Search results for: oxidative stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3837

Search results for: oxidative stability

987 Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar

Authors: Seyed Mohamad Rasool Mirkarimi, David Chiaramonti, Samir Bensaid

Abstract:

Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion.

Keywords: hydrogen production, catalytic methane decomposition, biochar, activated biochar, carbon-based catalyts

Procedia PDF Downloads 66
986 Calcined Tertiaries Hydrotalcites as Supports of Cobalt-Molybdenum Based Catalysts for the Hydrodesulfurization Reaction of Dibenzothiophene

Authors: Edwin Oviedo, Carlos Linares, Philippe Ayrault, Sylvette Brunet

Abstract:

Nowadays, light conventional crude oils are going down. Therefore, the exploitation of heavy crude oils has been increasing. Hence, a major quantity of refractory sulfur compounds such as dibenzothiophene (DBT) should be removed. Many efforts have been carried out to modify hydrotreatment typical supports in order to increase hydrodesulfurization (HDS) reactions. The present work shows the synthesis of tertiaries MgFeAl(0.16), MgFeAl(0.32), CoFeAl, ZnFeAl hydrotalcites, as supports of CoMo based catalysts, where 0.16 and 0.32 are the Fe3+/Al3+ molar ratio. Solids were characterized by different techniques (XRD, CO2-TPD, H2-TPR, FT-IR, BET, Chemical Analysis and HRTEM) and tested in the DBT HDS reaction. The reactions conditions were: Temp=325°C, P=40 Bar, H2/feed=475. Results show that the catalysts CoMo/MgFeAl(0.16) and CoMo/MgFeAl(0.32), which were the most basics, reduced the sulfur content from 500ppm to less than 1 ppm, increasing the cyclohexylbenzene content, i.e. presented a higher selective toward the HYD pathway than reference catalyst CoMo/γ- Al2O3. This is suitable for improving the fuel quality due to the increase of the cetane number. These catalysts were also more active to the HDS reaction increasing the direct desulfurization (DDS) way and presented a good stability. It is advantageous when the gas oil centane number should be improved. Cobalt, iron or zinc species inside support could avoid the Co and Mo dispersion or form spinel species which could be less active to hydrodesulfuration reactions, while hydrotalcites containing Mg increases the HDS activity probably due to improved Co/Mo ratio.

Keywords: catalyst, cetane number, dibenzothiophene, diesel, hydrodesulfurization, hydrotreatment, MoS2

Procedia PDF Downloads 140
985 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ Debugger, data acquisition system, FPGA, system signals, Qt framework

Procedia PDF Downloads 267
984 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt

Authors: Youssouf Benmeriem

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength

Procedia PDF Downloads 369
983 The Effects of Circadian Rhythms Change in High Latitudes

Authors: Ekaterina Zvorykina

Abstract:

Nowadays, Arctic and Antarctic regions are distinguished to be one of the most important strategic resources for global development. Nonetheless, living conditions in Arctic regions still demand certain improvements. As soon as the region is rarely populated, one of the main points of interest is health accommodation of the people, who migrate to Arctic region for permanent and shift work. At Arctic and Antarctic latitudes, personnel face polar day and polar night conditions during the time of the year. It means that they are deprived of natural sunlight in winter season and have continuous daylight in summer. Firstly, the change in light intensity during 24-hours period due to migration affects circadian rhythms. Moreover, the controlled artificial light in winter is also an issue. The results of the recent studies on night shift medical professionals, who were exposed to permanent artificial light, have already demonstrated higher risks in cancer, depression, Alzheimer disease. Moreover, people exposed to frequent time zones change are also subjected to higher risks of heart attack and cancer. Thus, our main goals are to understand how high latitude work and living conditions can affect human health and how it can be prevented. In our study, we analyze molecular and cellular factors, which play important role in circadian rhythm change and distinguish main risk groups in people, migrating to high latitudes. The main well-studied index of circadian timing is melatonin or its metabolite 6-sulfatoxymelatonin. In low light intensity melatonin synthesis is disturbed and as a result human organism requires more time for sleep, which is still disregarded when it comes to working time organization. Lack of melatonin also causes shortage in serotonin production, which leads to higher depression risk. Melatonin is also known to inhibit oncogenes and increase apoptosis level in cells, the main factors for tumor growth, as well as circadian clock genes (for example Per2). Thus, people who work in high latitudes can be distinguished as a risk group for cancer diseases and demand more attention. Clock/Clock genes, known to be one of the main circadian clock regulators, decrease sensitivity of hypothalamus to estrogen and decrease glucose sensibility, which leads to premature aging and oestrous cycle disruption. Permanent light exposure also leads to accumulation superoxide dismutase and oxidative stress, which is one of the main factors for early dementia and Alzheimer disease. We propose a new screening system adjusted for people, migrating from middle to high latitudes and accommodation therapy. Screening is focused on melatonin and estrogen levels, sleep deprivation and neural disorders, depression level, cancer risks and heart and vascular disorders. Accommodation therapy includes different types artificial light exposure, additional melatonin and neuroprotectors. Preventive procedures can lead to increase of migration intensity to high latitudes and, as a result, the prosperity of Arctic region.

