Search results for: optical properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9736

Search results for: optical properties

6916 Numerical Study of Heat Transfer Nanofluid TiO₂ through a Solar Flat Plate Collector

Authors: A. Maouassi, A. Beghidja, S. Daoud, N. Zeraibi

Abstract:

This paper illustrates a practical application of nanoparticles (TiO₂) as working fluid to stimulate solar flat plate collector efficiency with heat transfer modification properties. A numerical study of nanofluids laminar forced convection, permanent and stationary, is conducted in a solar flat plate collector. The effectiveness of these nanofluids are compared to conventional working fluid (water), wherein the dynamic and thermal properties are evaluated for four volume concentrations of nanoparticles (1%, 3%, 5% and 10%), and this done for Reynolds number from 25 to 800. Results from the application of those nonfluids are obtained versus pressure drop coefficient and Nusselt number are discussed later in this paper. Finally, we concluded that the heat transfer increases with increasing both nanoparticles concentration and Reynolds number.

Keywords: CFD, forced convection, nanofluid, solar flat plate collector efficiency, TiO₂ nanoparticles

Procedia PDF Downloads 147
6915 The Survival of Bifidobacterium longum in Frozen Yoghurt Ice Cream and Its Properties Affected by Prebiotics (Galacto-Oligosaccharides and Fructo-Oligosaccharides) and Fat Content

Authors: S. Thaiudom, W. Toommuangpak

Abstract:

Yoghurt ice cream (YIC) containing prebiotics and probiotics seems to be much more recognized among consumers who concern for their health. Not only can it be a benefit on consumers’ health but also its taste and freshness provide people easily accept. However, the survival of such probiotic especially Bifidobacterium longum, found in human gastrointestinal tract and to be benefit to human gut, was still needed to study in the severe condition as whipping and freezing in ice cream process. Low and full-fat yoghurt ice cream containing 2 and 10% (w/w) fat content (LYIC and FYIC), respectively was produced by mixing 20% yoghurt containing B. longum into milk ice cream mix. Fructo-oligosaccharides (FOS) or galacto-oligosaccharides (GOS) at 0, 1, and 2% (w/w) were separately used as prebiotic in order to improve the survival of B. longum. Survival of this bacteria as a function of ice cream storage time and ice cream properties were investigated. The results showed that prebiotic; especially FOS could improve viable count of B. longum. The more concentration of prebiotic used, the more is the survival of B. Longum. These prebiotics could prolong the survival of B. longum up to 60 days, and the amount of survival number was still in the recommended level (106 cfu per gram). Fat content and prebiotic did not significantly affect the total acidity and the overrun of all samples, but an increase of fat content significantly increased the fat particle size which might be because of partial coalescence found in FYIC rather than in LYIC. However, addition of GOS or FOS could reduce the fat particle size, especially in FYIC. GOS seemed to reduce the hardness of YIC rather than FOS. High fat content (10% fat) significantly influenced on lowering the melting rate of YIC better than 2% fat content due to the 3-dimension networks of fat partial coalescence theoretically occurring more in FYIC than in LYIC. However, FOS seemed to retard the melting rate of ice cream better than GOS. In conclusion, GOS and FOS in YIC with different fat content can enhance the survival of B. longum and affect physical and chemical properties of such yoghurt ice cream.

Keywords: Bifidobacterium longum, prebiotic, survival, yoghurt ice cream

Procedia PDF Downloads 135
6914 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement

Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu

Abstract:

Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8, and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4, and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder Rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.

