Search results for: language learning strategies
11232 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).Keywords: intrusion detection, supervised learning, traffic classification, computer networks
Procedia PDF Downloads 35311231 Implementation of Student-Centered Learning Approach in Building Surveying Course
Authors: Amal A. Abdel-Sattar
Abstract:
The curriculum of architecture department in Prince Sultan University includes ‘Building Surveying’ course which is usually a part of civil engineering courses. As a fundamental requirement of the course, it requires a strong background in mathematics and physics, which are not usually preferred subjects to the architecture students and many of them are not giving the required and necessary attention to these courses during their preparation year before commencing their architectural study. This paper introduces the concept and the methodology of the student-centered learning approach in the course of building surveying for architects. One of the major outcomes is the improvement in the students’ involvement in the course and how this will cover and strength their analytical weak points and improve their mathematical skills. The study is conducted through three semesters with a total number of 99 students. The effectiveness of the student-centered learning approach is studied using the student survey at the end of each semester and teacher observations. This survey showed great acceptance of the students for these methods. Also, the teachers observed a great improvement in the students’ mathematical abilities and how keener they became in attending the classes which were clearly reflected on the low absence record.Keywords: architecture, building surveying, student-centered learning, teaching and learning
Procedia PDF Downloads 25411230 Optical Whitening of Textiles: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
This study examines the results of optical whitening process of different textiles such as cotton, wool and polyester. The optical whitening agents used are commercially available products, and the optical whitening agents were applied to the textiles with manufacturers’ suggested methods. The aim of this study is to illustrate the proper application methods of optical whitening agent to different textiles and hence to provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, optical whitening agent, wool, cotton, polyester
Procedia PDF Downloads 42811229 Prevalence of Hinglish on the Indian English News Channels and Its Impact on the New Language Learners: A Qualitative Analysis
Authors: Swatantra
Abstract:
Hinglish, a blended version of Hindi and English, emerged due to the lack of the competence and command of the speakers over the foreign language, i., e., English. But, amazingly, the trend has gained wide acceptance. In India, this acceptance has gone up to the extent that popular news anchors at the prime time shows are frequently using it. At the moment, instead of being considered a flaw of their presentation Hinglish is emerging as a trendy genre. Its pervasive usage and extensive acceptance is motivating youngsters to opt for the similar kind of patterns. The current study is an endeavour to assess the impact of this trend on the new language learners. With the help of semi-structured interviews, the researcher has tried to gauge the level of comfort and desire to be at par with the other fluent English speakers. The results clearly depict a substantiated boost in the confidence level of learners because they are able to use the vocabulary and sentence patterns of their own choice and convenience. The prevalence and acceptance of the trend in the main stream media have really served as a catalyst and the desire to be at par with the other fluent speakers is also fading away. The users of Hinglish find this trend to be closer to their heart as in the earlier times in the absence of exact translation they had to compromise with the meaning or spirit of the word/phrase / sentence. But now enhanced flexibility is leaving them more comfortable and confident.Keywords: Hinglish, language learners, linguistic trends, media
Procedia PDF Downloads 15511228 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 16311227 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning
Authors: R. Abdulrahman, A. Eardley, A. Soliman
Abstract:
The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)
Procedia PDF Downloads 18911226 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents
Authors: Prasanna Haddela
Abstract:
Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm
Procedia PDF Downloads 11511225 Maximum Initial Input Allowed to Iterative Learning Control Set-up Using Singular Values
Authors: Naser Alajmi, Ali Alobaidly, Mubarak Alhajri, Salem Salamah, Muhammad Alsubaie
Abstract:
Iterative Learning Control (ILC) known to be a controlling tool to overcome periodic disturbances for repetitive systems. This technique is required to let the error signal tends to zero as the number of operation increases. The learning process that lies within this context is strongly dependent on the initial input which if selected properly tends to let the learning process be more effective compared to the case where a system starts from blind. ILC uses previous recorded execution data to update the following execution/trial input such that a reference trajectory is followed to a high accuracy. Error convergence in ILC is generally highly dependent on the input applied to a plant for trial $1$, thus a good choice of initial starting input signal would make learning faster and as a consequence the error tends to zero faster as well. In the work presented within, an upper limit based on the Singular Values Principle (SV) is derived for the initial input signal applied at trial $1$ such that the system follow the reference in less number of trials without responding aggressively or exceeding the working envelope where a system is required to move within in a robot arm, for example. Simulation results presented illustrate the theory introduced within this paper.Keywords: initial input, iterative learning control, maximum input, singular values
Procedia PDF Downloads 24411224 Analysis on the Converged Method of Korean Scientific and Mathematical Fields and Liberal Arts Programme: Focusing on the Intervention Patterns in Liberal Arts
Authors: Jinhui Bak, Bumjin Kim
Abstract:
The purpose of this study is to analyze how the scientific and mathematical fields (STEM) and liberal arts (A) work together in the STEAM program. In the future STEAM programs that have been designed and developed, the humanities will act not just as a 'tool' for science technology and mathematics, but as a 'core' content to have an equivalent status. STEAM was first introduced to the Republic of Korea in 2011 when the Ministry of Education emphasized fostering creative convergence talent. Many programs have since been developed under the name STEAM, but with the majority of programs focusing on technology education, arts and humanities are considered secondary. As a result, arts is most likely to be accepted as an option that can be excluded from the teachers who run the STEAM program. If what we ultimately pursue through STEAM education is in fostering STEAM literacy, we should no longer turn arts into a tooling area for STEM. Based on this consciousness, this study analyzed over 160 STEAM programs in middle and high schools, which were produced and distributed by the Ministry of Education and the Korea Science and Technology Foundation from 2012 to 2017. The framework of analyses referenced two criteria presented in the related prior studies: normative convergence and technological convergence. In addition, we divide Arts into fine arts and liberal arts and focused on Korean Language Course which is in liberal arts and analyzed what kind of curriculum standards were selected, and what kind of process the Korean language department participated in teaching and learning. In this study, to ensure the reliability of the analysis results, we have chosen to cross-check the individual analysis results of the two researchers and only if they are consistent. We also conducted a reliability check on the analysis results of three middle and high school teachers involved in the STEAM education program. Analyzing 10 programs selected randomly from the analyzed programs, Cronbach's α .853 showed a reliable level. The results of this study are summarized as follows. First, the convergence ratio of the liberal arts was lowest in the department of moral at 14.58%. Second, the normative convergence is 28.19%, which is lower than that of the technological convergence. Third, the language and achievement criteria selected for the program were limited to functional areas such as listening, talking, reading and writing. This means that the convergence of Korean language departments is made only by the necessary tools to communicate opinions or promote scientific products. In this study, we intend to compare these results with the STEAM programs in the United States and abroad to explore what elements or key concepts are required for the achievement criteria for Korean language and curriculum. This is meaningful in that the humanities field (A), including Korean, provides basic data that can be fused into 'equivalent qualifications' with science (S), technical engineering (TE) and mathematics (M).Keywords: Korean STEAM Programme, liberal arts, STEAM curriculum, STEAM Literacy, STEM
Procedia PDF Downloads 15911223 Recent Developments in Coping Strategies Focusing on Music Performance Anxiety: A Systematic Review
Authors: Parham Bakhtiari
Abstract:
Music performance anxiety (MPA) is a prevalent concern among musicians, manifesting through cognitive, physiological, and behavioral symptoms that can severely impact performance quality and overall well-being. This systematic review synthesizes research on coping strategies employed by musicians to manage MPA from 2016 to 2023, identifying a range of psychological and physical interventions, including acceptance and commitment therapy (ACT), cognitive behavioral therapy (CBT), mindfulness, and yoga. Findings reveal that these interventions significantly reduce anxiety and enhance psychological resilience, with ACT showing notable improvements in psychological flexibility. Physical approaches also proved effective in mitigating physiological symptoms associated with MPA. However, challenges such as small sample sizes and methodological limitations hinder the generalizability of results. The review underscores the necessity for multi-faceted intervention strategies tailored to the unique needs of different musicians and emphasizes the importance of future research employing larger, randomized controlled designs to further validate these findings. Overall, this review serves as a comprehensive resource for musicians seeking effective coping strategies for managing performance anxiety, highlighting the critical interplay between mental and physical approaches in promoting optimal performance outcomes.Keywords: anxiety, performance, coping, music, strategy