Keywords: circadian rhythm, high latitudes, melatonin, neuroprotectors

Procedia PDF Downloads 133
982 Exchange Rate, Market Size and Human Capital Nexus Foreign Direct Investment: A Bound Testing Approach for Pakistan

Authors: Naveed Iqbal Chaudhry, Mian Saqib Mehmood, Asif Mehmood

Abstract:

This study investigates the motivators of foreign direct investment (FDI) which will provide a panacea tool and ground breaking results related to it in case of Pakistan. The study considers exchange rate, market size and human capital as the motivators for attracting FDI. In this regard, time series data on annual basis has been collected for the period 1985–2010 and an Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests are utilized to determine the stationarity of the variables. A bound testing approach to co-integration was applied because the variables included in the model are at I(1) – first level stationary. The empirical findings of this study confirm the long run relationship among the variables. However, market size and human capital have strong positive and significant impact, in short and long-run, for attracting FDI but exchange rate shows negative impact in this regard. The significant negative coefficient of the ECM indicates that it converges towards equilibrium. CUSUM and CUSUMSQ tests plots are with in the lines of critical value, which indicates the stability of the estimated parameters. However, this model can be used by Pakistan in policy and decision making. For achieving higher economic growth and economies of scale, the country should concentrate on the ingredients of this study so that it could attract more FDI as compared to the other countries.

Keywords: ARDL, CUSUM and CUSUMSQ tests, ECM, exchange rate, FDI, human capital, market size, Pakistan

Procedia PDF Downloads 374
981 The Influence of Imposter Phenomenon on the Experiences of Intimacy in Non-Binary Young Adults

Authors: Muskan Jain, Baiju Gopal

Abstract:

Objectives: Intimacy in interpersonal relationships is integral to psychological health and everyday wellbeing; the focus is on intimacy, which can be described as feelings of closeness, connection, and belonging within relationships, which is influenced by an individual's gender identity as well as life experiences. The study aims to explore the experiences of intimacy of the non-binary gender; this marginalized community has increased risks of developing the imposter phenomenon. The study explores the influence of IP on the development and sustenance of intimacy in relationships. Methods: The present study accumulates detailed narratives from 10 non-binary young adults ages 18 to 25 in metropolitan cities of India. Thematic analysis was used for the data analysis. Results: Seven major themes have emerged revolving around internalized criticism and self-depreciating behavior, which causes distance between partners. The four themes that result in the internalization of criticism are lack of social stability, invalidation by social units, adverse life experiences, and estrangement due to gender identity. Three themes that encapsulate major difficulties in relationships are limited self-disclosure, inhibition of physical needs, and fear of taking space. The findings have been critically compared and contrasted with the existing body of literature in the domain, which sets the agenda for further inquiry. Conclusion: It is important for future studies to capture the experiences of non-binary genders in India to provide better therapeutic support in order to assist them in forming meaningful and authentic relationships, thus increasing overall wellbeing.

Keywords: imposter phenomenon, intimacy, internalized criticism, marginalized community

Procedia PDF Downloads 45
980 Thermodynamic and Spectroscopic Investigation of Binary 2,2-Dimethyl-1-Propanol+ CO₂ Gas Hydrates

