples exposed at an angle of 45° in the exterior were significantly different. Testing in Xenotest more closely simulates the weathering of façade elements in the exterior compared to the UV chamber testing.Keywords: larch wood, wooden facade, wood accelerated weathering, weathering methods
Procedia PDF Downloads 1397212 Modeling Generalization in the Acquired Equivalence Paradigm with the Successor Representation
Authors: Troy M. Houser
Abstract:
The successor representation balances flexible and efficient reinforcement learning by learning to predict the future, given the present. As such, the successor representation models stimuli as what future states they lead to. Therefore, two stimuli that are perceptually dissimilar but lead to the same future state will come to be represented more similarly. This is very similar to an older behavioral paradigm -the acquired equivalence paradigm, which measures the generalization of learned associations. Here, we test via computational modeling the plausibility that the successor representation is the mechanism by which people generalize knowledge learned in the acquired equivalence paradigm. Computational evidence suggests that this is a plausible mechanism for acquired equivalence and thus can guide future empirical work on individual differences in associative-based generalization.Keywords: acquired equivalence, successor representation, generalization, decision-making
Procedia PDF Downloads 277211 Topology Optimization of Composite Structures with Material Nonlinearity
Authors: Mengxiao Li, Johnson Zhang
Abstract:
Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.Keywords: topology optimization, material composition, nonlinear modeling, hardening rules
Procedia PDF Downloads 4827210 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 1067209 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 597208 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes
Authors: Sima Aznavi, Poria Fajri, Hanif Livani
Abstract:
Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.Keywords: energy management, renewable energy sources, smart grid, smart home
Procedia PDF Downloads 2487207 Mobile WiMAX Network based Wireless Communication on Rail: An Analysis
Authors: Vinod Kumar Jatav, Dr. Vrijendra Singh
Abstract:
WiMAX is an emerging wireless technology designed by WiMAX forum. WiMAX technology delivers broadband internet access with QoS, mobility and robust security. WiMAX is among the prominent mobile broadband wireless technology which laid the foundation for the next generation networks (NGN). The next-generation communication system for railway should facilitate high level network availability, fast mobility for high speed trains with reliability, high handover rate, the firmness of train operations, and high QoS. The system should also be capable to provide various railway services by transmitting big data efficiently. One of the most promising technologies for the next generation railway wireless communication is Mobile WiMAX. This paper analyses some of the network architectures for railway wireless communication and considers the elementary concepts to facilitate the users with broadband internet access on trains. The paper aims to recognize the suitability of Mobile WiMAX technology for the special requirements of broadband internet facilities and wireless telecommunication services of Railways.Keywords: Broadband internet, IEEE 802.16e, mobile WiMAX, Railway wireless communication
Procedia PDF Downloads 5247206 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 1957205 Romanian Teachers' Perspectives of Different Leadership Styles
Authors: Ralpian Randolian
Abstract:
Eighty-five Romanian teachers and principals participated on this study to examine their perspectives of different leadership styles. Demographic variables such as the source of degree (Romania, Europe institutes, USA institutes, etc.), gender, region, level taught, years of experience, and specialty were identified. The researcher developed a questionnaire that consisted of 4 leadership styles. The data were analyzed using structural equation modeling (SEM) to identify which of the variables best predict the leadership styles. Results indicated that the democracy style was the most preferred leadership style by Jordanian parents, while the authoritarian styles ranked second. The results also found statistically significant differences were found related to the study variables. This study ends by putting forward a number of suggestions and recommendation.Keywords: teachers’ perspectives, leadership styles, gender, structural equation modeling
Procedia PDF Downloads 4897204 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining
Procedia PDF Downloads 4357203 Modelling of the Fire Pragmatism in the Area of Military Management and Its Experimental Verification
Authors: Ivana Mokrá
Abstract:
