Search results for: resilience engineering
1069 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel
Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew
Abstract:
Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD
Procedia PDF Downloads 2141068 Thermoplastic Polyurethane/Barium Titanate Composites
Authors: Seyfullah Madakbaş, Ferhat Şen, Memet Vezir Kahraman
Abstract:
The aim of this study was to improve thermal stability, mechanical and surface properties of thermoplastic polyurethane (TPU) with the addition of BaTiO3. The TPU/ BaTiO3 composites having various ratios of TPU and BaTiO3 were prepared. The chemical structure of the prepared composites was investigated by FT-IR. FT-IR spectra of TPU/ barium titanate composites show that they successfully were prepared. Thermal stability of the samples was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The prepared composites showed high thermal stability, and the char yield increased as barium titanate content increased. The glass transition temperatures of the composites rise with the addition of barium titanate. Mechanical properties of the samples were characterized with stress-strain test. The mechanical properties of the TPU were increased with the contribution of the contribution of the barium titanate it increased. Hydrophobicity of the samples was determined by the contact angle measurements. The contact angles have the tendency to increase the hydrophobic behavior on the surface, when barium titanate was added into TPU. Moreover, the surface morphology of the samples was investigated by a scanning electron microscopy (SEM). SEM-EDS mapping images showed that barium titanate particles were dispersed homogeneously. Finally, the obtained results prove that the prepared composites have good thermal, mechanical and surface properties and that they can be used in many applications such as the electronic devices, materials engineering and other emergent.Keywords: barium titanate, composites, thermoplastic polyurethane, scanning electron microscopy
Procedia PDF Downloads 3291067 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos
Authors: Hatthaphone Silimanotham, Michael Henry
Abstract:
The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling
Procedia PDF Downloads 1591066 Permanent Reduction of Arc Flash Energy to Safe Limit on Line Side of 480 Volt Switchgear Incomer Breaker
Authors: Abid Khan
Abstract:
A recognized engineering challenge is related to personnel protection from fatal arc flash incident energy in the line side of the 480-volt switchgear incomer breakers during maintenance activities. The incident energy is typically high due to slow fault clearance, and it can be higher than the available personnel protective equipment (PPE) ratings. A fault in this section of the switchgear is cleared by breakers or fuses in the upstream higher voltage system (4160 Volt or higher). The current reflection in the higher voltage upstream system for a fault in the 480-volt switchgear is low, the clearance time is slower, and the inversely proportional incident energy is hence higher. The installation of overcurrent protection at a 480-volt system upstream of the incomer breaker will operate fast enough and trips the upstream higher voltage breaker when a fault develops at the incomer breaker. Therefore, fault current reduction as reflected in the upstream higher voltage system is eliminated. Since the fast overcurrent protection is permanently installed, it is always functional, does not require human interventions, and eliminates exposure to human errors. It is installed at the maintenance activities location, and its operations can be locally monitored by craftsmen during maintenance activities.Keywords: arc flash, mitigation, maintenance switch, energy level
Procedia PDF Downloads 1941065 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning
Authors: Pooja Khanal, Huaming Zhang
Abstract:
Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.Keywords: bug classification, bug labels, GitHub issues, semantic differences
Procedia PDF Downloads 2011064 Sustainability of Performing Venues Considering Urban Connectivity and Facility Utilization
Authors: Wei-Hwa Chiang, Wei-Ting Hsu, Yuan-Chi Liu, Cheng-Che Tsai
Abstract:
A sustainable built environment aims for minimizing both regional and global environmental impact while maintaining a healthy living for individuals. Sustainability of performing venues has rarely been discussed when compared with residential, office, and other popular building types. Life-cycle carbon emission due to the high standard requirements in acoustics, stage engineering, HVAC, and building structure need to be carefully examined. This can be complicated by social-economic and cultural concerns in addition to technical excellence. This paper reported case-based study and statistics of performing venues regarding urban connectivity and spatial layouts in enhancing facility usage and promoting cultural vitality. Interviews conducted for a major venue at Taipei indicated high linkage with surrounding leisure activity and the need for quality pedestrian and additional spaces open to the general public. Statistics of venues with various size and function suggested the possibility and strategies limit the size and height of reception and foyer spaces, and to maximize their use when there are no performances. Design strategies are identified to increase visual contact or facility sharing between the artists and the audience or the general public in reducing facility size and promoting potential involvement in cultural activities.Keywords: sustainability, performing venue, design, operation
