Search results for: government data
24642 The Illegal Architecture of Apartheid in Palestine
Authors: Hala Barakat
Abstract:
Architecture plays a crucial role in the colonization and organization of spaces, as well as the preservation of cultures and history. As a result of 70 years of occupation, Palestinian land, culture, and history are endangered today. The government of Israel has used architecture to strangulate Palestinians out and seize their land. The occupation has managed to fragment the West Bank and cause sensible scars on the landscape by creating obstacles, barriers, watchtowers, checkpoints, walls, apartheid roads, border devices, and illegal settlements to unjustly claim land from its indigenous population. The apartheid architecture has divided the Palestinian social and urban fabric into pieces, similarly to the Bantustans. The architectural techniques and methods used by the occupation are evidence of prejudice, and while the illegal settlements remain to be condemned by the United Nations, little is being done to officially end this apartheid. Illegal settlements range in scale from individual units to established cities and house more than 60,000 Israeli settlers that immigrated from all over Europe and the United States. Often architecture by Israel is being directed towards expressing ideologies and serving as evidence of its political agenda. More than 78% of what was granted to Palestine after the development of the Green Line in 1948 is under Israeli occupation today. This project aims to map the illegal architecture as a criticism of governmental agendas in the West Bank and Historic Palestinian land. The paper will also discuss the resistance to the newly developed plan for the last Arab village in Jerusalem, Lifta. The illegal architecture has isolated Palestinians from each other and installed obstacles to control their movement. The architecture of occupation has no ethical or humane logic but rather entirely political, administrative, and it should not be left for the silenced architecture to tell the story. Architecture is not being used as a connecting device but rather a way to implement political injustice and spatial oppression. By narrating stories of the architecture of occupation, we can highlight the spatial injustice of the complex apartheid infrastructure. The Israeli government has managed to intoxicate architecture to serve as a divider between cultural groups, allowing the unlawful and unethical architecture to define its culture and values. As architects and designers, the roles we play in the development of illegal settlements must align with the spatial ethics we practice. Most importantly, our profession is not performing architecturally when we design a house with a particular roof color to ensure it would not be mistaken with a Palestinian house and be attacked accidentally.Keywords: apartheid, illegal architecture, occupation, politics
Procedia PDF Downloads 15224641 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 42324640 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 9924639 Panel Application for Determining Impact of Real Exchange Rate and Security on Tourism Revenues: Countries with Middle and High Level Tourism Income
Authors: M. Koray Cetin, Mehmet Mert
Abstract:
The purpose of the study is to examine impacts on tourism revenues of the exchange rate and country overall security level. There are numerous studies that examine the bidirectional relation between macroeconomic factors and tourism revenues and tourism demand. Most of the studies support the existence of impact of tourism revenues on growth rate but not vice versa. Few studies examine the impact of factors like real exchange rate or purchasing power parity on the tourism revenues. In this context, firstly impact of real exchange rate on tourism revenues examination is aimed. Because exchange rate is one of the main determinants of international tourism services price in guests currency unit. Another determinant of tourism demand for a country is country’s overall security level. This issue can be handled in the context of the relationship between tourism revenues and overall security including turmoil, terrorism, border problem, political violence. In this study, factors are handled for several countries which have tourism revenues on a certain level. With this structure, it is a panel data, and it is evaluated with panel data analysis techniques. Panel data have at least two dimensions, and one of them is time dimensions. The panel data analysis techniques are applied to data gathered from Worldbank data web page. In this study, it is expected to find impacts of real exchange rate and security factors on tourism revenues for the countries that have noteworthy tourism revenues.Keywords: exchange rate, panel data analysis, security, tourism revenues
Procedia PDF Downloads 35124638 A Psychoanalytic Lens: Unmasked Layers of the Self among Post-Graduate Psychology Students in Surviving the COVID-19 Lockdown
Authors: Sharon Sibanda, Benny Motileng
Abstract:
