Search results for: electronic transport
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3539

Search results for: electronic transport

719 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis

Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc

Abstract:

Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.

Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation

Procedia PDF Downloads 206
718 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts

Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu

Abstract:

Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.

Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria

Procedia PDF Downloads 70
717 Youth Voices on Experiences of (Dis)Advantage: A Case Study at a South African University

Authors: Oliver T. Gore

Abstract:

Social inequalities and inequity of outcomes in higher education (HE) persist in South Africa despite the government introducing policy that seeks to address social injustices brought about by previous apartheid policies. In addressing these social injustices, HE policy conceptualises inequalities under the concept of historical ‘disadvantage’ which is understood to be primarily race-based. The study adds on to the existing knowledge on inequalities through developing the dimensions of (dis)advantage, which have the potential to inform the South African HE policy on providing equal opportunities amongst diverse students to participate and succeed in their studies. Drawing from the capabilities approach, this study argues that (dis)advantage can be richly understood in terms of students’ capabilities, functionings and agency as opposed to a sole focus on race. The study argues that limited freedoms, lack of effective opportunities, and reduced agency for students to turn university resources into real achievements such as personal development, economic skills and social responsibility amounts to disadvantage, while the converse is also true. The study draws from qualitative interview data with honours students, university staff and Student Representative Council members from five different university departments at one South African university. This presentation uses results from 20 students and reveals what their university experiences tell us regarding students’ unfreedoms in relation to: the inability to make decisions, poor schooling backgrounds, inadequate finances, emotional stress, lack of social support, inability to understand the language of instruction, lack of safe transport and accommodation issues. Despite these unfreedoms, the data shows that the students aspired and persevered with their studies. Using theory and empirical data in conversation, the paper shows that there is a need to nuance the definition of (dis)advantage, particularly by focusing on how different forms of disadvantage intersect with each other.

Keywords: capabilities approach, (dis)advantage, higher education, social justice

Procedia PDF Downloads 137
716 A Meta-Analysis towards an Integrated Framework for Sustainable Urban Transportation within the Concept of Sustainable Cities

Authors: Hande Aladağ, Gökçe Aydın

Abstract:

The world’s population is increasing continuously and rapidly. Moreover, there are other problems such as the decline of natural energy resources, global warming, and environmental pollution. These facts have made sustainability an important and primary topic from future planning perspective. From this perspective, constituting sustainable cities and communities can be considered as one of the key issues in terms of sustainable development goals. The concept of sustainable cities can be evaluated under three headings such as green/sustainable buildings, self – contained cities and sustainable transportation. This study only concentrates on how to form and support a sustainable urban transportation system to contribute to the sustainable urbanization. Urban transportation system inevitably requires many engineering projects with various sizes. Engineering projects generally have four phases, in the following order: Planning, design, construction, operation. The order is valid but there are feedbacks from every phase to every phase in its upstream. In this regard, engineering projects are iterative processes. Sustainability is an integrated and comprehensive concept thus it should be among the primary concerns in every phase of transportation projects. In the study, a meta-analysis will be performed on the related studies in the literature. It is targeted and planned that, as a result of the findings of this meta-analysis, a framework for the list of principles and actions for sustainable transport will be formed. The meta-analysis will be performed to point out and clarify sustainability approaches in every phase of the related engineering projects, with also paying attention to the iterative nature of the process and relative contribution of the action for the outcomes of the sustainable transportation system. However, the analysis will not be limited to the engineering projects, non-engineering solutions will also be included in the meta-analysis. The most important contribution of this study is a determination of the outcomes of a sustainable urban transportation system in terms of energy efficiency, resource preservation and related social, environmental and economic factors. The study is also important because it will give light to the engineering and management approaches to achieve these outcomes.

Keywords: meta-analysis, sustainability, sustainable cities, sustainable urban transportation, urban transportation

Procedia PDF Downloads 323
715 Osteoporosis and Weight Gain – Two Major Concerns for Menopausal Women - a Physiotherapy Perspective

Authors: Renu Pattanshetty

Abstract:

The aim of this narrative review is to highlight the impact of menopause on osteoporosis and weight gain. The review also aims to summarize physiotherapeutic strategies to combat the same.A thorough literature search was conducted using electronic databases like MEDline, PUBmed, Highwire Press, PUBmed Central for English language studies that included search terms like menopause, osteoporosis, obesity, weight gain, exercises, physical activity, physiotherapy strategies from the year 2000 till date. Out of 157 studies that included metanalyses, critical reviews and randomized clinical trials, a total of 84 were selected that met the inclusion criteria. Prevalence of obesity is increasing world - wide and is reaching epidemic proportions even in the menopausal women. Prevalence of abdominal obesity is almost double than that general obesity with rates in the US with 65.5% in women ages 40-59 years and 73.8 in women aged 60 years or more. Physical activities and exercises play a vital role in prevention and treatment of osteoporosis and weight gain related to menopause that aim to boost the general well-being and any symptoms brought about by natural body changes. Endurance exercises lasting about 30 minutes /day for 5 days/ week has shown to decrease weight and prevent weight gain. In addition, strength training with at least 8 exercises of 8-12 repetitions working for whole body and for large muscle groups has shown to result positive outcomes. Hot flashes can be combatted through yogic breathing and relaxation exercises. Prevention of fall strategies and resistance training are key to treat diagnosed cases of osteoporosis related to menopause. One to three sets with five to eight repetitions of four to six weight bearing exercises have shown positive results. Menopause marks an important time for women to evaluate their risk of obesity and osteoporosis. It is known fact that bone benefit from exercises are lost when training is stopped, hence, practicing bone smart habits and strict adherence to recommended physical activity programs are recommended which are enjoyable, safe and effective.

Keywords: menopause, osteoporosis, obesity, weight gain, exercises, physical activity, physiotherapy strategies

Procedia PDF Downloads 299
714 Environmental and Socioeconomic Determinants of Climate Change Resilience in Rural Nigeria: Empirical Evidence towards Resilience Building

Authors: Ignatius Madu

Abstract:

The study aims at assessing the environmental and socioeconomic determinants of climate change resilience in rural Nigeria. This is necessary because researches and development efforts on building climate change resilience of rural areas in developing countries are usually made without the knowledge of the impacts of the inherent rural characteristics that determine resilient capacities of the households. This has, in many cases, led to costly mistakes, delayed responses, inaccurate outcomes, and other difficulties. Consequently, this assessment becomes crucial not only to policymakers and people living in risk-prone environments in rural areas but also to fill the research gap. To achieve the aim, secondary data were obtained from the Annual Abstract of Statistics 2017, LSMS-Integrated Surveys on Agriculture and General Household Survey Panel 2015/2016, and National Agriculture Sample Survey (NASS), 2010/2011.Resilience was calculated by weighting and adding the adaptive, absorptive and anticipatory measures of households variables aggregated at state levels and then regressed against rural environmental and socioeconomic characteristics influencing it. From the regression, the coefficients of the variables were used to compute the impacts of the variables using the Stochastic Regression of Impacts on Population, Affluence and Technology (STIRPAT) Model. The results showed that the northern States are generally low in resilient indices and are impacted less by the development indicators. The major determining factors are percentage of non-poor, environmental protection, road transport development, landholding, agricultural input, population density, dependency ratio (inverse), household asserts, education and maternal care. The paper concludes that any effort to a successful resilient building in rural areas of the country should first address these key factors that enhance rural development and wellbeing since it is better to take action before shocks take place.

Keywords: climate change resilience; spatial impacts; STIRPAT model; Nigeria

Procedia PDF Downloads 145
713 Compensation of Bulk Charge Carriers in Bismuth Based Topological Insulators via Swift Heavy Ion Irradiation

Authors: Jyoti Yadav, Rini Singh, Anoop M.D, Nisha Yadav, N. Srinivasa Rao, Fouran Singh, Takayuki Ichikawa, Ankur Jain, Kamlendra Awasthi, Manoj Kumar

Abstract:

Nanocrystalline films exhibit defects and strain induced by its grain boundaries. Defects and strain affect the physical as well as topological insulating properties of the Bi2Te3 thin films by changing their electronic structure. In the present studies, the effect of Ni7+ ion irradiation on the physical and electrical properties of Bi2Te3 thin films was studied. The films were irradiated at five different fluences (5x1011, 1x1012, 3x1012, 5x1012, 1x1013 ions/cm2). Thin films synthesized using the e-beam technique possess a rhombohedral crystal structure with the R-3m space group. The average crystallite size, as determined by x-ray diffraction (XRD) peak broadening, was found to be 18.5 ± 5 (nm). It was also observed that irradiation increases the induced strain. Raman Spectra of the films demonstrate the splitting of A_1u^1 modes originating from the vibrations along the c-axis. This is by the variation in the lattice parameter ‘c,’ as observed through XRD. The atomic force microscopy study indicates the decrease in surface roughness up to the fluence of 3x1012 ions/cm2 and further increasing the fluence increases the roughness. The decrease in roughness may be due to the growth of smaller nano-crystallites on the surface of thin films due to irradiation-induced annealing. X-ray photoelectron spectroscopy studies reveal the composition to be in close agreement to the nominal values i.e. Bi2Te3. The resistivity v/s temperature measurements revealed an increase in resistivity up to the fluence 3x1012 ions/cm2 and a decrease on further increasing the fluence. The variation in electrical resistivity is corroborated with the change in the carrier concentration as studied through low-temperature Hall measurements. A crossover from the n-type to p-type carriers was achieved in the irradiated films. Interestingly, tuning of the Fermi level by compensating the bulk carriers using ion-irradiation could be achieved.