Procedia PDF Downloads 1211063 Course Outcomes to Programme Outcomes Mapping: A Methodology Based on Key Elements
Authors: Twarakavi Venkata Suresh Kumar, Sailaja Kumar, B. Eswara Reddy
Abstract:
In a world of tremendous technical developments, effective and efficient higher education has always been a major challenge. The rising number of educational institutions have made it mandatory for healthy competitions among the institutions. To evaluate the qualitative competence of these educations institutions in engineering and technology and related disciplines, an efficient assessment technique in internal and external quality has to be followed. To achieve this, the curriculum is to be developed into courses, and each course has to be presented in the form teaching lesson plan consisting of topics and session outcome known as Course Outcomes (COs), that easily map into different Programme Outcomes (POs). The major objective of these methodologies is to provide quality technical education to its students. Detailed clear weightage in CO-PO mapping helps in proper measurable COs and to devise the POs attainment is an important issue. This ensures in assisting the achievement of the POs with proper weightage to POs, and also improves the successive curriculum development. In this paper, we presented a methodology for mapping CO and PO considering the key elements supported by each PO. This approach is useful in evaluating the attainment of POs which is based on the attainment of COs using the existing data from students' marks taken from various test items. Such direct assessment tools are used to measure the degree to which each student has achieved each course learning outcome by the completion of the course. Hence, these results are also useful in measuring the PO attainment for improving the programme vision and mission.Keywords: attainment, course outcomes, programme outcomes, educational institutions
Procedia PDF Downloads 4651062 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 4411061 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus
Authors: Mrinmoy Majumder, Apu Kumar Saha
Abstract:
The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering
Procedia PDF Downloads 4791060 Students’ Perception of Effort and Emotional Costs in Chemistry Courses
Authors: Guizella Rocabado, Cassidy Wilkes
Abstract:
It is well known that chemistry is one of the most feared courses in college. Although many students enjoy learning about science, most of them perceive that chemistry is “too difficult”. These perceptions of chemistry result in many students not considering Science, Technology, Engineering, and Mathematics (STEM) majors because they require chemistry courses. Ultimately, these perceptions are also thought to be related to high attrition rates of students who begin STEM majors but do not persist. Students perceived costs of a chemistry class can be many, such as task effort, loss of valued alternatives, emotional, and others. These costs might be overcome by students’ interests and goals, yet the level of perceived costs might have a lasting impact on the students’ overall perception of chemistry and their desire to pursue chemistry and other STEM careers in the future. In this mixed methods study, we investigated task effort and emotional cost, as well as a mastery or performance goal orientation, and the impact these constructs may have on achievement in general chemistry classrooms. Utilizing cluster analysis as well as student interviews, we investigated students’ profiles of perceived cost and goal orientation as it relates to their final grades. Our results show that students who are well prepared for general chemistry, such as those who have taken chemistry in high school, display less negative perceived costs and thus believe they can master the material more fully. Other interesting results have also emerged from this research, which has the potential to have an impact on future instruction of these courses.Keywords: chemistry education, motivation, affect, perceived costs, goal orientations
Procedia PDF Downloads 911059 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance
Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na
Abstract:
Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA
Procedia PDF Downloads 3211058 Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques
Authors: Mohd Asim, K. Nageswara Rao
Abstract:
The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east.Keywords: river migration, remote sensing, river Yamuna, anthropogenic impacts, DSAS, Delhi-NCR
Procedia PDF Downloads 1241057 Reliability-Based Method for Assessing Liquefaction Potential of Soils
Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty
Abstract:
This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated.Keywords: liquefaction, reliability analysis, chalos area, civil and structural engineering
Procedia PDF Downloads 4701056 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings
Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov
Abstract:
At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity
Procedia PDF Downloads 2581055 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile
Procedia PDF Downloads 1521054 Academic Skills Enhancement in Secondary School Students Undertaking Tertiary Studies
Authors: Richard White, Anne Drabble, Maureen O’Neill
Abstract:
The University of the Sunshine Coast (USC) offers secondary school students in the final two years of school (Years 11 and 12, 16 – 18 years of age) an opportunity to participate in a program which provides an accelerated pathway to tertiary studies. Whilst still at secondary school, the students undertake two first year university subjects that are required subjects in USC undergraduate degree programs. The program is called Integrated Learning Pathway (ILP) and offers a range of disciplines, including business, design, drama, education, and engineering. Between 2010 and 2014, 38% of secondary students who participated in an ILP program commenced undergraduate studies at USC following completion of secondary school studies. The research reported here considers “before and after” literacy and numeracy competencies of students to determine what impact participation in the ILP program has had on their academic skills. Qualitative and quantitative data has been gathered via numeracy and literacy testing of the students, and a survey asking the students to self-evaluate their numeracy and literacy skills, and reflect on their views of these academic skills. The research will enable improved targeting of teaching strategies so that students will acquire not only course-specific learning outcomes but also collateral academic skills. This enhancement of academic skills will improve undergraduate experience and improve student retention.Keywords: academic skills enhancement, accelerated pathways, improved teaching, student retention
Procedia PDF Downloads 3081053 Requirements Management in Agile
Authors: Ravneet Kaur
Abstract:
The concept of Agile Requirements Engineering and Management is not new. However, the struggle to figure out how traditional Requirements Management Process fits within an Agile framework remains complex. This paper talks about a process that can merge the organization’s traditional Requirements Management Process nicely into the Agile Software Development Process. This process provides Traceability of the Product Backlog to the external documents on one hand and User Stories on the other hand. It also gives sufficient evidence that the system will deliver the right functionality with good quality in the form of various statistics and reports. In the nutshell, by overlaying a process on top of Agile, without disturbing the Agility, we are able to get synergic benefits in terms of productivity, profitability, its reporting, and end to end visibility to all Stakeholders. The framework can be used for just-in-time requirements definition or to build a repository of requirements for future use. The goal is to make sure that the business (specifically, the product owner) can clearly articulate what needs to be built and define what is of high quality. To accomplish this, the requirements cycle follows a Scrum-like process that mirrors the development cycle but stays two to three steps ahead. The goal is to create a process by which requirements can be thoroughly vetted, organized, and communicated in a manner that is iterative, timely, and quality-focused. Agile is quickly becoming the most popular way of developing software because it fosters continuous improvement, time-boxed development cycles, and more quickly delivering value to the end users. That value will be driven to a large extent by the quality and clarity of requirements that feed the software development process. An agile, lean, and timely approach to requirements as the starting point will help to ensure that the process is optimized.Keywords: requirements management, Agile
Procedia PDF Downloads 3701052 Vehicular Speed Detection Camera System Using Video Stream
Authors: C. A. Anser Pasha
Abstract:
In this paper, a new Vehicular Speed Detection Camera System that is applicable as an alternative to traditional radars with the same accuracy or even better is presented. The real-time measurement and analysis of various traffic parameters such as speed and number of vehicles are increasingly required in traffic control and management. Image processing techniques are now considered as an attractive and flexible method for automatic analysis and data collections in traffic engineering. Various algorithms based on image processing techniques have been applied to detect multiple vehicles and track them. The SDCS processes can be divided into three successive phases; the first phase is Objects detection phase, which uses a hybrid algorithm based on combining an adaptive background subtraction technique with a three-frame differencing algorithm which ratifies the major drawback of using only adaptive background subtraction. The second phase is Objects tracking, which consists of three successive operations - object segmentation, object labeling, and object center extraction. Objects tracking operation takes into consideration the different possible scenarios of the moving object like simple tracking, the object has left the scene, the object has entered the scene, object crossed by another object, and object leaves and another one enters the scene. The third phase is speed calculation phase, which is calculated from the number of frames consumed by the object to pass by the scene.Keywords: radar, image processing, detection, tracking, segmentation
Procedia PDF Downloads 4671051 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion
Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri
Abstract:
In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price, and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of the sandwich panel on the maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.Keywords: finite element, honeycomb FRP sandwich panel, torsion, civil engineering
Procedia PDF Downloads 4181050 Revolutionizing Mobility: Decoding Electric Vehicles (EVs) and Hydrogen Fuel Cell Vehicles (HFCVs)
Authors: Samarjeet Singh, Shubhank Arya, Shubham Chauhan
Abstract:
In recent years, the rise in carbon emissions and the widespread effects of global warming have brought new energy vehicles into the spotlight. Electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs), both producing zero tailpipe emissions, are seen as promising alternatives. This paper examines the working, structural characteristics, and safety designs of EVs and HFCVs, comparing their carbon emissions, charging infrastructure, energy efficiency, and safety features. The analysis reveals that both EVs and HFCVs significantly reduce carbon emissions and enhance safety compared to traditional vehicles, with EVs showing greater emission reductions. Moreover, EVs are advancing more rapidly in terms of charging infrastructure compared to hydrogen energy vehicles. However, HFCVs exhibit lower energy efficiency than EVs. In terms of safety, both types surpass conventional vehicles, though EVs are more prone to overheating and fire hazards due to battery design issues. Current research suggests that EV technology and its supporting infrastructure are more comprehensive, cost-effective, and efficient in reducing carbon emissions. With continued investment in the development of new energy vehicles and potential advancements in hydrogen energy production, the future for HFCVs appears promising. The paper also expresses optimism for innovative solutions that could accelerate the growth of hydrogen energy vehicles.Keywords: electric vehicles, fuel cell electric vehicles, automotive engineering, energy transition
Procedia PDF Downloads 451049 Correlations Between Electrical Resistivity and Some Properties of Clayey Soils
Authors: F. A. Hassona, M. M. Abu-Heleika, M. A. Hassan, A. E. Sidhom
Abstract:
Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements.Keywords: electrical resistivity, clayey soil, physical properties, shear properties
Procedia PDF Downloads 2971048 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt
Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa
Abstract:
The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults
Procedia PDF Downloads 4271047 The Image of a Flight Attendant Career: A Case Study of High School Students in Bangkok, Thailand
Authors: Kevin Wongleedee
Abstract:
The purposes of this research were to study the image of a flight attendant career from the perspective of high school students in Bangkok and to study the level of interest to pursue a flight attendant career. A probability random sampling of 400 students was utilized. Half the sample group came from private high schools and the other half came from public high schools. A questionnaire was used to collect the data and small in-depth interviews were also used to get their opinions about the image and their level of interest in the flight attendant career. The findings revealed that the majority of respondents had a medium level of interest in the flight attendant career. High school students who majored in Math-English were more interested in a flight attendant career than high school students who majored in Science-Math with a 0.05 level of significance. The image of flight attendant career was rated as a good career with a chance to travel to many countries. The image of flight attendance career can be ranked as follows: a career with a chance to travel, a career with ability to speak English, a career that requires punctuality, a career with a good service mind, and a career with an understanding of details. The findings from the in-depth interviews revealed that the major obstacles that prevented high school students from choosing a flight attendant as a career were their ability to speak English, their body proportions, and lack of information.Keywords: flight attendant, high school students, image, media engineering