Procedia PDF Downloads 2911222 Relationship between the Level of Perceived Self-Efficacy of Children with Learning Disability and Their Mother’s Perception about the Efficacy of Their Child, and Children’s Academic Achievement
Authors: Payal Maheshwari, Maheaswari Brindavan
Abstract:
The present study aimed at studying the level of perceived self-efficacy of children with learning disability and their mother’s perception about the efficacy of the child and the relationship between the two. The study further aimed at finding out the relationship between the level of perceived self-efficacy of children with learning disability and their academic achievement and their mother’s perception about the Efficacy of the child and child’s Academic Achievement. The sample comprised of 80 respondents (40 children with learning disability and their mothers). Children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai and their mothers were selected. Purposive or judgmental and snowball sampling technique was used to select the sample for the present study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability and their mother’s. A self-constructed Mother’s Perceived Efficacy of their Child Assessment Scale was used to measure mothers perceived level of efficacy of their child with learning disability. Self-constructed Child’s Perceived Self-Efficacy Assessment Scale was used to measure the level of child’s perceived self-efficacy. Academic scores of the child were collected from the child’s parents or teachers and were converted into percentage. The data were analyzed quantitatively using frequencies, mean and standard deviation. Correlations were computed to ascertain the relationships between the different variables. The findings revealed that majority of the mother’s perceived efficacy about their child with learning disability was above average as well as majority of the children with learning disability also perceived themselves as having above average level of self-efficacy. Further in the domains of self-regulated learning and emotional self-efficacy majority of the mothers perceived their child as having average or below average efficacy, 50% of the children also perceived their self-efficacy in the two domains at average or below average level. A significant (r=.322, p < .05) weak correlation (Spearman’s rho) was found between mother’s perceived efficacy about their child, and child’s perceived self-efficacy and a significant (r=.377, p < .01) weak correlation (Pearson Correlation) was also found between mother’s perceived efficacy about their child and child’s academic achievement. Significant weak positive correlation was found between child’s perceived self-efficacy and academic achievement (r=.332, p < .05). Based on the findings, the study discussed the need for intervention program for children in non-academic skills like self-regulation and emotional competence.Keywords: learning disability, perceived self efficacy, academic achievement, mothers, children
Procedia PDF Downloads 32411221 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models
Authors: Suriya
Abstract:
Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar
Procedia PDF Downloads 4911220 To Prepare a Remedial Teaching Programme for Dyslexic Students of English and Marathi Medium Schools and Study Its Effect on Their Learning Outcome
Authors: Khan Zeenat, S. B. Dandegaonkar
Abstract:
Dyslexia is a neurological disorder which affects the reading and writing ability of children. A sample of 72 dyslexic children (36 from English medium and 36 from Marathi medium schools) of class V from English and Marathi medium schools were selected. The Experimental method was used to study the effect of Remedial Teaching Programme on the Learning outcome of Dyslexic students. The findings showed that there is a Positive effect of remedial teaching programme on the Learning outcome of English and Marathi medium students.Keywords: remedial teaching, Dyslexic students, learning outcome, neurological
Procedia PDF Downloads 52211219 Inferring Human Mobility in India Using Machine Learning
Authors: Asra Yousuf, Ajaykumar Tannirkulum
Abstract:
Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.Keywords: development, migration, internal migration, machine learning, prediction
Procedia PDF Downloads 27211218 Experimental Architectural Pedagogy: Discipline Space and Its Role in the Modern Teaching Identity
Authors: Matthew Armitt
Abstract:
The revolutionary school of architectural teaching – VKhUTEAMAS (1923-1926) was a new approach for a new society bringing architectural education to the masses and masses to the growing industrial production. The school's pedagogical contribution of the 1920s made it an important school of the modernist movement, engaging pedagogy as a mode of experimentation. The teachers and students saw design education not just as a process of knowledge transfer but as a vehicle for design innovation developing an approach without precedent. This process of teaching and learning served as a vehicle for venturing into the unknown through a discipline of architectural teaching called “Space” developed by the Soviet architect Nikolai Ladovskii (1881-1941). The creation of “Space” was paramount not only for its innovative pedagogy but also as an experimental laboratory for developing new architectural language. This paper discusses whether the historical teaching of “Space” can function in the construction of the modern teaching identity today to promote value, richness, quality, and diversity inherent in architectural design education. The history of “Space” teaching remains unknown within academic circles and separate from the current architectural teaching debate. Using VKhUTEMAS and the teaching of “Space” as a pedagogical lens and drawing upon research carried out in the Russian Federation, America, Canada, Germany, and the UK, this paper discusses how historically different models of teaching and learning can intersect through examining historical based educational research by exploring different design studio initiatives; pedagogical methodologies; teaching and learning theories and problem-based projects. There are strong arguments and desire for pedagogical change and this paper will promote new historical and educational research to widen the current academic debate by exposing new approaches to architectural teaching today.Keywords: VKhUTEMAS, discipline space, modernist pedagogy, teaching identity
Procedia PDF Downloads 12811217 Analyzing Conflict Text; ‘Akunyili Memo: State of the Nation’: an Approach from CDA
Authors: Nengi A. H. Ejiobih
Abstract:
Conflict is one of the defining features of human societies. Often, the use or misuse of language in interaction is the genesis of conflict. As such, it is expected that when people use language they do so in socially determined ways and with almost predictable social effects. The objective of this paper was to examine the interest at work as manifested in language choice and collocations in conflict discourse. It also scrutinized the implications of linguistic features in conflict discourse as it concerns ideology and power relations in political discourse in Nigeria. The methodology used for this paper is an approach from Critical discourse analysis because of its multidisciplinary model of analysis, linguistic features and its implications were analysed. The datum used is a text from the Sunday Sun Newspaper in Nigeria, West Africa titled Akunyili Memo: State of the Nation. Some of the findings include; different ideologies are inherent in conflict discourse, there is the presence of power relations being produced, exercised, maintained and produced throughout the discourse and the use of pronouns in conflict discourse is valuable because it is used to initiate and maintain relationships in social context. This paper has provided evidence that, taking into consideration the nature of the social actions and the way these activities are translated into languages, the meanings people convey by their words are identified by their immediate social, political and historical conditions.Keywords: conflicts, discourse, language, linguistic features, social context
Procedia PDF Downloads 48411216 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran
Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad
Abstract:
The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.Keywords: natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings
Procedia PDF Downloads 34911215 Improving the Teaching of Mathematics at University Using the Inverted Classroom Model: A Case in Greece
Authors: G. S. Androulakis, G. Deli, M. Kaisari, N. Mihos
Abstract:
Teaching practices at the university level have changed and developed during the last decade. Implementation of inverted classroom method in secondary education consists of a well-formed basis for academic teachers. On the other hand, distance learning is a well-known field in education research and widespread as a method of teaching. Nonetheless, the new pandemic found many Universities all over the world unprepared, which made adaptations to new methods of teaching a necessity. In this paper, we analyze a model of an inverted university classroom in a distance learning context. Thus, the main purpose of our research is to investigate students’ difficulties as they transit to a new style of teaching and explore their learning development during a semester totally different from others. Our teaching experiment took place at the Business Administration department of the University of Patras, in the context of two courses: Calculus, a course aimed at first-year students, and Statistics, a course aimed at second-year students. Second-year students had the opportunity to attend courses in the university classroom. First-year students started their semester with distance learning. Using a comparative study of these two groups, we explored significant differences in students’ learning procedures. Focused group interviews, written tests, analyses of students’ dialogues were used in a mixed quantity and quality research. Our analysis reveals students’ skills, capabilities but also a difficulty in following, non-traditional style of teaching. The inverted classroom model, according to our findings, offers benefits in the educational procedure, even in a distance learning environment.Keywords: distance learning, higher education, inverted classroom, mathematics teaching