The World Health Organisation (WHO) identified the Sars-Cov-2 (COVID-19) as a pandemic on the 12ᵗʰ of March 2020, with South Africa recording its first case on the 5ᵗʰ of March 2020. The rapidly spreading virus led the South African government to implement one of the strictest nationwide lockdowns globally, resulting in the closing down of all institutions of higher learning effective March 18ᵗʰ 2020. Thus, this qualitative study primarily aimed to explore whether post-graduate psychology students were in a state of a depleted or cohesive self, post the psychological isolation of COVID-19 risk-adjusted level 5 lockdown. Semi-structured interviews from a qualitative interpretive approach comprising N=6 psychology post-graduate students facilitated a rich understanding of their intra-psychic experiences of the self. Thematic analysis of data gathered from the interviews illuminated how students were forced into the self by the emotional isolation of hard lockdown, with the emergence of core psychic conflict often defended against through external self-object experiences. The findings also suggest that lockdown stripped off this sample of psychology post-graduate students’ defensive escape from the inner self through external self-object distractions. The external self was stripped to the core of the internal self by the isolation of hard lockdown, thereby uncovering the psychic function of roles and defenses amalgamated throughout modern cultural consciousness that dictates self-functioning. The study suggests modelling reflexivity skills in the integration of internal and external self-experience dynamics as part of a training model for continued personal and professional development for psychology students.Keywords: COVID-19, fragmentation, self-object experience, true/false self
Procedia PDF Downloads 5924637 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region
Authors: Musab Isah
Abstract:
This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool
Procedia PDF Downloads 6624636 A Web Service Based Sensor Data Management System
Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh
Abstract:
The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor
Procedia PDF Downloads 21224635 Dynamics of Protest Mobilization and Rapid Demobilization in Post-2001 Afghanistan: Facing Enlightening Movement
Authors: Ali Aqa Mohammad Jawad
Abstract:
Taking a relational approach, this paper analyzes the causal mechanisms associated with successful mobilization and rapid demobilization of the Enlightening Movement in post-2001 Afghanistan. The movement emerged after the state-owned Da Afghan Bereshna Sherkat (DABS) decided to divert the route for the Turkmenistan-Uzbekistan-Tajikistan-Afghanistan-Pakistan (TUTAP) electricity project. The grid was initially planned to go through the Hazara-inhabited province of Bamiyan, according to Afghanistan’s Power Sector Master Plan. The reroute served as an aide-mémoire of historical subordination to other ethno-religious groups for the Hazara community. It was also perceived as deprivation from post-2001 development projects, financed by international aid. This torched the accumulated grievances, which then gave birth to the Enlightening Movement. The movement had a successful mobilization. However, it demobilized after losing much of its mobilizing capabilities through an amalgamation of external and internal relational factors. The successful mobilization yet rapid demobilization constitutes the puzzle of this paper. From the theoretical perspective, this paper is significant as it establishes the applicability of contentious politics theory to protest mobilizations that occurred in Afghanistan, a context-specific, characterized by ethnic politics. Both primary and secondary data are utilized to address the puzzle. As for the primary resources, media coverage, interviews, reports, public media statements of the movement, involved in contentious performances, and data from Social Networking Services (SNS) are used. The covered period is from 2001-2018. As for the secondary resources, published academic articles and books are used to give a historical account of contentious politics. For data analysis, a qualitative comparative historical method is utilized to uncover the causal mechanisms associated with successful mobilization and rapid demobilization of the Movement. In this pursuit, both mobilization and demobilization are considered as larger political processes that could be decomposed to constituent mechanisms. Enlightening Movement’s framing and campaigns are first studied to uncover the associated mechanisms. Then, to avoid introducing some ad hoc mechanisms, the recurrence of mechanisms is checked against another case. Mechanisms qualify as robust if they are “recurrent” in different episodes of contention. Checking the recurrence of causal mechanisms is vital as past contentious events tend to reinforce future events. The findings of this paper suggest that the public sphere in Afghanistan is drastically different from Western democracies known as the birthplace of social movements. In Western democracies, when institutional politics did not respond, movement organizers occupied the public sphere, undermining the legitimacy of the government. In Afghanistan, the public sphere is ethicized. Considering the inter- and intra-relational dynamics of ethnic groups in Afghanistan, the movement reduced to an erosive inter- and intra-ethnic conflict. This undermined the cohesiveness of the movement, which then kicked-off its demobilization process.Keywords: enlightening movement, contentious politics, mobilization, demobilization