Authors: Seokyoon Moon, Yun-Ho Ahn, Heejoong Kim, Sujin Hong, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is a non-stoichiometric crystalline compound consisting of host water-framework and low molecular weight guest molecules. Small gaseous molecules such as CH₄, CO₂, and N₂ can be captured in the host water framework lattices of the gas hydrate with specific temperature and pressure conditions. The three well-known crystal structures of structure I (sI), structure II (sII), and structure H (sH) are determined by the size and shape of guest molecules. In this study, we measured the phase equilibria of binary (2,2-dimethyl-1-propanol + CO₂, CH₄, N₂) hydrates to explore their fundamental thermodynamic characteristics. We identified the structure of the binary gas hydrate by employing synchrotron high-resolution powder diffraction (HRPD), and the guest distributions in the lattice of gas hydrate were investigated via dispersive Raman and ¹³C solid-state nuclear magnetic resonance (NMR) spectroscopies. The end-to-end distance of 2,2-dimethyl-1-propanol was calculated to be 7.76 Å, which seems difficult to be enclathrated in large cages of sI or sII. However, due to the flexibility of the host water framework, binary hydrates of sI or sII types can be formed with the help of small gas molecule. Also, the synchrotron HRPD patterns revealed that the binary hydrate structure highly depends on the type of help gases; a cubic Fd3m sII hydrate was formed with CH₄ or N₂, and a cubic Pm3n sI hydrate was formed with CO₂. Interestingly, dispersive Raman and ¹³C NMR spectra showed that the unique tuning phenomenon occurred in binary (2,2-dimethyl-1-propanol + CO₂) hydrate. By optimizing the composition of NPA, we can achieve both thermodynamic stability and high CO₂ storage capacity for the practical application to CO₂ capture.

Keywords: clathrate, gas hydrate, neopentyl alcohol, CO₂, tuning phenomenon

Procedia PDF Downloads 220
979 Thiazolo [5,4-d] Thiazole Based Polymers and Investigation of Optical Properties for Electronic Applications

Authors: Zeynep Dikmen, Vural Bütün

Abstract:

Electron donor or acceptor capability to participate in electron conjugation is the requirement for an electroactive material. Conjugated molecules and polymers bearing heterocyclic units have potential as optically electroactive materials. Thiazolo thiazole based compounds have attention for last two decades, because they have attractive electronic and optical properties, these compounds are useful for electronic application areas such as dye sentisized solar cells (DSSCs), organic light emitting diodes (OLEDs) and field effect transistors (FETs). Thiazolo[5,4-d]thiazole is bicyclic aromatic structure contains N and S atoms which act as electron donor. A new electron accepting or donating group bound to thiazolo [5,4-d] thiazole fused ring can change the electronic, spectroscopic, stability and dyeing properties of the new material. Polyphenylene(thiazolo [5,4-d] thiazole) (p-PhTT) compound was synthesized via condensation reaction of terephthalaldehyde with dithiooxamide. The chemical structure was determined with solid state 13C NMR spectroscopy. Optical properties (i.e. absorbance and band gap) was determined via solid UV-vis spectroscopy. The insoluble polymer was quarternized with 4-vinylbenzyl chloride (VBC). Colorless VBC changed into a yellow liquid. AgNO3 complex were prepared and optical properties were investigated with UV-Vis, fluorescence spectroscopy and X-ray spectroscopy and cyclic voltammetry studies were examined in this research. This structure exhibits good absorbance and fluorescence in UV-vis region. Synthesis scheme of PyTT and preparation of metal complexes are given. PyTT has absorbance at ~360 nm and fluorescence at ~420 nm.

Keywords: thiazolo thiazole, quarternized polymers, polymeric ligands, Ag complexes

Procedia PDF Downloads 248
978 Comparative Study of Mechanical and Physiological Gait Efficiency Following Anterior Cruciate Ligament Reconstruction

Authors: Radwa E. Sweif, Amira A. A. Abdallah

Abstract:

Background: Evaluation of gait efficiency is used to examine energy consumption especially in patients with movement disorders. Hypothesis/Purpose: This study compared the physiological and mechanical measures of gait efficiency between patients with ACL reconstruction (ACLR) and healthy controls and correlated among these measures. Methods: Seventeen patients with ACLR and sixteen healthy controls with mean ± SD age 23.06±4.76 vs 24.85±6.47 years, height 173.93±6.54 vs 175.64±7.37cm, and weight 74.25±12.1 vs 76.52±10.14 kg, respectively, participated in the study. The patients were operated on six months prior to testing. They should have completed their accelerated rehabilitation program during this period. A 3D motion analysis system was used for collecting the mechanical measures (Biomechanical Efficiency Quotient (BEQ), the maximum degree of knee internal rotation during stance phase and speed of walking). The physiological measures (Physiological Cost Index (PCI) and Rate of Perceived Exertion (RPE)) were collected after performing the 6- minute walking test. Results: MANOVA showed that the maximum degree of knee internal rotation, PCI, and RPE increased and the speed decreased significantly (p<0.05) in the patients compared with the controls with no significant difference for the BEQ. Finally, there were significant (p<0.05) positive correlations between each of the PCI & RPE and each of the BEQ, speed of walking and the maximum degree of knee internal rotation in each group. Conclusion: It was concluded that there are alterations in both mechanical and physiological measures of gait efficiency in patients with ACLR after being rehabilitated, clarifying the need for performing additional endurance as well as knee stability training programs. Moreover, the positive correlations indicate that using either of the mechanical or physiological measures for evaluating gait efficiency is acceptable.