Keywords: Annealing, Irradiation, Fermi level, Tuning

Procedia PDF Downloads 133
712 Advanced Electron Microscopy Study of Fission Products in a TRISO Coated Particle Neutron Irradiated to 3.6 X 1021 N/cm² Fast Fluence at 1040 ⁰C

Authors: Haiming Wen, Isabella J. Van Rooyen

Abstract:

Tristructural isotropic (TRISO)-coated fuel particles are designed as nuclear fuel for high-temperature gas reactors. TRISO coating consists of layers of carbon buffer, inner pyrolytic carbon (IPyC), SiC, and outer pyrolytic carbon. The TRISO coating, especially the SiC layer, acts as a containment system for fission products produced in the kernel. However, release of certain metallic fission products across intact TRISO coatings has been observed for decades. Despite numerous studies, mechanisms by which fission products migrate across the coating layers remain poorly understood. In this study, scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) were used to examine the distribution, composition and structure of fission products in a TRISO coated particle neutron irradiated to 3.6 x 1021 n/cm² fast fluence at 1040 ⁰C. Precession electron diffraction was used to investigate characters of grain boundaries where specific fission product precipitates are located. The retention fraction of 110mAg in the investigated TRISO particle was estimated to be 0.19. A high density of nanoscale fission product precipitates was observed in the SiC layer close to the SiC-IPyC interface, most of which are rich in Pd, while Ag was not identified. Some Pd-rich precipitates contain U. Precipitates tend to have complex structure and composition. Although a precipitate appears to have uniform contrast in STEM, EDS indicated that there may be composition variations throughout the precipitate, and HRTEM suggested that the precipitate may have several parts different in crystal structure or orientation. Attempts were made to measure charge states of precipitates using EELS and study their possible effect on precipitate transport.

Keywords: TRISO particle, fission product, nuclear fuel, electron microscopy, neutron irradiation

Procedia PDF Downloads 261
711 How to Break an Outbreak: Containment Measures of a Salmonella Outbreak Associated with Egg Consumption

Authors: Gal Zagron, Nitza Abramson, Deena R. Zimmerman, Chen Stein-Zamir

Abstract:

Background: Salmonella enteritidis is a common cause of foodborne outbreaks, primarily associated with poultry eggs. S. enteritidis This is the only Salmonella type that is found inside the eggshell. A rise in Salmonella enteritidis notifications was noted in spring 2017. Aims: The aim of this study is to describe the epidemiological investigation of the outbreak in the Jerusalem district, along with the containment measures taken. Methods: This study is a population-based epidemiological study with a description of environmental control activities. Results: During the months May - July, 2017 848 salmonellosis cases were reported to the Jerusalem district health office compared to 294 cases May - July 2016. Salmonella enteritidis was isolated in 58% of reported cases. Clusters and outbreaks ( > 2 cases) were reported among nursery schools, nursing homes, persons residing in one kibbutz and several cases in different food service establishments in the Jerusalem district. Epidemiological investigations revealed eggs consumption as a common feature among the cases (uncooked or undercooked eggs in most cases). A national investigation among egg suppliers revealed that most cases consumed eggs provided by a single provider with isolation of Salmonella enteritidis at the source as well. Containment measures were taken to control the epidemic including distributing information via electronic and written media to the public, searching for all egg distribution centers, informing local authorities, the poultry council and food stores. The eggs originating from the provider were recalled and extinguished. Written instructions to all food preparation facilities in the district were distributed regarding the proper storage and preparation of eggs. The number of reported cases declined and the outbreak vanished during correlating months of 2018. Conclusions: The investigation of Salmonella enteritidis outbreaks should include epidemiological and laboratory investigations, tracing the source of the eggs and testing the eggs and the source of eggs. Health education activities are essential as to the proper handling of eggs and egg products aiming to minimize susceptibility to Salmonella infection.