Keywords: crumb rubber, dry process, hot mix asphalt, wet process

Procedia PDF Downloads 353
6913 Synthesis and Characterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging Application

Authors: Adeshina Fadeyibi

Abstract:

Application of pure thermoplastic film in food packaging is greatly limited because of its poor service performance, often enhanced by the addition of organic or inorganic particles in the range of 1–100 nm. Thus, this study was conducted to develop cassava starch zinc-nanocomposite films for applications in food packaging. Three blending ratios of 1000 g cassava starch, 45–55 % (w/w) glycerol and 0–2 % (w/w) zinc nanoparticles were formulated, mixed and mechanically homogenized to form the nanocomposite. Thermoplastic were prepared, from a dispersed mixture of 24 g of the nanocomposite and 600 ml of distilled water, and heated to 90oC for 30 minutes. Plastic molds of 350 ×180 mm dimension and 8, 10 and 12 mm depths were used for film casting and drying at 60oC and 80 % RH for 24 hour. The average thicknesses of the dried films were found to be 15, 16 and 17 µm. The films were characterized based on their barrier, thermal, mechanical and structural properties. The results show that the oxygen and water vapor barrier properties increased with glycerol concentration and decreased with thickness; but the full width at half maximum (FWHM) and d- spacing increased with thickness. The higher degree of d- spacing obtained is a consequence of higher polymer intercalation and exfoliation. Also, only 2 % weight degradation was observed when the films were exposed to temperature between 30–60oC; indicating that they are thermally stable and can be used for packaging applications in the tropics. The mechanical properties of the film were higher than that of the pure thermoplastic but comparable with the LDPE films. The information on the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justifies their alternative application to pure thermoplastic and conventional films for food packaging.

Keywords: synthesis, characterization, casaava Starch, nanocomposite film, packaging

Procedia PDF Downloads 96
6912 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia

Authors: David Robert Irvine

Abstract:

In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.

Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear

Procedia PDF Downloads 144
6911 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 132
6910 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 182
6909 Core-Shell Nanofibers for Prevention of Postsurgical Adhesion

Authors: Jyh-Ping Chen, Chia-Lin Sheu

Abstract:

In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.

Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers

Procedia PDF Downloads 162
6908 Fabrication of Cellulose Acetate/Polyethylene Glycol Membranes Blended with Silica and Carbon Nanotube for Desalination Process

Authors: Siti Nurkhamidah, Yeni Rahmawati, Fadlilatul Taufany, Eamor M. Woo, I Made P. A. Merta, Deffry D. A. Putra, Pitsyah Alifiyanti, Krisna D. Priambodo

Abstract:

Cellulose acetate/polyethylene glycol (CA/PEG) membrane was modified with varying amount of silica and carbon nanotube (CNT) to enhance its separation performance in the desalination process. These composite membranes were characterized for their hydrophilicity, morphology and permeation properties. The experiment results show that hydrophilicity of CA/PEG/Silica membranes increases with the increasing of silica concentration and the decreasing particle size of silica. From Scanning Electron Microscopy (SEM) image, it shows that pore structure of CA/PEG membranes increases with the addition of silica. Membrane performance analysis shows that permeate flux, salt rejection, and permeability of membranes increase with the increasing of silica concentrations. The effect of CNT on the hydrophylicity, morphology, and permeation properties was also discussed.

Keywords: carbon nanotube, cellulose acetate, desalination, membrane, PEG

Procedia PDF Downloads 305
6907 Characterization of Carbazole-Based Host Material for Highly Efficient Thermally Activated Delayed Fluorescence Emitter

Authors: Malek Mahmoudi, Jonas Keruckas, Dmytro Volyniuk, Jurate Simokaitiene, Juozas V. Grazulevicius

Abstract:

Host materials have been discovered as one of the most appealing methods for harvesting triplet states in organic materials for application in organic light-emitting diodes (OLEDs). The ideal host-guest system for emission in thermally delayed fluorescence OLEDs with 20% guest concentration for efficient energy transfer has been demonstrated in the present investigation. In this work, 3,3'-bis[9-(4-fluorophenyl) carbazole] (bFPC) has been used as the host, which induces balanced charge carrier transport for high-efficiency OLEDs.For providing a complete characterization of the synthesized compound, photophysical, photoelectrical, charge-transporting, and electrochemical properties of the compound have been examined. Excited-state lifetimes and singlet-triplet energy gaps were measured for characterization of photophysical properties, while thermogravimetric analysis, as well as differential scanning calorimetry measurements, were performed for probing of electrochemical and thermal properties of the compound. The electrochemical properties of this compound were investigated by cyclic voltammetry (CV) method, and ionization potential (IPCV) value of 5.68 eV was observed. UV–Vis absorption and photoluminescence spectrum of a solution of the compound in toluene (10-5 M) showed maxima at 302 and 405 nm, respectively. Photoelectron emission spectrometry was used for the characterization of charge-injection properties of the studied compound in solid. The ionization potential of this material was found to be 5.78 eV, and time-of-flight measurement was used for testing charge-transporting properties and hole mobility estimated using this technique in a vacuum-deposited layer reached 4×10-4 cm2 V-1s-1. Since the compound with high charge mobilities was tested as a host in an organic light-emitting diode. The device was fabricated by successive deposition onto a pre-cleaned indium tin oxide (ITO) coated glass substrate under a vacuum of 10-6 Torr and consisting of an indium-tin-oxide anode, hole injection and transporting layer(MoO3, NPB), emitting layer with bFPC as a host and 4CzIPN (2,4,5,6-tetra(9-carbazolyl)isophthalonitrile) which is a new highly efficient green thermally activated delayed fluorescence (TADF) material as an emitter, an electron transporting layer(TPBi) and lithium fluoride layer topped with aluminum layer as a cathode exhibited the highest maximum current efficiency and power efficiency of 33.9 cd/A and 23.5 lm/W, respectively and the electroluminescence spectrum showed only a peak at 512nm. Furthermore, the new bicarbazole-based compound was tested as a host in thermally activated delayed fluorescence organic light-emitting diodes are reaching luminance of 25300 cd m-2 and external quantum efficiency of 10.1%. Interestingly, the turn-on voltage was low enough (3.8 V), and such a device can be used for highly efficient light sources.

Keywords: thermally-activated delayed fluorescence, host material, ionization energy, charge mobility, electroluminescence

Procedia PDF Downloads 124
6906 Dermatological Study on Risk Factors for Pruritic Skin: Skin Properties of Elderly

Authors: Dianis Wulan Sari, Takeo Minematsu, Mikako Yoshida, Hiromi Sanada

Abstract:

Introduction: Pruritus is diagnosed as itching without macroscopic abnormalities on skin. It is the most skin complaint of elderly people. In the present study, we conducted a dermatological study to examine the risk factors of pruritic skin and predicted how to prevent pruritus especially in the elderly population. Pruritus is caused several types of inflammation, including epidermal innate immunity based on keratinocyte responses and acquired immunity regulated by type 1 or 2 helper T (Th) cells. The triggers of pruritus differ among inflammation types, therefore we did separately assess the pruritus-associated factors of each inflammation type in an effort to contribute to the identification of intervention targets for preventing pruritus. Therefore, this study aimed to investigate the factors related with actual condition of pruritic skin by examine the skin properties. Method: This study was conducted in elderly population of Indonesian nursing home. Basic characteristics and behaviors were obtained by interview. The properties of pruritic skin were collected by examination of skin biomarker using skin blotting as novel method of non-invasive skin assessment method and examination of skin barrier function using stratum corneum hydration and skin pH. Result: The average age of participants was 74 years with independent status was 66.8%. Age (β = -0.130, p = 0.044), cumulative lifetime sun exposure (β = 0.145, p = 0.026), bathing duration (β = 0.151, p = 0.022), clothing change frequency (β = 0.135, p = 0.029), and clothing type (β = -0.139, p = 0.021) were risk factors of pruritic skin in multivariate analysis. Conclusion: Risk factors of pruritic skin in elderly population were caused by internal factors such as skin senescence and external factors such as sun exposure, hygiene care and skin care behavior.