Procedia PDF Downloads 19424634 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 7624633 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 31624632 Gender Considerations and Entrepreneurship Development in Nigeria
Authors: Tirimisiyu Olaide Gbadamosi
Abstract:
Individuals go into business for the sake of obtaining regular income, becoming self-employed. Although, there different kinds of business enterprises that female and male can go into, often times, some businesses are regarded more suitable for a particular sex and not the other. This means that there is some gender discrimination in the choice of business one goes into and by extension in entrepreneurship development. Apparently, gender attitudes and behaviors will have positive or negative effects on entrepreneurship development in a society or economy. This research work therefore intends to take a critical look at gender discrimination as they affect entrepreneurship development with particular reference to northern Nigeria in general, using Exceptional Production Services Limited Kaduna, Kaduna North Local Government area as a case study, and also to suggest the possible solution to unidentified problems and give recommendation where necessary. Statement of research problem: Entrepreneurship has generally been recognised as a good medium or strategy for economic development of an individual, a community and a nation. It is also a known a known fact that some gender discrimination are often used in the choice of business or even the decision to go into business. For example, some businesses are regarded as more suitable to men than women. The question here is, is this the right approach to economic development through entrepreneurship? Of what effect is this approach to entrepreneurship development? These and the other questions are what this research intends to find answers to and if possible make recommendations. Significance of the study: The findings of this study will provide a guide for anyone for the establishment of a business in Nigeria. The study will help any prospective entrepreneur to make the right decision of which business to go into and how to contend with gender related issues that might influence its success in business. Furthermore, it is hoped that the study will assist the government and her agencies in the process in developing entrepreneurship development programs. Conclusion: There has been growing recognition that various types of discrimination do not always affect women and men in the same way. Moreover, gender discrimination may be intensified and facilitated by all other forms of discrimination. It has been increasingly recognized that without gender analysis of all forms of discrimination in business, including multiple forms of discrimination, and, in particular, in this context, related intolerance, violations of the human rights of women might escape detection and remedies to address racism may also fail to meet the needs of women and girls. It is also important that efforts to address gender discrimination incorporate approaches to the elimination of all forms of discrimination. Recommendation: Campaigning and raising awareness among young men and women, parents, teachers and employers about gender stereotypical attitudes towards academic performances and the likely consequences of overall educational choices for employment and entrepreneurship opportunities, career progression and earnings.Keywords: entrepreneurship, economic development, small medium enterprises, gender discrimination
Procedia PDF Downloads 38524631 Client Importance and Audit Quality under Civil Law versus Common Law Societies
Authors: Kelly Grani Yuen
Abstract:
Accounting scandals and auditing frauds are perceived to be driven by aggressive companies and misrepresentation of audit reports. However, local legal systems and law enforcements may affect the services auditors provide to their ‘important’ clients. Under the civil law and common law jurisdictions, the standard setters, the government, and the regulatory bodies treat cases differently. As such, whether or not different forms of legal systems and extent of law enforcement plays an important role in auditor’s Audit Quality is a question this paper attempts to explore. The paper focuses on the investigation in Asia, where Hong Kong represents the common-law jurisdiction, while Taiwan and China represent the civil law jurisdiction. Only the ten reputable accounting firms are used in this study due to the differences in rankings and establishments of some of the small local audit firms. This will also contribute to the data collected between the years 2007-2013. By