Keywords: epidemiological investigation, food-borne disease, food safety, Salmonella enteritidis

Procedia PDF Downloads 136
710 Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data

Authors: M. R. Akbari , H. Yousefnia, E. Mirrezaei

Abstract:

Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy.

Keywords: water equivalent ratio, dosimetric materials, proton therapy, Monte Carlo simulations

Procedia PDF Downloads 315
709 Translation of Scientific and Technological Terms into Hausa Language: A Guide to Hausa Language Translator in an Electronic Media (Radio)

Authors: Surajo Ladan

Abstract:

There is no doubt nowadays, the media plays a crucial role in the development of languages. Media practitioners influence and set our linguistic norms to a greater extent. Their strategic position makes them influential than school teachers as linguistic pacesetters and models. This is so because of the direct access to the general public that media enjoys being public, oriented and at the same time being patronized by the public, the media is regarded as an authority as far as language use is concerned. In the modern world, listening to the news has become part and parcel of our daily lives. Easy communication has made the world a global village. Contact between countries and people are increasing daily. In Nigeria and indeed the whole of West Africa, radio is the most widely spread out of the three types of media (radio, television, and print). This is because of its (radio) cheapness and less cumbersome and flexibility. Therefore, the positive or negative effect of radio on the lives of a typical Nigerian or African cannot be over emphasized. Hausa language, on the other hand, is one of the most widely spoken languages in West Africa and, of course, the lingua franca in the Northern part of Nigeria and Southern Niger. The language has been in use to a large extent by almost all the popular foreign media houses of BBC, VOA, Deutsche Welle Radio, Radio France International, Radio China, etc. The many people in Nigeria and West Africa depend so much on the news in this language. In fact even government programmes, mobilization, education and sensitization of the populace are done in this language through the broadcast media. It is against this background, for effective and efficient work of this nature it requires the services of a trained translator for the purpose of translating scientific and technological terms. The main thrust of this paper was necessitated for the fact that no nation develops using foreign or borrowed language. This is in lined with UNESCO declaration of 1953 where it says 'the best Language of Instruction (LOI) is the vernacular or the Mother Tongue (MT) of the learner'. This idea is in the right direction especially nowadays that the developing nations have come to terms with realities that their destiny is really in their own hands, not in the hands of the so-called developed nations.

Keywords: translation, scientific, technological, language, radio, media

Procedia PDF Downloads 369
708 20th-Century River Course Changes and Their Relation to Sediment Carbon Distribution Patterns in the Yellow River Delta

Authors: Dongxue Li, Zhonghua Ning, Yi’na Li, Baoshan Cui, Wasner Daniel, Sebastian Dötterl

Abstract:

Most of the world's coastal alluvial plains can be significant carbon (C) eservoirs in which upland sediments are deposited and bury former topsoil, thereby contributing to soil C preservation, especially in river-controlled deltas like the Yellow River Delta, China. These deltas are affected by the continuous large amount of sediment transport and strong river dynamics from the upper reaches, which makes the river course in the deltas change frequently. However, the impact of varying river course changes on C stocks in these estuary wetlands is unclear. To investigate this, we drilled five 2 m cores along a sediment deposition sequence of the Yellow River Delta, which shifted its main course flow in the delta several times throughout the 20th century. Covering 80 years of sediment deposition, we explored both soil C stocks and their potential sources, and identified key soil physicochemical and hydrometeorological variables that correlate to C density and deposition rate. Further, the spatiotemporal C distribution and its relationship with these variables was examined. Our results showed that sediments at a soil depth of 200 cm in the main courses of the Yellow River corresponded to deposition ages ranging from 1942 to 1989. The oldest course has the lowest C stocks and showed C-enriched compared with younger courses. Contributions of soil C stemming from fresh particulate organic carbon from deposited upstream sources were significantly higher than local, in-situ vegetation. In addition, the carbon of the oldest and relatively young courses tends to be affected by interaction effects of hydrometeorological and physiochemical varibales, and that of the middle courses tends to be affected by independent variables. Our findings can help prioritize conservation efforts across different river courses and provide quantitative support for global carbon emission reduction by assessing sediment carbon reservoirs.

Keywords: alluvial plains, coastal wetland, core drilling, course diversion, organic carbon, sediment deposition rate, soil deposition

Procedia PDF Downloads 18
707 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform

Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat

Abstract:

Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.

Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency

Procedia PDF Downloads 197
706 Calculational-Experimental Approach of Radiation Damage Parameters on VVER Equipment Evaluation

Authors: Pavel Borodkin, Nikolay Khrennikov, Azamat Gazetdinov

Abstract:

The problem of ensuring of VVER type reactor equipment integrity is now most actual in connection with justification of safety of the NPP Units and extension of their service life to 60 years and more. First of all, it concerns old units with VVER-440 and VVER-1000. The justification of the VVER equipment integrity depends on the reliability of estimation of the degree of the equipment damage. One of the mandatory requirements, providing the reliability of such estimation, and also evaluation of VVER equipment lifetime, is the monitoring of equipment radiation loading parameters. In this connection, there is a problem of justification of such normative parameters, used for an estimation of the pressure vessel metal embrittlement, as the fluence and fluence rate (FR) of fast neutrons above 0.5 MeV. From the point of view of regulatory practice, a comparison of displacement per atom (DPA) and fast neutron fluence (FNF) above 0.5 MeV has a practical concern. In accordance with the Russian regulatory rules, neutron fluence F(E > 0.5 MeV) is a radiation exposure parameter used in steel embrittlement prediction under neutron irradiation. However, the DPA parameter is a more physically legitimate quantity of neutron damage of Fe based materials. If DPA distribution in reactor structures is more conservative as neutron fluence, this case should attract the attention of the regulatory authority. The purpose of this work was to show what radiation load parameters (fluence, DPA) on all VVER equipment should be under control, and give the reasonable estimations of such parameters in the volume of all equipment. The second task is to give the conservative estimation of each parameter including its uncertainty. Results of recently received investigations allow to test the conservatism of calculational predictions, and, as it has been shown in the paper, combination of ex-vessel measured data with calculated ones allows to assess unpredicted uncertainties which are results of specific unique features of individual equipment for VVER reactor. Some results of calculational-experimental investigations are presented in this paper.

Keywords: equipment integrity, fluence, displacement per atom, nuclear power plant, neutron activation measurements, neutron transport calculations

Procedia PDF Downloads 153
705 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing

Authors: Fazl Ullah, Rahmat Ullah

Abstract:

This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.

Keywords: fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation

Procedia PDF Downloads 65
704 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G

Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo

Abstract:

Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.

Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS

Procedia PDF Downloads 254
703 Analysis of the Impact of Suez Canal on the Robustness of Global Shipping Networks

Authors: Zimu Li, Zheng Wan

Abstract:

The Suez Canal plays an important role in global shipping networks and is one of the most frequently used waterways in the world. The 2021 canal obstruction by ship Ever Given in March 2021, however, completed blocked the Suez Canal for a week and caused significant disruption to world trade. Therefore, it is very important to quantitatively analyze the impact of the accident on the robustness of the global shipping network. However, the current research on maritime transportation networks is usually limited to local or small-scale networks in a certain region. Based on the complex network theory, this study establishes a global shipping complex network covering 2713 nodes and 137830 edges by using the real trajectory data of the global marine transport ship automatic identification system in 2018. At the same time, two attack modes, deliberate (Suez Canal Blocking) and random, are defined to calculate the changes in network node degree, eccentricity, clustering coefficient, network density, network isolated nodes, betweenness centrality, and closeness centrality under the two attack modes, and quantitatively analyze the actual impact of Suez Canal Blocking on the robustness of global shipping network. The results of the network robustness analysis show that Suez Canal blocking was more destructive to the shipping network than random attacks of the same scale. The network connectivity and accessibility decreased significantly, and the decline decreased with the distance between the port and the canal, showing the phenomenon of distance attenuation. This study further analyzes the impact of the blocking of the Suez Canal on Chinese ports and finds that the blocking of the Suez Canal significantly interferes withChina's shipping network and seriously affects China's normal trade activities. Finally, the impact of the global supply chain is analyzed, and it is found that blocking the canal will seriously damage the normal operation of the global supply chain.

Keywords: global shipping networks, ship AIS trajectory data, main channel, complex network, eigenvalue change

Procedia PDF Downloads 175
702 A Simulation-Based Study of Dust Ingression into Microphone of Indoor Consumer Electronic Devices

Authors: Zhichao Song, Swanand Vaidya

Abstract:

Nowadays, most portable (e.g., smartphones) and wearable (e.g., smartwatches and earphones) consumer hardware are designed to be dustproof following IP5 or IP6 ratings to ensure the product is able to handle potentially dusty outdoor environments. On the other hand, the design guideline is relatively vague for indoor devices (e.g., smart displays and speakers). While it is generally believed that the indoor environment is much less dusty, in certain circumstances, dust ingression is still able to cause functional failures, such as microphone frequency response shift and camera black spot, or cosmetic dissatisfaction, mainly the dust build up in visible pockets and gaps which is hard to clean. In this paper, we developed a simulation methodology to analyze dust settlement and ingression into known ports of a device. A closed system is initialized with dust particles whose sizes follow Weibull distribution based on data collected in a user study, and dust particle movement was approximated as a settlement in stationary fluid, which is governed by Stokes’ law. Following this method, we simulated dust ingression into MEMS microphone through the acoustic port and protective mesh. Various design and environmental parameters are evaluated including mesh pore size, acoustic port depth-to-diameter ratio, mass density of dust material and inclined angle of microphone port. Although the dependencies of dust resistance on these parameters are all monotonic, smaller mesh pore size, larger acoustic depth-to-opening ratio and more inclined microphone placement (towards horizontal direction) are preferred for dust resistance; these preferences may represent certain trade-offs in audio performance and compromise in industrial design. The simulation results suggest the quantitative ranges of these parameters, with more pronounced effects in the improvement of dust resistance. Based on the simulation results, we proposed several design guidelines that intend to achieve an overall balanced design from audio performance, dust resistance, and flexibility in industrial design.

Keywords: dust settlement, numerical simulation, microphone design, Weibull distribution, Stoke's equation

Procedia PDF Downloads 103
701 Dynamic Modelling and Assessment for Urban Growth and Transport in Riyadh City, Saudi Arabia

Authors: Majid Aldalbahi

Abstract:

In 2009, over 3.4 billion people in the world resided in urban areas as a result of rapid urban growth. This figure is estimated to increase to 6.5 billion by 2050. This urban growth phenomenon has raised challenges for many countries in both the developing and developed worlds. Urban growth is a complicated process involving the spatiotemporal changes of all socio-economic and physical components at different scales. The socio-economic components of urban growth are related to urban population growth and economic growth, while physical components of urban growth and economic growth are related to spatial expansion, land cover change and land use change which are the focus of this research. The interactions between these components are complex and no-linear. Several factors and forces cause these complex interactions including transportation and communication, internal and international migrations, public policies, high natural growth rates of urban populations and public policies. Urban growth has positive and negative consequences. The positive effects relates to planned and orderly urban growth, while negative effects relate to unplanned and scattered growth, which is called sprawl. Although urban growth is considered as necessary for sustainable urbanization, uncontrolled and rapid growth cause various problems including consumption of precious rural land resources at urban fringe, landscape alteration, traffic congestion, infrastructure pressure, and neighborhood conflicts. Traditional urban planning approaches in fast growing cities cannot accommodate the negative consequences of rapid urban growth. Microsimulation programme, and modelling techniques are effective means to provide new urban development, management and planning methods and approaches. This paper aims to use these techniques to understand and analyse the complex interactions for the case study of Riyadh city, a fast growing city in Saudi Arabia.

Keywords: policy implications, urban planning, traffic congestion, urban growth, Suadi Arabia, Riyadh

Procedia PDF Downloads 479
700 Prognosis of Patients with COVID-19 and Hematologic Malignancies

Authors: Elizabeth Behrens, Anne Timmermann, Alexander Yerkan, Joshua Thomas, Deborah Katz, Agne Paner, Melissa Larson, Shivi Jain, Seo-Hyun Kim, Celalettin Ustun, Ankur Varma, Parameswaran Venugopal, Jamile Shammo

Abstract:

Coronavirus Disease-2019 (COVID-19) causes persistent concern for poor outcomes in vulnerable populations. Patients with hematologic malignancies (HM) have been found to have higher COVID-19 case fatality rates compared to those without malignancy. While cytopenias are common in patients with HM, especially in those undergoing chemotherapy treatment, hemoglobin (Hgb) and platelet count have not yet been studied, to our best knowledge, as potential prognostic indicators for patients with HM and COVID-19. The goal of this study is to identify factors that may increase the risk of mortality in patients with HM and COVID-19. In this single-center, retrospective, observational study, 65 patients with HM and laboratory confirmed COVID-19 were identified between March 2020 and January 2021. Information on demographics, laboratory data the day of COVID-19 diagnosis, and prognosis was extracted from the electronic medical record (EMR), chart reviewed, and analyzed using the statistical software SAS version 9.4. Chi-square testing was used for categorical variable analyses. Risk factors associated with mortality were established by logistic regression models. Non-Hodgkin lymphoma (37%), chronic lymphocytic leukemia (20%), and plasma cell dyscrasia (15%) were the most common HM. Higher Hgb level upon COVID-19 diagnosis was related to decreased mortality, odd ratio=0.704 (95% confidence interval [CI]: 0.511-0.969; P = .0263). Platelet count the day of COVID-19 diagnosis was lower in patients who ultimately died (mean 127 ± 72K/uL, n=10) compared to patients who survived (mean 197 ±92K/uL, n=55) (P=.0258). Female sex was related to decreased mortality, odd ratio=0.143 (95% confidence interval [CI]: 0.026-0.785; P = .0353). There was no mortality difference between the patients who were on treatment for HM the day of COVID-19 diagnosis compared to those who were not (P=1.000). Lower Hgb and male sex are independent risk factors associated with increased mortality of HM patients with COVID-19. Clinicians should be especially attentive to patients with HM and COVID-19 who present with cytopenias. Larger multi-center studies are urgently needed to further investigate the impact of anemia, thrombocytopenia, and demographics on outcomes of patients with hematologic malignancies diagnosed with COVID-19.