Keywords: ACL reconstruction, mechanical, physiological, gait efficiency

Procedia PDF Downloads 420
977 Established Novel Approach for Chemical Oxygen Demand Concentrations Measurement Based Mach-Zehner Interferometer Sensor

Authors: Su Sin Chong, Abdul Aziz Abdul Raman, Sulaiman Wadi Harun, Hamzah Arof

Abstract:

Chemical Oxygen Demand (COD) plays a vital role determination of an appropriate strategy for wastewater treatment including the control of the quality of an effluent. In this study, a new sensing method was introduced for the first time and developed to investigate chemical oxygen demand (COD) using a Mach-Zehner Interferometer (MZI)-based dye sensor. The sensor is constructed by bridging two single mode fibres (SMF1 and SMF2) with a short section (~20 mm) of multimode fibre (MMF) and was formed by tapering the MMF to generate evanescent field which is sensitive to perturbation of sensing medium. When the COD concentration increase takes effect will induce changes in output intensity and effective refractive index between the microfiber and the sensing medium. The adequacy of decisions based on COD values relies on the quality of the measurements. Therefore, the dual output response can be applied to the analytical procedure enhance measurement quality. This work presents a detailed assessment of the determination of COD values in synthetic wastewaters. Detailed models of the measurement performance, including sensitivity, reversibility, stability, and uncertainty were successfully validated by proficiency tests where supported on sound and objective criteria. Comparison of the standard method with the new proposed method was also conducted. This proposed sensor is compact, reliable and feasible to investigate the COD value.

Keywords: chemical oxygen demand, environmental sensing, Mach-Zehnder interferometer sensor, online monitoring

Procedia PDF Downloads 482
976 Biochemical Characteristics and Microstructure of Ice Cream Prepared from Fresh Cream

Authors: S. Baississe, S. Godbane, A. Lekbir

Abstract:

The objective of our work is to develop an ice cream from a fermented cream, skim milk and other ingredients and follow the evolution of its physicochemical properties, biochemical and microstructure of the products obtained. Our cream is aerated with the manufacturing steps start with a homogenizing follow different ingredients by heating to 40°C emulsion, the preparation is then subjected to a heat treatment at 65°C for 30 min, before being stored in the cold at 4°C for a few hours. This conservation promotes crystallization of the material during the globular stage of maturation of the cream. The emulsifying agent moves gradually absorbed on the surface of fat globules homogeneous, which results in reduced protein stability. During the expansion, the collusion of destabilizing fat globules in the aqueous phase favours their coalescence. During the expansion, the collusion of destabilized fat globules in the aqueous phase favours their coalescence. The stabilizing agent increases the viscosity of the aqueous phase and the drainage limit interaction with the proteins of the aqueous phase and the protein absorbed on fat globules. The cutting improved organoleptic property of our cream is made by the use of three dyes and aromas. The products obtained undergo physicochemical analyses (pH, conductivity and acidity), biochemical (moisture, % dry matter and fat in %), and finally in the microscopic observation of the microstructure and the results obtained by analysis of the image processing software. The results show a remarkable evolution of physicochemical properties (pH, conductivity and acidity), biochemical (moisture, fat and non-fat) and microstructure of the products developed in relation to the raw material (skim milk) and the intermediate product (fermented cream).

Keywords: ice cream, sour cream, physicochemical, biochemical, microstructure

Procedia PDF Downloads 188
975 Robust Design of a Ball Joint Considering Uncertainties

Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee

Abstract:

An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.

Keywords: ball joint, pull-out strength, robust design, design of experiments

Procedia PDF Downloads 404
974 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)

Authors: Mahmoud A. Abdulhamid

Abstract:

Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.

Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation

Procedia PDF Downloads 82
973 Survey of the Relationship between Functional Movement Screening Tests and Anthropometric Dimensions in Healthy People, 2018

Authors: Akram Sadat Jafari Roodbandi, Parisa Kahani, Fatollah Rahimi Bafrani, Ali Dehghan, Nava Seyedi, Vafa Feyzi, Zohreh Forozanfar

Abstract:

Introduction: Movement function is considered as the ability to produce and maintain balance, stability, and movement throughout the movement chain. Having a score of 14 and above on 7 sub-tests in the functional movement screening (FMS) test shows agility and optimal movement performance. On the other hand, the person's body is an important factor in physical fitness and optimal movement performance. The aim of this study was to identify effective anthropometric dimensions in increasing motor function. Methods: This study was a descriptive-analytical and cross-sectional study using simple random sampling. FMS test and 25 anthropometric dimensions and subcutaneous in five body regions measured in 139 healthy students of Bam University of Medical Sciences. Data analysis was performed using SPSS software and univariate tests and linear regressions at a significance level of 0.05. Results: 139 students were enrolled in the study, 51.1% (71 subjects) and the rest were female. The mean and standard deviation of age, weight, height, and arm subcutaneous fat were 21.5 ± 1.45, 12.6 ± 64.3, 168.7 ± 9.8, 15.3 ± 7, respectively. 17 subjects (12.2%) of the participants in the study have a score of less than 14, and the rest were above 14. Using regression analysis, it was found that exercise and arm subcutaneous fat are predictive variables associated with obtaining a high score in the FMS test. Conclusion: Exercise and weight loss are effective factors for increasing the movement performance of individuals, and this factor is independent of the size of other physical dimensions.

Keywords: functional movement, screening test, anthropometry, ergonomics

Procedia PDF Downloads 131
972 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping

Authors: Kamand Bagherian, Nariman Niknejad

Abstract:

A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.

Keywords: active damping, discrete-time nonlinear controller, disturbance tracking algorithm, oscillation transmitting support, position control, stability robustness, vibration isolation

Procedia PDF Downloads 85
971 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties

Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy

Abstract:

Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.

Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids

Procedia PDF Downloads 57
970 Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control

Authors: Montree Bunruangses, Sonath Bhattacharyya, Somchat Sonasang, Preecha Yupapin

Abstract:

A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use.

Keywords: quantum engine, relativistic motor, 3-phase torque, atomic engine

Procedia PDF Downloads 42
969 Influence of Yeast Strains on Microbiological Stability of Wheat Bread

Authors: E. Soboleva, E. Sergachyova, S. G. Davydenko, T. V. Meledina

Abstract:

Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.

Keywords: bakers' yeasts, killer toxin, rope in bread, Saccharomyces cerevisiæ

Procedia PDF Downloads 220
968 The Reason Why Al-Kashi’s Understanding of Islamic Arches Was Wrong

Authors: Amin Moradi, Maryam Moeini

Abstract:

It is a widely held view that Ghiyath al-Din Jamshid-e-Kashani, also known as al-Kashi (1380-1429 CE), was the first who played a significant role in the interaction between mathematicians and architects by introducing theoretical knowledge in Islamic architecture. In academic discourses, geometric rules extracted from his splendid volume titled as Key of Arithmetic has uncritically believed by historians of architecture to contemplate the whole process of arch design all throughout the Islamic buildings. His theories tried to solve the fundamental problem of structural design and to understand what makes an Islamic structure safe or unsafe. As a result, al-Kashi arrived at the conclusion that a safe state of equilibrium is achieved through a specific geometry as a rule. This paper reassesses the stability of al-Kashi's systematized principal forms to evaluate the logic of his hypothesis with a special focus on large spans. Besides the empirical experiences of the author in masonry constructions, the finite element approach was proposed considering the current standards in order to get a better understanding of the validity of geometric rules proposed by al-Kashi for the equilibrium conditions of Islamic masonry arches and vaults. The state of damage of his reference arches under loading condition confirms beyond any doubt that his conclusion of the geometrical configuration measured through his treaties present some serious operational limits and do not go further than some individualized mathematical hypothesis. Therefore, the nature of his mathematical studies regarding Islamic arches is in complete contradiction with the practical knowledge of construction methodology.

Keywords: Jamshid al-Kashani, Islamic architecture, Islamic geometry, construction equilibrium, collapse mechanism

Procedia PDF Downloads 111
967 Influence of Cryo-Grinding on Antioxidant Activity and Amount of Free Phenolic Acids, Rutin and Tyrosol in Whole Grain Buckwheat and Pumpkin Seed Cake

Authors: B. Voucko, M. Benkovic, N. Cukelj, S. Drakula, D. Novotni, S. Balbino, D. Curic

Abstract:

Oxidative stress is considered as one of the causes leading to metabolic disorders in humans. Therefore, the ability of antioxidants to inhibit free radical production is their primary role in the human organism. Antioxidants originating from cereals, especially flavonoids and polyphenols, are mostly bound and indigestible. Micronization damages the cell wall which consecutively results in bioactive material to be more accessible in vivo. In order to ensure complete fragmentation, micronization is often combined with high temperatures (e.g., for bran 200°C) which can lead to degradation of bioactive compounds. The innovative non-thermal technology of cryo-milling is an ultra-fine micronization method that uses liquid nitrogen (LN2) at a temperature of 195°C to freeze and cool the sample during milling. Freezing at such low temperatures causes the material to become brittle which ensures the generation of fine particles while preserving the bioactive content of the material. The aim of this research was to determine if production of ultra-fine material with cryo-milling will result in the augmentation of available bioactive compounds of buckwheat and pumpkin seed cake. For that reason, buckwheat and pumpkin seed cake were ground in a ball mill (CryoMill, Retch, Germany) with and without the use of LN2 for 8 minutes, in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm) at an oscillation frequency of 30 Hz. The cryo-milled samples were cooled with LN2 for 2 minutes prior to milling, followed by the first cycle of milling (4 minutes), intermediary cooling (2 minutes), and finally the second cycle of milling (further 4 minutes). A continuous process of milling was applied to the samples ground without freezing with LN2. Particle size distribution was determined using the Scirocco 2000 dry dispersion unit (Malvern Instruments, UK). Antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test and ferric reducing antioxidant power (FRAP) assay, while the total phenol content was determined using the Folin Ciocalteu method, using the ultraviolet-visible spectrophotometer (Specord 50 Plus, Germany). The content of the free phenolic acids, rutin in buckwheat, tyrosol in pumpkin seed cake, was determined with an HPLC-PDA method (Agilent 1200 series, Germany). Cryo-milling resulted in 11 times smaller size of buckwheat particles, and 3 times smaller size of pumpkin seed particles than milling without the use of LN2, but also, a lower uniformity of the particle size distribution. Lack of freezing during milling of pumpkin seed cake caused a formation of agglomerates due to its high-fat content (21 %). Cryo-milling caused augmentation of buckwheat flour antioxidant activity measured by DPPH test (23,9%) and an increase in available rutin content (14,5%). Also, it resulted in an augmentation of the total phenol content (36,9%) and available tyrosol content (12,5%) of pumpkin seed cake. Antioxidant activity measured with the FRAP test, as well as the content of phenolic acids remained unchanged independent of the milling process. The results of this study showed the potential of cryo-milling for complete raw material utilization in the food industry, as well as a tool for extraction of aimed bioactive components.

Keywords: bioactive, ball-mill, buckwheat, cryo-milling, pumpkin seed cake

Procedia PDF Downloads 121
966 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 287
965 Alpha-To-Omega Phase Transition in Bulk Nanostructured Ti and (α+β) Ti Alloys

Authors: Askar Kilmametov, Julia Ivanisenko, Boris Straumal, Horst Hahn

Abstract:

The high-pressure α- to ω-phase transition was discovered in elemental Ti and Zr fifty years ago using static high pressure and then observed to appear between 2 and 12 GPa at room temperature, depending on the experimental technique, the pressure environment, and the sample purity. The fact that ω-phase is retained in a metastable state in ambient condition after the removal of the pressure has been used to check the changes in magnetic and superconductive behavior, electron band structure and mechanical properties. However, the fundamental knowledge on a combination of both mechanical treatment and high applied pressure treatments for ω-phase formation in Ti alloys is currently lacking and has to be studied in relation to improved mechanical properties of bulk nanostructured states. In the present study, nanostructured (α+β) Ti alloys containing β-stabilizing elements such as Co, Fe, Cr, Nb were performed by severe plastic deformation, namely high pressure torsion (HPT) technique. HPT-induced α- to ω-phase transformation was revealed in dependence on applied pressure and shear strains by means of X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The transformation kinetics was compared with the kinetics of pressure-induced transition. Orientation relationship between α-, β- and ω-phases was taken into consideration and analyzed according to theoretical calculation proposed earlier. The influence of initial state before HPT appeared to be considerable for subsequent α- to ω-phase transition. Thermal stability of the HPT-induced ω-phase was discussed as well in the frame of mechanical behavior of Ti and Ti-based alloys produced by shear deformation under high applied pressure.