focusing on the use of multiple regression based on the dependent (Audit Quality) and independent variables (Client Importance, Law Enforcement, and Press Freedom), six different models are established. Results demonstrate that since different jurisdictions have different legal systems and market regulations, auditor’s treatment on ‘important’ clients will vary. However, with the moderators in place (law enforcement and press freedom), the relationship between client importance and audit quality may be smoothed out. With that in mind, this study contributes to local governments and standard setters’ consideration on legal reform and proper law enforcement in the market. Perhaps, with such modifications on the economic systems, collusion between companies and auditors can finally be put to a halt.Keywords: audit quality, client importance, jurisdiction, modified audit opinions
Procedia PDF Downloads 41024630 Enhancing Secondary School Mathematics Retention with Blended Learning: Integrating Concepts for Improved Understanding
Authors: Felix Oromena Egara, Moeketsi Mosia
Abstract:
The study aimed to evaluate the impact of blended learning on mathematics retention among secondary school students. Conducted in the Isoko North Local Government Area of Delta State, Nigeria, the research involved 1,235 senior class one (SS 1) students. Employing a non-equivalent control group pre-test-post-test quasi-experimental design, a sample of 70 students was selected from two secondary schools with ICT facilities through purposive sampling. Random allocation of students into experimental and control groups was achieved through balloting within each selected school. The investigation included three assessment points: pre-Mathematics Achievement Test (MAT), post-MAT, and post-post-MAT (retention), administered systematically by the researchers. Data collection utilized the established MAT instrument, which demonstrated a high reliability score of 0.86. Statistical analysis was conducted using the Statistical Package for Social Sciences (SPSS) version 28, with mean and standard deviation addressing study questions and analysis of covariance scrutinizing hypotheses at a significance level of .05. Results revealed significantly greater improvements in mathematics retention scores among students exposed to blended learning compared to those instructed through conventional methods. Moreover, noticeable differences in mean retention scores were observed, with male students in the blended learning group exhibiting notably higher performance. Based on these findings, recommendations were made, advocating for mathematics educators to integrate blended learning, particularly in geometry teaching, to enhance students’ retention of mathematical concepts.Keywords: blended learning, flipped classroom model, secondary school students, station rotation model
Procedia PDF Downloads 4424629 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 10924628 Foundation of the Information Model for Connected-Cars
Authors: Hae-Won Seo, Yong-Gu Lee
Abstract:
Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.Keywords: connected-car, data modeling, route planning, navigation system
Procedia PDF Downloads 37424627 Analysis of Gender Budgeting in Healthcare Sector: A Case of Gujarat State of India
Authors: Juhi Pandya, Elekes Zsuzsanna
Abstract:
Health is related to every aspect of human being. Even a quintal change leads to ill-health of an individual. Gender plays an eminent role in determining an individual health exposure. Political implications on health have implicit effects on the individual, societal and economical. The inclusion of gender perspective into policies have plunged enormous attention globally, nationally and locally to detract inequalities and achieve economic growth. Simultaneously, there is an initiation of policies with gender perspective which are named differently but hold similar meaning or objective. They are named gender mainstreaming policies or gender sensitization policies. Gender budgeting acts as a tool for the application of gender mainstreaming policies. It incorporates gender perspective into the budgetary process by restricting the revenues and expenditures at all level of the budget. The current study takes into account the analysis of Gender Budgeting reports in terms of healthcare from the 2014-16 year of Gujarat State, India. The expenditures and literature under the heading of gender budgeting reports named “Health and Family Welfare Department” are discussed in the paper. The data analytics is done with the help of reports published by the Gujarat government on Gender Budgeting. The results discuss upon the expenditure and initiation of new policies as a roadmap for the promotion of gender equality from the path of gender budgeting. It states with the escalation of the budgetary numbers for the health expenditure. Additionally, the paper raises the questions on the hypothetical loopholes pertaining to the gender budgeting in Gujarat. The budget reports do not show a specify explanation to the expenditure use of budget for the schemes mentioned in healthcare. It also does not clarify that how many beneficiaries are benefited through gender budget. The explanation just provides an overlook of theory for healthcare Schemes/Yojana or Abhiyan.Keywords: gender, gender budgeting, gender equality, healthcare