Keywords: aging, hygiene care, pruritus, skin care, sun exposure

Procedia PDF Downloads 210
6905 Functional Slow Release of Encapsulated Ibuprofen in Cross-linked Gellan Gum Hydrogel for Tissue Engineering Application

Authors: Nor Jannah Mohd Sebri, Khairul Anuar Mat Amin

Abstract:

Dication cross-linked gellan gum hydrogel loaded with Ibuprofen with excellent mechanical properties had been synthesized as potential candidate for non-toxic biocompatible polymer material in tissue engineering. The gellan gum hydrogel with 5% Ibuprofen had produced a slow release profile with total drug release time of 25 hours as a resulting low swelling value recorded at 22+0.5%. Its compressive strength, 200.13+21 kPa was highest of all other hydrogel ratio of 0.5% and 1.0% Ibuprofen incorporation. Young’s Modulus of the hydrogel with 5% Ibuprofen was recorded at 1.8+0.01 MPa, indicating good gel strength in which it is capable of withstanding a fair amount of subjected force during topical wound dressing application. Excellent mechanical properties, together with slow release profile, make the ibuprofen-loaded hydrogel a prospect candidate as biocompatible extracellular matrices in wound management.

Keywords: gellan gum, ibuprofen, slow drug release, hydrogel

Procedia PDF Downloads 380
6904 Hierarchical Porous Carbon Composite Electrode for High Performance Supercapacitor Application

Authors: Chia-Chia Chang, Jhen-Ting Huang, Hu-Cheng Weng, An-Ya Lo

Abstract:

This study developed a simple hierarchical porous carbon (HPC) synthesis process and used for supercapacitor application. In which, mesopore provides huge specific surface area, meanwhile, macropore provides excellent mass transfer. Thus the hierarchical porous electrode improves the charge-discharge performance. On the other hand, cerium oxide (CeO2) have also got a lot research attention owing to its rich in content, low in price, environmentally friendly, good catalytic properties, and easy preparation. Besides, a rapid redox reaction occurs between trivalent cerium and tetravalent cerium releases oxygen atom and increase the conductivity. In order to prevent CeO2 from disintegration under long-term charge-discharge operation, the CeO2 carbon porous materials were was integrated as composite material in this study. For in the ex-situ analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) analysis were adopted to identify the surface morphology, crystal structure, and microstructure of the composite. 77K Nitrogen adsorption-desorption analysis was used to analyze the porosity of each specimen. For the in-situ test, cyclic voltammetry (CV) and chronopotentiometry (CP) were conducted by potentiostat to understand the charge and discharge properties. Ragone plot was drawn to further analyze the resistance properties. Based on above analyses, the effect of macropores/mespores and the CeO2/HPC ratios on charge-discharge performance were investigated. As a result, the capacitance can be greatly enhanced by 2.6 times higher than pristine mesoporous carbon electrode.

Keywords: hierarchical porous carbon, cerium oxide, supercapacitor

Procedia PDF Downloads 107
6903 Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper

Authors: Thidarat Imyen, Paisan Kongkachuichay

Abstract:

Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%.

Keywords: Al-MCM-41, copper, nitrogen oxide, selective catalytic reduction, zinc

Procedia PDF Downloads 277
6902 Effects of Strain-Induced Melt Activation Process on the Structure and Morphology Mg₂Si in Al-15%Mg₂Si Composite

Authors: Reza Eslami-Farsani, Mohammad Alipour

Abstract:

The effect of deformation on the semisolid microstructure and degree of globularity of Al–15%Mg₂Si composite produced by the strain induced melt activation (SIMA) process was studied. Deformation of 25% was used. After deformation, the samples were heated to a temperature above the solidus and below the liquidus point and maintained in the isothermal conditions at three different temperatures (560, 580 and 595 °C) for varying time (5, 10, 20 and 40 min). The microstructural study was carried out on the alloy by the use of optical microscopy. It was observed that strain induced deformation and subsequently melt activation has caused the globular morphology of Mg₂Si particles. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 595 °C and 40 min respectively.