Procedia PDF Downloads 13511214 Understanding the Challenges of Lawbook Translation via the Framework of Functional Theory of Language
Authors: Tengku Sepora Tengku Mahadi
Abstract:
Where the speed of book writing lags behind the high need for such material for tertiary studies, translation offers a way to enhance the equilibrium in this demand-supply equation. Nevertheless, translation is confronted by obstacles that threaten its effectiveness. The primary challenge to the production of efficient translations may well be related to the text-type and in terms of its complexity. A text that is intricately written with unique rhetorical devices, subject-matter foundation and cultural references will undoubtedly challenge the translator. Longer time and greater effort would be the consequence. To understand these text-related challenges, the present paper set out to analyze a lawbook entitled Learning the Law by David Melinkoff. The book is chosen because it has often been used as a textbook or for reference in many law courses in the United Kingdom and has seen over thirteen editions; therefore, it can be said to be a worthy book for studies in law. Another reason is the existence of a ready translation in Malay. Reference to this translation enables confirmation to some extent of the potential problems that might occur in its translation. Understanding the organization and the language of the book will help translators to prepare themselves better for the task. They can anticipate the research and time that may be needed to produce an effective translation. Another premise here is that this text-type implies certain ways of writing and organization. Accordingly, it seems practicable to adopt the functional theory of language as suggested by Michael Halliday as its theoretical framework. Concepts of the context of culture, the context of situation and measures of the field, tenor and mode form the instruments for analysis. Additional examples from similar materials can also be used to validate the findings. Some interesting findings include the presence of several other text-types or sub-text-types in the book and the dependence on literary discourse and devices to capture the meanings better or add color to the dry field of law. In addition, many elements of culture can be seen, for example, the use of familiar alternatives, allusions, and even terminology and references that date back to various periods of time and languages. Also found are parts which discuss origins of words and terms that may be relevant to readers within the United Kingdom but make little sense to readers of the book in other languages. In conclusion, the textual analysis in terms of its functions and the linguistic and textual devices used to achieve them can then be applied as a guide to determine the effectiveness of the translation that is produced.Keywords: functional theory of language, lawbook text-type, rhetorical devices, culture
Procedia PDF Downloads 15211213 Academic Skills Enhancement in Secondary School Students Undertaking Tertiary Studies
Authors: Richard White, Anne Drabble, Maureen O’Neill
Abstract:
The University of the Sunshine Coast (USC) offers secondary school students in the final two years of school (Years 11 and 12, 16 – 18 years of age) an opportunity to participate in a program which provides an accelerated pathway to tertiary studies. Whilst still at secondary school, the students undertake two first year university subjects that are required subjects in USC undergraduate degree programs. The program is called Integrated Learning Pathway (ILP) and offers a range of disciplines, including business, design, drama, education, and engineering. Between 2010 and 2014, 38% of secondary students who participated in an ILP program commenced undergraduate studies at USC following completion of secondary school studies. The research reported here considers “before and after” literacy and numeracy competencies of students to determine what impact participation in the ILP program has had on their academic skills. Qualitative and quantitative data has been gathered via numeracy and literacy testing of the students, and a survey asking the students to self-evaluate their numeracy and literacy skills, and reflect on their views of these academic skills. The research will enable improved targeting of teaching strategies so that students will acquire not only course-specific learning outcomes but also collateral academic skills. This enhancement of academic skills will improve undergraduate experience and improve student retention.Keywords: academic skills enhancement, accelerated pathways, improved teaching, student retention
Procedia PDF Downloads 31011212 A Corporate Social Responsibility View on Bribery Control in Business Relationships
Authors: Irfan Ameer
Abstract:
Bribery control in developing countries is the biggest challenge for multinational enterprises (MNEs). Bribery practices are socially embedded and institutionalized, and therefore may achieve collective legitimacy in the society. MNEs often have better and strict norms, codes and standards about such corrupt practices. Bribery in B2B sales relationships has been researched but studies focusing on the role of firm in controlling bribery are scarce. The main objective of this paper is to explore MNEs strategies to control bribery in an environment where bribery is institutionalized. This qualitative study uses narrative approach and focuses on key events, actors and their role in controlling bribery in B2B sales relationships. The context of this study is pharmaceutical industry of Pakistan and data is collected through 23 episodic interviews supported by secondary data. The Corporate social responsibility (CSR) literature e.g. CSR three domain model and CSR pyramid is used to make sense of MNEs strategies to control bribery in developing countries. Results show that MNEs’ bribery control strategies are rather emerging based on the role of some key stakeholders and events which shape bribery strategies. Five key bribery control strategies were found through which MNEs can control both demand and supply side of bribery: bribery related codes development; bribery related codes implementation; focusing on competitive advantage; find mutually beneficial ethical solution; and collaboration with ethical stakeholders. The results also highlight the problems associated with each strategy. Study is unique in a sense that it focuses on stakeholders having unethical interests and provides guidelines to MNEs in controlling bribery practices in B2B sales relationships.Keywords: bribery, developing countries, CSR, narrative research, B2B sales, MNEs
Procedia PDF Downloads 37611211 Effective Use of Visuals in Teaching Mathematics
Authors: Gohar Marikyan
Abstract:
This article is about investigating how to effectively use visuals in teaching introductory mathematics. The analysis showed the use of visuals in teaching introductory mathematics can be an effective tool for enhancing students’ learning and engagement in mathematics. The use of visuals was particularly effective for teaching concepts of numbers, operations with whole numbers, and properties of operations. The analysis also provides strong evidence that the effectiveness of visuals varied depending on the way the visuals are used. Furthermore, the analysis revealed that the use of visuals in mathematics instruction had a positive impact on student’s attitudes toward mathematics, with students showing higher levels of motivation and enjoyment in mathematics classes.Keywords: analytical thinking skills, instructional strategies with visuals, introductory mathematics, student engagement and motivation
Procedia PDF Downloads 12411210 The Development of Community Leadership Strategies for Career Development of the Benjarong Pottery Products in Eight Upper Central Provinces
Authors: Thanaporn Chaimongkol
Abstract:
The objective of this research was aimed to examine the factors that influence the development of community leadership strategies to further develop the career regarding the Benjarong pottery products in eight upper central provinces, Thailand. The sample included (1) 1200 Benjarong pottery operators, (2) 30 involved representatives at both the policy level and support, and (3) OTOP network of 24 people. In this quantitative study, investigating data was conducted on individual session basis. The research instruments used included questionnaires and interview. The results showed that the components of the development of the community leadership strategies for career development of the Benjarong pottery products in eight upper central provinces were high overall; the Five Competitive Forces were of the highest average, followed by bargaining power of suppliers, and McKinsey 7's framework, respectively; where the highest average was strategy.Keywords: community leadership, strategy development, Benjarong Pottery, 8 upper central provinces
Procedia PDF Downloads 32811209 Examination of the Satisfaction Levels of Pre-Service Teachers Concerning E-Learning Process in Terms of Different Variables
Authors: Agah Tugrul Korucu
Abstract:
Significant changes have taken place for the better in the bulk of information and in the use of technology available in the field of education induced by technological changes in the 21st century. It is mainly the job of the teachers and pre-service teachers to integrate information and communication technologies into education by means of conveying the use of technology to individuals. While the pre-service teachers are conducting lessons by using technology, the methods they have developed are important factors for the requirements of the lesson and for the satisfaction levels of the students. The study of this study is to examine the satisfaction levels of pre-service teachers as regards e-learning in a technological environment in which there are lesson activities conducted through an online learning environment in terms of various variables. The study group of the research is composed of 156 pre-service teachers that were students in the departments of Computer and Teaching Technologies, Art Teaching and Pre-school Teaching in the academic year of 2014 - 2015. The qualitative research method was adopted for this study; the scanning model was employed in collecting the data. “The Satisfaction Scale regarding the E-learning Process”, developed by Gülbahar, and the personal information form, which was developed by the researcher, were used as means of collecting the data. Cronbach α reliability coefficient, which is the internal consistency coefficient of the scale, is 0.91. SPSS computerized statistical package program and the techniques of medium, standard deviation, percentage, correlation, t-test and variance analysis were used in the analysis of the data.Keywords: online learning environment, integration of information technologies, e-learning, e-learning satisfaction, pre-service teachers