The article deals with modelling of the fire pragmatism in the area of military management and its experimental verification. Potential approaches are based on the synergy of mathematical and theoretical ideas, operational and tactical requirements and the military decision-making process. This issue has taken on importance in recent times, particularly with the increasing trend of digitized battlefield, the development of C4ISR systems and intention to streamline the command and control process at the lowest levels of command. From fundamental and philosophical point of view, these new approaches seek to significantly upgrade and enhance the decision-making process of the tactical commanders.Keywords: military management, decision-making process, strike modeling, experimental evaluation, pragmatism, tactical strike modeling
Procedia PDF Downloads 3887202 The Nature of Intelligence and Its Forms: An Ontological-Modeling Approach
Authors: Husam El-Asfour, Fateh Adhnouss, Kenneth McIsaac, Abdul Mutalib Wahaishi, Raafat Aburukba, Idris El-Feghia
Abstract:
Although intelligence is commonly referred to as the observable behavior in various fields and domains, it must also be shown how it develops by exhibiting multiple forms and without observing the inherent behavior. There have been several official and informal definitions of intelligence in various areas; however, no scientific agreement on a definition has been agreed upon. There must be a single definition, structure, and precise modeling for articulating how intelligence is perceived by people and machines in order to comprehend intelligence. Another key challenge is defining the different environment types based on the integral elements (agents) and their possible interactions. On the basis of conceptualization, this paper proposes a formal model for defining and developing intelligence. Forms of intelligence are derived from an ontological view, and thus intelligence is defined, described, and modeled based on the various types of environments.Keywords: intelligence, forms, transformation, conceptualization, ontological view
Procedia PDF Downloads 1397201 Using Trip Planners in Developing Proper Transportation Behavior
Authors: Grzegorz Sierpiński, Ireneusz Celiński, Marcin Staniek
Abstract:
The article discusses multi modal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multi modal mobility. Solutions can be divided into three groups of measures–physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project.Keywords: mobility, modal split, multimodal trip, multimodal platforms, sustainable transport
Procedia PDF Downloads 4117200 On Performance of Cache Replacement Schemes in NDN-IoT
Authors: Rasool Sadeghi, Sayed Mahdi Faghih Imani, Negar Najafi
Abstract:
The inherent features of Named Data Networking (NDN) provides a robust solution for Internet of Thing (IoT). Therefore, NDN-IoT has emerged as a combined architecture which exploits the benefits of NDN for interconnecting of the heterogeneous objects in IoT. In NDN-IoT, caching schemes are a key role to improve the network performance. In this paper, we consider the effectiveness of cache replacement schemes in NDN-IoT scenarios. We investigate the impact of replacement schemes on average delay, average hop count, and average interest retransmission when replacement schemes are Least Frequently Used (LFU), Least Recently Used (LRU), First-In-First-Out (FIFO) and Random. The simulation results demonstrate that LFU and LRU present a stable performance when the cache size changes. Moreover, the network performance improves when the number of consumers increases.Keywords: NDN-IoT, cache replacement, performance, ndnSIM
Procedia PDF Downloads 3657199 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling
Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana
Abstract:
Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin
Procedia PDF Downloads 3217198 Net Neutrality and Asymmetric Platform Competition
Authors: Romain Lestage, Marc Bourreau
Abstract:
In this paper we analyze the interplay between access to the last-mile network and net neutrality in the market for Internet access. We consider two Internet Service Providers (ISPs), which act as platforms between Internet users and Content Providers (CPs). One of the ISPs is vertically integrated and provides access to its last-mile network to the other (non-integrated) ISP. We show that a lower access price increases the integrated ISP's incentives to charge CPs positive termination fees (i.e., to deviate from net neutrality), and decreases the non-integrated ISP's incentives to charge positive termination fees.Keywords: net neutrality, access regulation, internet access, two-sided markets
Procedia PDF Downloads 3767197 In vitro Evaluation of Prebiotic Potential of Wheat Germ
Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado
Abstract:
Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.Keywords: by-products, functional ingredients, prebiotic potential, wheat germ
Procedia PDF Downloads 487