Procedia PDF Downloads 35124626 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 34024625 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 16424624 Sales Patterns Clustering Analysis on Seasonal Product Sales Data
Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho
Abstract:
As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.Keywords: clustering, distribution, sales pattern, seasonal product
Procedia PDF Downloads 59724623 Quantifying the Impact of Climate Change on Agritourism: The Transformative Role of Solar Energy in Enhancing Growth and Resilience in Eritrea
Authors: Beyene Daniel Abrha
Abstract:
Agritourism in Eritrea is increasingly threatened by climate change, manifesting through rising temperatures, shifting rainfall patterns, and resource scarcity. This study employs quantitative methods to assess the economic and environmental impacts of climate change on agritourism, utilizing metrics such as annual income fluctuations, changes in visitor numbers, and energy consumption patterns. The methodology relies on secondary data sourced from the World Bank, government reports, and academic publications to analyze the economic viability of integrating solar energy into agritourism operations. Key variables include the Benefits from Renewable Energy (BRE), encompassing cost savings from reduced energy expenses and the monetized value of avoided greenhouse gas emissions. Using a net present value (NPV) framework, the research compares the impact of solar energy against traditional fossil fuel sources by evaluating the Value of Reduced Greenhouse Gas Emissions (CO2) and the Value of Health-Related Costs (VHRC) due to air pollution. The preliminary findings of this research are of utmost importance. They indicate that the adoption of solar energy can enhance energy independence by up to 40%, reduce operational costs by 25%, and stabilize agritourism activities in climate-sensitive regions. This research aims to provide actionable insights for policymakers and stakeholders, supporting the sustainable development of agritourism in Eritrea and contributing to broader climate adaptation strategies. By employing a comprehensive cost-benefit analysis, the study highlights the economic advantages and environmental benefits of transitioning to renewable energy in the face of climate change.Keywords: agritourism, climate change, renewable energy, cost benefit analysis, resilience, cost-benefit analysis
Procedia PDF Downloads 1424622 Inclusive Education in Nigeria Prospects and Challenges
Authors: Laraba Bala Mohammed
Abstract:
Education is a very vital tool in enhancement of the general development of individuals in the society who would participate effectively in national development processes, including people with special need, educating children with special needs is one of the greatest challenges of this millennium, this is because professionals in the field of special education are operating in an exciting and rapidly changing phenomenon. Inclusive education in Nigeria is not a new development in the teaching and learning process, but the most important aspect is the utilization and effective integration of people with special needs in the society. This paper focuses on the need of parents, government, professionals in the field of special education and stakeholders to work together for the full implementation of inclusive education in Nigeria.Keywords: inclusive education, national policy, education, special needs
Procedia PDF Downloads 50724621 Probability Sampling in Matched Case-Control Study in Drug Abuse
Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell
Abstract:
Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling
Procedia PDF Downloads 49324620 Film Diplomacy: An Approach to International Relations
Authors: Lawrence Akande
Abstract:
Despite the efforts of African countries' governments and the foreign countries' governments, there are cautions between the people of Africa and the people of other countries. The cautions are based on the ideology of misconception, which comes from the narratives about Africa and African people and narratives about other people also. The film is a medium of educating people about people from foreign countries they have never been to. Negative or misconceived narratives about a people will affect the relations between the peoples, despite the efforts of the government. Using pop-culture medium of film as a diplomatic tool will promote mutual understanding and respect.Keywords: film diplomacy, international relations, narratives, Nollywood, partnership
Procedia PDF Downloads 20324619 Bioinformatics High Performance Computation and Big Data
Authors: Javed Mohammed
Abstract:
Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.Keywords: high performance, big data, parallel computation, molecular data, computational biology