Procedia PDF Downloads 3691046 From Wave-Powered Propulsion to Flight with Membrane Wings: Insights Powered by High-Fidelity Immersed Boundary Methods based FSI Simulations
Authors: Rajat Mittal, Jung Hee Seo, Jacob Turner, Harshal Raut
Abstract:
The perpetual advancement in computational capabilities, coupled with the continuous evolution of software tools and numerical algorithms, is creating novel avenues for research, exploration, and application at the nexus of computational fluid and structural mechanics. Fish leverage their remarkably flexible bodies and fins to harness energy from vortices, propelling themselves with an elegance and efficiency that captivates engineers. Bats fly with unparalleled agility and speed by using their flexible membrane wings. Wave-assisted propulsion (WAP) systems, utilizing elastically mounted hydrofoils, convert wave energy into thrust. Each of these problems involves a complex and elegant interplay between fluid dynamics and structural mechanics. Historically, investigations into such phenomena were constrained by available tools, but modern computational advancements now facilitate exploration of these multi-physics challenges with an unprecedented level of fidelity, precision, and realism. In this work, the author will discuss projects that harness the capabilities of high-fidelity sharp-interface immersed boundary methods to address a spectrum of engineering and biological challenges involving fluid-structure interaction.Keywords: immersed boundary methods, CFD, bioflight, fluid structure interaction
Procedia PDF Downloads 701045 The Contact Behaviors of Seals Under Combined Normal and Tangential Loading: A Multiscale Finite Element Contact Analysis
Authors: Runliang Wang, Jianhua Liu, Duo Jia, Xiaoyu Ding
Abstract:
The contact between sealing surfaces plays a vital role in guaranteeing the sealing performance of various seals. To date, analyses of sealing structures have rarely considered both structural parameters (macroscale) and surface roughness information (microscale) of sealing surfaces due to the complex modeling process. Meanwhile, most of the contact analyses applied to seals were conducted only under normal loading, which still existssome distance from real loading conditions in engineering. In this paper, a multiscale rough contact model, which took both macrostructural parameters of seals and surface roughness information of sealing surfaces into consideration for the cone-cone seal, was established. By using the finite element method (FEM), the combined normal and tangential loading was applied to the model to simulate the assembly process of the cone-cone seal. The evolution of the contact behaviors during the assembly process, such as the real contact area (RCA), the distribution of contact pressure, and contact status, are studied in detail. The results showed the non-linear relationship between the RCA and the load, which was different from the normal loading cases. In addition, the evolution of the real contact area of cone-cone seals with isotropic and anisotropic rough surfaces are also compared quantitatively.Keywords: contact mechanics, FEM, randomly rough surface, real contact area, sealing
Procedia PDF Downloads 1831044 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm
Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri
Abstract:
This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction
Procedia PDF Downloads 311043 Efficiency of Membrane Distillation to Produce Fresh Water
Authors: Sabri Mrayed, David Maccioni, Greg Leslie
Abstract:
Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently, two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting a thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. In order to determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 %, and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However, it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.Keywords: desalination, exergy, membrane distillation, second law efficiency
Procedia PDF Downloads 3641042 Observations on Cultural Alternative and Environmental Conservation: Populations "Delayed" and Excluded from Health and Public Hygiene Policies in Mexico (1890-1930)
Authors: Marcela Davalos Lopez
Abstract:
The history of the circulation of hygienic knowledge and the consolidation of public health in Latin American cities towards the end of the 19th century is well known. Among them, Mexico City was inserted in international politics, strengthened institutions, medical knowledge, applied parameters of modernity and built sanitary engineering works. Despite the power that this hygienist system achieved, its scope was relative: it cannot be generalized to all cities. From a comparative and contextual analysis, it will be shown that conclusions derived from modern urban historiography present, from our contemporary observations, fractures. Between 1890 and 1930, the small cities and areas surrounding the Mexican capital adapted in their own way the international and federal public health regulations. This will be shown for neighborhoods located around Mexico City and in a medium city, close to the Mexican capital (about 80 km), called Cuernavaca. While the inhabitants of the neighborhoods kept awaiting the evolutionary process and the forms that public hygiene policies were taking (because they were witnesses and affected in their territories), in Cuernavaca, the dictates came as an echo. While the capital was drained, large roads were opened, roundabouts were erected, residents were expelled, and drains, sewers, drinking water pipes, etc., were built; Cuernavaca was sheltered in other times and practices. What was this due to? Undoubtedly, the time and energy that it took politicians and the group of "scientists" to carry out these enormous works in the Mexican capital took them away from addressing the issue in remote villages. It was not until the 20th century that the federal hygiene policy began to be strengthened. Despite this, there are other factors that emphasize the particularities of each site. I would like to draw attention here to the different receptions that each town prepared on public hygiene. We will see that Cuernavaca responded to its own semi-rural culture, history, orography and functions, prolonging for much longer, for example, the use of its deep ravines as sewers. For their part, the neighborhoods surrounding the capital, although affected and excluded from hygienist policies, chose to move away from them and solve the deficiencies with their own resources (they resorted to the waste that was left from the dried lake of Mexico to continue their lake practices). All of this points to a paradox that shapes our contemporary concerns: on the one hand, the benefits derived from medical knowledge and its technological applications (in this work referring particularly to the urban health system) and, on the other, the alteration it caused in environmental settings. Places like Cuernavaca (classified by the nineteenth-century and hygienists of the first decades of the twentieth century as backward), as well as landscapes such as neighborhoods, affected by advances in sanitary engineering, keep in their memory buried practices that we observe today as possible ways to reestablish environmental balances: alternative uses of water; recycling of organic materials; local uses of fauna; various systems for breaking down excreta, and so on. In sum, what the nineteenth and first half of the twentieth centuries graduated as levels of backwardness or progress, turn out to be key information to rethink the routes of environmental conservation. When we return to the observations of the scientists, politicians and lawyers of that period, we find historically rejected cultural alterity. Populations such as Cuernavaca that, due to their history, orography and/or insufficiency of federal policies, kept different relationships with the environment, today give us clues to reorient basic elements of cities: alternative uses of water, waste of raw materials, organic or consumption of local products, among others. It is, therefore, a matter of unearthing the rejected that cries out to emerge to the surface.Keywords: sanitary hygiene, Mexico city, cultural alterity, environmental conservation, environmental history
Procedia PDF Downloads 1641041 Application of Carbon Nanotube and Nanowire FET Devices in Future VLSI
Authors: Saurabh Chaudhury, Sanjeet Kumar Sinha
Abstract:
The MOSFET has been the main building block in high performance and low power VLSI chips for the last several decades. Device scaling is fundamental to technological advancements, which allows more devices to be integrated on a single die providing greater functionality per chip. Ultimately, the goal of scaling is to build an individual transistor that is smaller, faster, cheaper, and consumes less power. Scaling continued following Moore's law initially and now we see an exponential growth in today's nano scaled chip. However, device scaling to deep nano meter regime leads to exponential increase in leakage currents and excessive heat generation. Moreover, fabrication process variability causing a limitation to further scaling. Researchers believe that with a mix of chemistry, physics, and engineering, nano electronics may provide a solution to increasing fabrication costs and may allow integrated circuits to be scaled beyond the limits of the modern transistor. Carbon nano tube (CNT) and nano wires (NW) based FETs have been analyzed and characterized in laboratory and also been demonstrated as prototypes. This work presents an extensive simulation based study and analysis of CNTFET and NW-FET devices and comparison of the results with conventional MOSFET. From this study, we can conclude that these devices have got some excellent properties and favorable characteristics which will definitely lead the future semiconductor devices in post silicon era.Keywords: carbon nanotube, nanowire FET, low power, nanoscaled devices, VLSI
Procedia PDF Downloads 4111040 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 173