Keywords: deformation, semisolid, SIMA, Mg₂Si phase, modification

Procedia PDF Downloads 255
6901 Structural Magnetic Properties of Multiferroic (BiFeO3)1−x(PbTiO3)x Ceramics

Authors: Mohammad Shariq, Davinder Kaur

Abstract:

A series of multiferroic (BiFeO3)1−x(PbTiO3)x [x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5] solid solution ceramics were synthesised by conventional solid-state reaction method. Well crystalline phase has been optimized at sintering temperature of 950°C for 2 hours. X rays diffraction studies of these ceramics revealed the existence of a morphotropic phase boundary (MPB) region in this system, which exhibits co-existence of rhombohedral and tetragonal phase with a large tetragonality (c/a ratio) in the tetragonal phase region. The average grain size of samples was found to be between 1-1.5 µm. The M-H curve revealed the BiFeO3 (BFO) as antiferromanetic material whereas, induced weak ferromagnetism was observed for (BiFeO3)1−x(PbTiO3)x composites with x=0.1, 0.2, 0.3, 0.4 and 0.5 at temperature of 5 K. The results evidenced the destruction of a space-modulated spin structure in bulk materials, via substituent effects, releasing a latent magnetization locked within the cycloid. Relative to unmodified BiFeO3, modified BiFeO3-PbTiO3 -based ceramics revealed enhancement in the electric-field-induced polarization.

Keywords: BiFeO3)1−x(PbTiO3)x ceramic, multiferroic, SQUID, magnetic properties

Procedia PDF Downloads 332
6900 Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage.

Keywords: carbon nanotube, injection molding, mechanical properties, nanocomposite, polyethylene

Procedia PDF Downloads 294
6899 Asymmetric Synthesis and Biological Study of Suberosanes

Authors: Mohammad Kousara, Françoise Dumas, Rama Ibrahim, Joëlle Dubois, Joël Raingeaud

Abstract:

Suberosanes are a small group of marine natural sesquiterpenes discovered since 1996 by Boyd, Sheu and Qi from three gorgonians. Their skeleton was previously found in quadranes produced by the terrestrial fungus Aspergillus terreus. Up to date, eleven suberosanes are described from which (-)-suberosanone and (-)-suberosenol A are reaching the picomolar cytotoxicity level on human solid tumors cell lines. Due to their impressive cytotoxic properties and their limited availability, we undertook an asymmetric synthesis of the most active members of this family in order to get insight into their absolute configurations and their biological properties. The challenge of their synthesis is the regio- and stereoselective elaboration of the compact bridged tricyclic skeleton with up to five all adjacent asymmetric centers, including a central quaternary carbon one. Our strategy is based on an aza-ene-synthesis key step which is regio-and stereo-controlled by the choice of a chiral amine enantiomer. it approach is concise and flexible, the enantiopur ABC tricyclic intermediate that have been synthesized being the common precursor of suberosanes.

Keywords: suberosanes, asymmetric synthesis, sesquiterpenes, quadranes

Procedia PDF Downloads 67
6898 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites

Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il

Abstract:

Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.

Keywords: composite, flexural strength, matrix, sisal fibre

Procedia PDF Downloads 372
6897 Harnessing the Power of Mixed Ligand Complexes: Enhancing Antimicrobial Activities with Thiosemicarbazones

Authors: Sakshi Gupta, Seema Joshi

Abstract:

Thiosemicarbazones (TSCs) have garnered significant attention in coordination chemistry due to their versatile coordination modes and pharmacological properties. Mixed ligand complexes of TSCs represent a promising area of research, offering enhanced antimicrobial activities compared to their parent compounds. This review provides an overview of the synthesis, characterization, and antimicrobial properties of mixed ligand complexes incorporating thiosemicarbazones. The synthesis of mixed ligand complexes typically involves the reaction of a metal salt with TSC ligands and additional ligands, such as nitrogen- or oxygen-based ligands. Various transition metals, including copper, nickel, and cobalt, have been employed to form mixed ligand complexes with TSCs. Characterization techniques such as spectroscopy, X-ray crystallography, and elemental analysis are commonly utilized to confirm the structures of these complexes. One of the key advantages of mixed ligand complexes is their enhanced antimicrobial activity compared to pure TSC compounds. The synergistic effect between the TSC ligands and additional ligands contributes to increased efficacy, possibly through improved metal-ligand interactions or enhanced membrane permeability. Furthermore, mixed ligand complexes offer the potential for selective targeting of microbial species while minimizing toxicity to mammalian cells. This selectivity arises from the specific interactions between the metal center, TSC ligands, and biological targets within microbial cells. Such targeted antimicrobial activity is crucial for developing effective treatments with minimal side effects. Moreover, the versatility of mixed ligand complexes allows for the design of tailored antimicrobial agents with optimized properties. By varying the metal ion, TSC ligands, and additional ligands, researchers can fine-tune the physicochemical properties and biological activities of these complexes. This tunability opens avenues for the development of novel antimicrobial agents with improved efficacy and reduced resistance. In conclusion, mixed ligand complexes of thiosemicarbazones represent a promising class of compounds with potent antimicrobial activities. Further research in this field holds great potential for the development of novel therapeutic agents to combat microbial infections effectively.

Keywords: metal complex, thiosemicarbazones, mixed ligand, selective targeting, antimicrobial activity

Procedia PDF Downloads 36
6896 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines

Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya

Abstract:

Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.

Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry

Procedia PDF Downloads 299
6895 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation

Authors: A. Keshavarz, Z. Roosta

Abstract:

In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.

Keywords: paraxial group transformation, nonlocal nonlinear media, cos-Gaussian beam, ABCD law

Procedia PDF Downloads 317
6894 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 54
6893 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete

Authors: Gashaw Abebaw

Abstract:

Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.

Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan

Procedia PDF Downloads 104
6892 Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals

Authors: A. Hamza, H. Kathyayini, N. Nagaraju

Abstract:

Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites.

Keywords: amorphous metal-aluminophosphates, surface properties, acidic-basic properties, Aldol, Claisen-Shmidth condensation, jasminaldehyde, chalcone

Procedia PDF Downloads 283
6891 Effect pH on Chemical and Physical Properties of Iranian Fetta Cheese

Authors: M. Dezyani, R. Ezzati, H. Mirzaei

Abstract:

The objectives of this study were to determine the effect of pH on chemical, structural, and functional properties of Fetta cheese, and to relate changes in structure to changes in cheese unctionality. Fetta cheese was obtained from a cheese-production facility and stored at 4°C. Ten days after manufacture, the cheese was cut into blocks that were vacuum-packaged and stored for 4 d at 4°C. Cheese blocks were then high-pressure injected one, three, or five times with a 20% (wt/wt) glucono-δ-lactone solution. Successive injections were performed 24 h apart. Cheese blocks were then analyzed after 40 d of storage at 4°C. Acidulant injection decreased cheese pH from 5.3 in the uninjected cheese to 4.7 after five injections. Decreased pH increased the content of soluble calcium and slightly decreased the total calcium content of cheese. At the highest level, injection of acidulant promoted syneresis. Thus, after five injections, the moisture content of cheese decreased from 34 to 31%, which esulted in decreased cheese weight. Lowered cheese pH, 4.7 compared with 5.3, also resulted in contraction of the protein matrix. Acidulant injection decreased cheese hardness and cohesiveness, and the cheese became more crumbly.

Keywords: calcium, high-pressure injection, protein matrix, syneresis

Procedia PDF Downloads 462
6890 Evaluation of Visco-Elastic Properties and Microbial Quality of Oat-Based Dietetic Food

Authors: Uchegbu Nneka Nkechi, Okoye Ogochukwu Peace

Abstract:

The evaluation of the visco-elastic properties and microbial quality of a formulated oat-based dietetic food were investigated. Oat flour, pumpkin seed flour, carrot flour and skimmed milk powder were blended in varying proportions to formulate a product with codes OCF, which contains 70% oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 10% skimmed milk powder, OCF which contains 65 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 15 % skimmed milk powder, OCF which contains 60 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 20 % skimmed milk powder, OCF which contains 55 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 25 % skimmed milk powder and OF with 95 % oat as the commercial control. All the samples were assessed for their proximate composition, microbial quality and visco-elastic properties. The moisture content was highest at sample OF (10.73%) and lowest at OCF (7.10%) (P<0.05). Crude protein ranged from 13.38%-22.86%, with OCF having the highest (P<0.05) protein content and OF having the lowest. Crude fat was 3.74% for OCF and 6.31% for OF. Crude fiber ranged from 3.58% - 17.39% with OF having the lowest (P<0.05) fiber content and OCF having the highest. Ash content was 1.30% for OCF and 2.75% for OCF. There was no mold growth in the samples. The total viable ml/wl count ranged from 1.5×10³ cfu/g - 2.6×10³ cfu/g, with OCF having the lowest and OF having the highest (P<0.05) total viable count. The peak viscosity of the sample ranged from 75.00 cP-2895.00 cP, with OCF having the lowest and OF having the highest value. The final viscosity was 130.50 cP in OCF and 3572.50 cP in OF. The setback viscosity was 58.00 cP in OCF and 1680.50 cP in OF. The peak time was 6.93 mins in OCF to 5.57 mins in OF. There was no pasting temperature for all samples except the OF, which had 86.43. Sample OF was the highest in terms of overall acceptability. This study showed that the oat-based composite flour produced had a nutritional profile that would be acceptable for the aged population.

Keywords: dietetic, pumpkin, visco-elastic, microbial

Procedia PDF Downloads 178
6889 Pretreatment of Cattail (Typha domingensis) Fibers to Obtain Cellulose Nanocrystals

Authors: Marivane Turim Koschevic, Maycon dos Santos, Marcello Lima Bertuci, Farayde Matta Fakhouri, Silvia Maria Martelli

Abstract:

Natural fibers are rich raw materials in cellulose and abundant in the world, its use for the cellulose nanocrystals extraction is promising as an example cited is the cattail, macrophyte native weed in South America. This study deals with the pre-treatment cattail of crushed fibers, at six different methods of mercerization, followed by the use of bleaching. As a result, have found The positive effects of treating fibers by means of optical microscopy and spectroscopy, Fourier transform (FTIR). The sample selected for future testing of cellulose nanocrystals extraction was treated in 2.5% NaOH for 2 h, 60 °C in the first stage and 30vol H2O2, NaOH 5% in the proportion 30/70% (v/v) for 1 hour 60 °C, followed by treatment at 50/50% (v/v) 15 minutes, 50°C, with the same constituents of the solution.

Keywords: cellulose nanocrystal, chemical treatment, mercerization, natural fibers

Procedia PDF Downloads 267
6888 Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity

Authors: Muna Alghabshi, Edmana Krishnan

Abstract:

A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method.

Keywords: Jacobi elliptic function, mapping methods, nonlinear Schrodinger Equation, tanh method

Procedia PDF Downloads 297
6887 Recycling of Post-Industrial Cotton Wastes: Quality and Rotor Spinning of Reclaimed Fibers

Authors: Béchir Wanassi, Béchir Azzouz, Taher Halimi, Mohamed Ben Hassen

Abstract:

Mechanical recycling of post-industrial cotton yarn wastes, as well as the effects of passage number on the properties of reclaimed fibers, have been investigated. A new Modified Fiber Quality Index (MFQI) and Spinning Consistency Index (MSCI) for the characterization of the quality are presented. This index gives the real potential of spinnability according to its physical properties. The best quality of reclaimed fibers (after 7th passage) was used to produce rotor yarns. 100% recycling cotton yarns were produced in open-end spinning system with different rotor speed (i.e. 65000, 70000, and 80000 rpm), opening roller speed (i.e. 7700, 8200, and 8700 rpm) and twist factor (i.e. 137, 165, and 183). The effects of spinning parameters were investigated to evaluate a 100% recycling cotton yarns quality (TQI, hairiness, thin places, and thick places) using DOE method.

Keywords: cotton wastes, DOE, mechanical recycling, rotor spinning

Procedia PDF Downloads 284