Procedia PDF Downloads 36424618 Evaluating the Effectiveness of Science Teacher Training Programme in National Colleges of Education: a Preliminary Study, Perceptions of Prospective Teachers
Authors: A. S. V Polgampala, F. Huang
Abstract:
This is an overview of what is entailed in an evaluation and issues to be aware of when class observation is being done. This study examined the effects of evaluating teaching practice of a 7-day ‘block teaching’ session in a pre -service science teacher training program at a reputed National College of Education in Sri Lanka. Effects were assessed in three areas: evaluation of the training process, evaluation of the training impact, and evaluation of the training procedure. Data for this study were collected by class observation of 18 teachers during 9th February to 16th of 2017. Prospective teachers of science teaching, the participants of the study were evaluated based on newly introduced format by the NIE. The data collected was analyzed qualitatively using the Miles and Huberman procedure for analyzing qualitative data: data reduction, data display and conclusion drawing/verification. It was observed that the trainees showed their confidence in teaching those competencies and skills. Teacher educators’ dissatisfaction has been a great impact on evaluation process.Keywords: evaluation, perceptions & perspectives, pre-service, science teachering
Procedia PDF Downloads 31524617 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 41424616 Generalized Approach to Linear Data Transformation
Authors: Abhijith Asok
Abstract:
This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.Keywords: data transformation, dummy dimension, linear transformation, scaling
Procedia PDF Downloads 29824615 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health
Authors: Minna Pikkarainen, Yueqiang Xu
Abstract:
The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.Keywords: blockchain, health data, platform, action design
Procedia PDF Downloads 10024614 Analysis of the Demographic Variable Associated with Common Pregnancy Related Illnesses among Pregnant Mothers in Anambra
Authors: Nkiru Nnaemezie, J. O. Okafor
Abstract:
The high mortality as a result of pregnancy related illnesses is a global public health problem and a source of concern to most countries including Nigeria. This study was therefore designed to determine the Demographic Variables associated with common pregnancy related illnesses among pregnant mothers in Awka South Local Government Area of Anambra State. The design of the study was an expost-facto research design. All the folders of the pregnant mothers that were studied from 2010-2014 formed the population of the study which included 10,250 folders. Based on the content of the folders, a researcher developed pro-forma (RDP) was used for data collection. Five research questions and five hypotheses were postulated for the study. Research questions postulated were answered using simple percentage. Hypotheses stated were analyzed at 0.05 level of significance using chi-square (X²) statistics. The result among others showed that pregnant mothers within 15-29 years had the most pregnancy related illnesses than mothers on other age brackets. Pregnant mothers with 0-1 parity level experienced the most pregnancy related illnesses than mothers on other parity levels. Public servants experienced the most pregnancy related illnesses than mothers in other occupations. Married pregnant mothers experienced the most pregnancy related illnesses than single mothers. Pregnant mothers with secondary education had the most pregnancy related illnesses than mothers in other education levels. There were significant differences in the common pregnancy related illnesses among the pregnant mothers of the study in relation to the demographic variables of the study which included age, parity, occupation, marital status and educational level. Based on the findings, conclusions were drawn, and the following recommendations among others were made: there is need for health education in terms of educating those pregnant mothers during antenatal clinics; single mothers should be advised to register for antenatal early enough.Keywords: analysis, demographic variables, pregnancy related illnesses, pregnant mothers
Procedia PDF Downloads 25824613 The Environmental and Socio Economic Impacts of Mining on Local Livelihood in Cameroon: A Case Study in Bertoua
Authors: Fongang Robert Tichuck
Abstract:
This paper reports the findings of a study undertaken to assess the socio-economic and environmental impacts of mining in Bertoua Eastern Region of Cameroon. In addition to sampling community perceptions of mining activities, the study prescribes interventions that can assist in mitigating the negative impacts of mining. Marked environmental and interrelated socio-economic improvements can be achieved within regional artisanal gold mines if the government provides technical support to local operators, regulations are improved, and illegal mining activity is reduced.Keywords: gold mining, socio-economic, mining activities, local people
Procedia PDF Downloads 396