Procedia PDF Downloads 35411208 Associations between Parental Divorce Process Variables and Parent-Child Relationships Quality in Young Adulthood
Authors: Klara Smith-Etxeberria
Abstract:
main goal of this study was to analyze the predictive ability of some variables associated with the parental divorce process alongside attachment history with parents on both, mother-child and father-child relationship quality. Our sample consisted of 173 undergraduate and vocational school students from the Autonomous Community of the Basque Country. All of them belonged to a divorced family. Results showed that adequate maternal strategies during the divorce process (e.g.: stable, continuous and positive role as a mother) was the variable with greater predictive ability on mother-child relationships quality. In addition, secure attachment history with mother also predicted positive mother-child relationships. On the other hand, father-child relationship quality was predicted by adequate paternal strategies during the divorce process, such as his stable, continuous and positive role as a father, along with not badmouthing the mother and promoting good mother-child relationships. Furthermore, paternal negative emotional state due to divorce was positively associated with father-child relationships quality, and both, history of attachment with mother and with father predicted father-child relationships quality. In conclusion, our data indicate that both, paternal and maternal strategies for children´s adequate adjustment during the divorce process influence on mother-child and father-child relationships quality. However, these results suggest that paternal strategies during the divorce process have a greater predictive ability on father-child relationships quality, whereas maternal positive strategies during divorce determine positive mother-child relationships among young adults.Keywords: father-child relationships quality, mother-child relationships quality, parental divorce process, young adulthood
Procedia PDF Downloads 26011207 Naturalistic Neuroimaging: From Film to Learning Disorders
Authors: Asha Dukkipati
Abstract:
Cognitive neuroscience explores neural functioning and aberrant brain activity during cognitive and perceptual tasks. Neurocinematics is a subfield of cognitive neuroscience that observes neural responses of individuals watching a film to see similarities and differences between individuals. This method is typically used for commercial use, allowing directors and filmmakers to produce better visuals and increasing their results in the box office. However, neurocinematics is increasingly becoming a common tool for neuroscientists interested in studying similar patterns of brain activity across viewers outside of the film industry. In this review, it argue that neurocinematics provides an easy, naturalistic approach for studying and diagnosing learning disorders. While the neural underpinnings of developmental learning disorders are traditionally assessed with well-established methods like EEG and fMRI that target particular cognitive domains, such as simple visual and attention tasks, there is initial evidence and theoretical background in support of neurocinematics as a biomarker for learning differences. By using ADHD, dyslexia, and autism as case studies, this literature review discusses the potential advantages of neurocinematics as a new tool for learning disorders research.Keywords: behavioral and social sciences, neuroscience, neurocinematics, biomarkers, neurobehavioral disorders
Procedia PDF Downloads 9911206 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence
Authors: Hoora Beheshti Haradasht, Abooali Golzary
Abstract:
Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability
Procedia PDF Downloads 8511205 A Fast, Portable Computational Framework for Aerodynamic Simulations
Authors: Mehdi Ghommem, Daniel Garcia, Nathan Collier, Victor Calo
Abstract:
We develop a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM). The computational framework uses the Python programming language which has easy integration with the scripts requiring computationally-expensive operations written in Fortran. The mixed-language approach enables high performance in terms of solution time and high flexibility in terms of easiness of code adaptation to different system configurations and applications. This computational tool is intended to predict the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges...) subject to an incoming air. We simulate different aerodynamic problems to validate and illustrate the usefulness and effectiveness of the developed computational tool.Keywords: unsteady aerodynamics, numerical simulations, mixed-language approach, potential flow
Procedia PDF Downloads 29511204 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 12111203 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning
Authors: Kyle Saltmarsh
Abstract:
Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.Keywords: plates, deformation, acoustic features, machine learning
Procedia PDF Downloads 338