Keywords: bulk nanostructured materials, high pressure phase transitions, severe plastic deformation, titanium alloys

Procedia PDF Downloads 398
964 A Techno-Economic Simulation Model to Reveal the Relevance of Construction Process Impact Factors for External Thermal Insulation Composite System (ETICS)

Authors: Virgo Sulakatko

Abstract:

The reduction of energy consumption of the built environment has been one of the topics tackled by European Commission during the last decade. Increased energy efficiency requirements have increased the renovation rate of apartment buildings covered with External Thermal Insulation Composite System (ETICS). Due to fast and optimized application process, a large extent of quality assurance is depending on the specific activities of artisans and are often not controlled. The on-site degradation factors (DF) have the technical influence to the façade and cause future costs to the owner. Besides the thermal conductivity, the building envelope needs to ensure the mechanical resistance and stability, fire-, noise-, corrosion and weather protection, and long-term durability. As the shortcomings of the construction phase become problematic after some years, the common value of the renovation is reduced. Previous work on the subject has identified and rated the relevance of DF to the technical requirements and developed a method to reveal the economic value of repair works. The future costs can be traded off to increased the quality assurance during the construction process. The proposed framework is describing the joint simulation of the technical importance and economic value of the on-site DFs of ETICS. The model is providing new knowledge to improve the resource allocation during the construction process by enabling to identify and diminish the most relevant degradation factors and increase economic value to the owner.

Keywords: ETICS, construction technology, construction management, life cycle costing

Procedia PDF Downloads 409
963 Multilingualism as an Impetus to Nigerian Religious and Political Crises: the Way Forward

Authors: Kehinde, Taye Adetutu

Abstract:

The fact that Nigeria as a nation is faced by myriads of problems associated with religious crises and political insecurity is no news, the spoken statement and actions of most political giant were the major cause of this unrest. The 'unlearnt' youth within the regions has encompassed the situation. This scenario is further compounded by multilingual nature of the country as it is estimated that there exists amount 400 indigenous languages in Nigeria. It is an indisputable fact that english language which has assumed the status of an official language in Nigeria, given its status has a language of power and captivity by a few with no privilege to attend school. However, educating people in their indigenous language; crises can be averted through the proper orientation and mass literacy campaign, especially for the timid illiterate one, so as to live in unity, peace, tranquillity, and harmony as indivisible nation. In investigating the problem in this study with an emphasis on three major Nigerian language (Yoruba, Igbo and Hausa), participants observations and survey questionnaire were administered to about one hundred and twenty (120) respondents who were randomly selected throughout the three major ethnic groups in Nigeria. Findings from this study reveals that teaching and learning of cognitive words and information are more effective in ones mother tongue and helps in stimulating new ideas and changes. This paper was able to explore and critically examine the current state of affairs in Nigeria and proffer possible solutions to the prevailing situations by identifying how indigenous languages and linguistics can be used to ameliorate the present political and religious crisis for Nigeria, thus providing a proper recommendation to achieve meaningful stability and coexistence within a nation.

Keywords: multilingualism, political crisis, religious, Nigeria

Procedia PDF Downloads 419
962 A Study on Fundamental Problems for Small and Medium Agricultural Machinery Industries in Central Region Area

Authors: P. Thepnarintra, S. Nikorn

Abstract:

Agricultural machinery industry plays an important role in the industrial development especially the production industry of the country. There has been continuing development responding to the higher demand of the production. However, the problem in agricultural machinery production still exists. Thus, the purpose of this research is to investigate problems on fundamental factors of industry based on the entrepreneurs’ point of view. The focus was on the small and medium size industry receiving a factory license typed number 0660 from the Department of Industrial Works. The investigation was on the comparison between the management of the small and medium size agricultural industry in 3 provinces in the central region of Thailand. Population in this study consisted of 189 company managers or managing directors, of which 101 were from the small size and 88 were from the medium size industry. The data were analyzed to find percentage, arithmetic mean, and standard deviation with independent sample T-test at the statistical significance .05. The results showed that the small and medium size agricultural machinery manufacturers in the central region of Thailand reported high problems in every aspect. When compared the problems on basic factors in running the business, it was found that there was no difference statistically at .05 in managing of the small and medium size agricultural machinery manufacturers. However, there was a statistically significant difference between the small and medium size agricultural machinery manufacturers on the aspect of policy and services of the government. The problems reported by the small and medium size agricultural machinery manufacturers were the services on public tap water and the problem on politic and stability of the country.

Keywords: agricultural machinery, manufacturers, problems, on running the business

Procedia PDF Downloads 271
961 A Participatory Study in Using Augmented Reality for Teaching Civics in Middle Schools

Authors: E. Sahar

Abstract:

Civic political knowledge is crucial for the stability of democratic countries. In the USA, Americans have poor knowledge about their constitution and their political systems. Some states such as Florida State suffers from a huge decline in civics comparing to the National Average. This study concerns with using new technologies such as augmented reality to engage students in learning civics in classrooms. This is a participatory study, which engage teachers in the process of designing augmented reality civic games. The researcher used survey to find out the materials that teachers struggle with while teaching civics. Four lessons were found the most difficult to teach for middle school students: SS7C1.1 Enlightenment thinkers, SS7C1.2 influencing documents, SS7C1.7-Weakness of the Articles of Confederation, and Forms and systems of governments. For the limited scope of this study, we focused on “Forms and Systems of governments’ as the main project. Augmented Reality is used to help students to engage in learning civics through building a game that is based on the pedagogy constructivism theory. The resulted project meets the educational requirements for civics, provide students with more knowledge in at stake issues such as migration and citizenship, and help them to build leadership skills while playing in groups. The augmented reality game is also designed to test the students learning for each stage. This study helps to generate insightful implications for the use of augmented reality by educators, researchers, instructional designers, and developers who are interested in integrating technology in teaching civics for students in middle school classrooms.

Keywords: augmented reality, games, civics teaching, Florida middle school

Procedia PDF Downloads 111
960 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 99
959 Iron Response Element-mRNA Binding to Iron Response Protein: Metal Ion Sensing

Authors: Mateen A. Khan, Elizabeth J. Theil, Dixie J. Goss

Abstract:

Cellular iron homeostasis is accomplished by the coordinated regulated expression of iron uptake, storage, and export. Iron regulate the translation of ferritin and mitochondrial aconitase iron responsive element (IRE)-mRNA by interaction with an iron regulatory protein (IRPs). Iron increases protein biosynthesis encoded in iron responsive element. The noncoding structure IRE-mRNA, approximately 30-nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. Fluorescence anisotropy measurements showed the presence of one binding site on IRP1 for ferritin and mitochondrial aconitase IRE-mRNA. Scatchard analysis revealed the binding affinity (Kₐ) and average binding sites (n) for ferritin and mitochondrial aconitase IRE-mRNA were 68.7 x 10⁶ M⁻¹ and 9.2 x 10⁶ M⁻¹, respectively. In order to understand the relative importance of equilibrium and stability, we further report the contribution of electrostatic interactions in the overall binding of two IRE-mRNA with IRP1. The fluorescence quenching of IRP1 protein was measured at different ionic strengths. The binding affinity of IRE-mRNA to IRP1 decreases with increasing ionic strength, but the number of binding sites was independent of ionic strength. Such results indicate a differential contribution of electrostatics to the interaction of IRE-mRNA with IRP1, possibly related to helix bending or stem interactions and an overall conformational change. Selective destabilization of ferritin and mitochondrial aconitase RNA/protein complexes as reported here explain in part the quantitative differences in signal response to iron in vivo and indicate possible new regulatory interactions.

Keywords: IRE-mRNA, IRP1, binding, ionic strength

Procedia PDF Downloads 113
958 Application of Aquatic Plants for the Remediation of Organochlorine Pesticides from Keenjhar Lake

Authors: Soomal Hamza, Uzma Imran

Abstract:

Organochlorine pesticides bio-accumulate into the fat of fish, birds, and animals through which it enters the human food cycle. Due to their persistence and stability in the environment, many health impacts are associated with them, most of which are carcinogenic in nature. In this study, the level of organochlorine pesticides has been detected in Keenjhar Lake and remediated using Rhizoremediation technique. 14 OC pesticides namely, Aldrin, Deldrin, Heptachlor, Heptachlor epoxide, Endrin, Endosulfun I and II, DDT, DDE, DDD, Alpha, Beta, Gamma BHC and two plants namely, Water Hyacinth and Slvinia Molesta were used in the system using pot experiment which processed for 11 days. A consortium was inoculated in both plants to increase its efficiency. Water samples were processed using liquide-liquid extraction. Sediments and roots samples were processed using Soxhlet method followed by clean-up and Gas Chromatography. Delta-BHC was the predominantly found in all samples with mean concentration (ppb) and standard deviation of 0.02 ± 0.14, 0.52 ± 0.68, 0.61 ± 0.06, in Water, Sediments and Roots samples respectively. The highest levels were of Endosulfan II in the samples of water, sediments and roots. Water Hyacinth proved to be better bioaccumulaor as compared to Silvinia Molesta. The pattern of compounds reduction rate by the end of experiment was Delta-BHC>DDD > Alpha-BHC > DDT> Heptachlor> H.Epoxide> Deldrin> Aldrin> Endrin> DDE> Endosulfun I > Endosulfun II. Not much significant difference was observed between the pots with the consortium and pots without the consortium addition. Phytoremediation is a promising technique, but more studies are required to assess the bioremediation potential of different aquatic plants and plant-endophyte relationship.

Keywords: aquatic plant, bio remediation, gas chromatography, liquid liquid extraction

Procedia PDF Downloads 129