Keywords: anemia, COVID-19, hematologic malignancy, prognosis

Procedia PDF Downloads 145
699 The Role of Counselling Psychology on Expatriate Adjustment in East Asia: A Systematic Review

Authors: Panagiotis Platanitis

Abstract:

Purpose: This research paper seeks to review the empirical studies in the field of expatriate adjustment in East Asia in order to produce a thematic understanding of the current adjustment challenges, thus enabling practitioners to enrich their knowledge. Background: Learning to live, work, and function in a country and culture vastly different from that of one’s upbringing can pose some unique challenges in terms of adaptation and adjustment. This has led to a growing body of research about the adjustment of expatriate workers. Adjustment itself has been posited as a three-dimensional construct; work adjustment, interaction adjustment and general or cultural adjustment. Methodology: This qualitative systematic review has been conducted on all identified peer-reviewed empirical studies related to expatriate adjustment in East Asia. Five electronic databases (PsychInfo, Emerald, Scopus, EBSCO and JSTOR) were searched to December 2015. Out of 625 identified records, thorough evaluation for eligibility resulted in 15 relevant studies being subjected to data analysis. The quality of the identified research was assessed according to the Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields. The data were analysed by means of thematic synthesis for systematic reviews of qualitative research. Findings: Data analysis revealed five key themes. The themes developed were: (1) personality traits (2) types of adjustment, (3) language, (4) culture and (5) coping strategies. Types of adjustment included subthemes such as: Interaction, general, work, psychological, sociocultural and cross-cultural adjustment. Conclusion: The present review supported previous literature on the different themes of adjustment and it takes the focus from work and general adjustment to the psychological challenges and it introduces the psychological adjustment. It also gives a different perspective about the use of cross-cultural training and the coping strategies expatriates use when they are abroad. This review helps counselling psychologists to understand the importance of a multicultural approach when working with expatriates and also to be aware of what expatriates might face when working and living in East Asia.

Keywords: adjustment, counselling psychology, East Asia, expatriates

Procedia PDF Downloads 263
698 The Application of Dynamic Network Process to Environment Planning Support Systems

Authors: Wann-Ming Wey

Abstract:

In recent years, in addition to face the external threats such as energy shortages and climate change, traffic congestion and environmental pollution have become anxious problems for many cities. Considering private automobile-oriented urban development had produced many negative environmental and social impacts, the transit-oriented development (TOD) has been considered as a sustainable urban model. TOD encourages public transport combined with friendly walking and cycling environment designs, however, non-motorized modes help improving human health, energy saving, and reducing carbon emissions. Due to environmental changes often affect the planners’ decision-making; this research applies dynamic network process (DNP) which includes the time dependent concept to promoting friendly walking and cycling environmental designs as an advanced planning support system for environment improvements. This research aims to discuss what kinds of design strategies can improve a friendly walking and cycling environment under TOD. First of all, we collate and analyze environment designing factors by reviewing the relevant literatures as well as divide into three aspects of “safety”, “convenience”, and “amenity” from fifteen environment designing factors. Furthermore, we utilize fuzzy Delphi Technique (FDT) expert questionnaire to filter out the more important designing criteria for the study case. Finally, we utilized DNP expert questionnaire to obtain the weights changes at different time points for each design criterion. Based on the changing trends of each criterion weight, we are able to develop appropriate designing strategies as the reference for planners to allocate resources in a dynamic environment. In order to illustrate the approach we propose in this research, Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.

Keywords: environment planning support systems, walking and cycling, transit-oriented development (TOD), dynamic network process (DNP)

Procedia PDF Downloads 339
697 Development of a Sprayable Piezoelectric Material for E-Textile Applications

Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby

Abstract:

E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.

Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile

Procedia PDF Downloads 460
696 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles

Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien

Abstract:

The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.

Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface

Procedia PDF Downloads 458
695 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 116
694 Investment Development Path and Motivations for Foreign Direct Investment in Georgia

Authors: Vakhtang Charaia, Mariam Lashkhi

Abstract:

Foreign direct investment (FDI) plays a vital role in global business. It provides firms with new markets and advertising channels, cheaper production facilities, admission to new technology, products, skills and financing. FDI can provide a recipient country/company with a source of new technologies, capital, practice, products, management skills, and as such can be a powerful drive for economic development. It is one of the key elements of stable economic development in many countries, especially in developing ones. Therefore the size of FDI inflow is one of the most crustal factors for economic perfection in small economy countries (like, Georgia), while most of developed ones are net exporters of FDI. Since, FDI provides firms with new markets; admission to new technologies, products and management skills; marketing channels; cheaper production facilities, and financing opportunities. It plays a significant role in Georgian economic development. Increasing FDI inflows from all over the world to Georgia in last decade was achieved with the outstanding reforms managed by the Georgian government. However, such important phenomenon as world financial crisis and Georgian-Russian war put its consequence on the over amount of FDI inflow in Georgia in the last years. It is important to mention that the biggest investor region for Georgia is EU, which is interested in Georgia not only from the economic points of view but from political. The case studies from main EU investor countries show that Georgia has a big potential of investment in different areas, such as; financial sector, energy, construction, tourism industry, transport and communications. Moreover, signing of Association Agreement between Georgia and EU will further boost all the fields of economy in Georgia in both short and long terms. It will attract more investments from different countries and especially from EU. The last, but not least important issue is the calculation of annual FDI inflow to Georgia, which it is calculated differently by different organizations, based on different methodologies, but what is more important is that all of them show significant increase of FDI in last decade, which gives a positive signal to investors and underlines necessity of further improvement of investment climate in the same direction.

Keywords: foreign direct investment (FDI), Georgia, investment development path, investment climate

Procedia PDF Downloads 273
693 Balance Rigor, Relevance and Socio-Emotional Learning in Math

Authors: Abimbola Akintounde

Abstract:

Supporting the social and emotional needs of young adolescents has become an emergent concern for schools around the world. Yet educators remain in a dilemma regarding the optimum approach for integrating social and emotional learning (SEL) into their content area instruction. The purpose of this study was to explore the perception of secondary students regarding their schoolwide SEL interventions. Twenty-four International Baccalaureate students in a final year mathematics course at an American Public Secondary School near Washington D. C. were randomly selected for participation in this study via an online electronic survey. The participants in this study used Likert-scale items to rate the effectiveness of the socio-emotional and character development programs being implemented at their schools. Respondents also ranked their preferred mode of delivery of social and emotional support programs. About 71% of the teenagers surveyed preferred SEL support rendered via interactive team-building activities and games, 42% of the high school students in the study ranked focus group discussions as their preferred format for SEL interventions, while only 13% of the respondents in the study regarded lectures and presentations as their preferred mode of SEL delivery. About one-fourth of the study participants agreed that explicit instruction was critical to enhancing students’ wellness, 79% agreed that SEL programs should foster less teacher talk, while 88% of the students indicated that student engagement was critical to their mental health. Eighty percent of the teenagers surveyed decried that the focus of their school-wide social and emotional programs was poorly prioritized. About two-thirds of the students agreed that social justice and equity issues should be embedded in their schools’ advisory programs. More than half of the respondents agitated for strategies for managing stress and their school workload. About 54% of the respondents also clamored for SEL programs that reinforce emotion regulation and coping strategies for anxiety. Based on the findings of this study, recommendations were proffered for best practices in the design and implementation of effective learner-friendly social and emotional development interventions.

Keywords: SEL, math anxiety, student support, emotion regulation, social awareness, self awareness, self management, relationship building

Procedia PDF Downloads 69
692 Development of a Novel Antibacterial to Block Growth of Pseudomonas Aeruginosa and Prevent Biofilm Formation

Authors: Clara Franch de la Cal, Christopher J Morris, Michael McArthur

Abstract:

Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by abnormal transport of chloride and sodium across the lung epithelium, leading to thick and viscous secretions. Within which CF patients suffer from repeated bacterial pulmonary infections, with Pseudomonas aeru-ginosa (PA) eliciting the greatest inflammatory response, causing an irreversible loss of lung func-tion that determines morbidity and mortality. The cell wall of PA is a permeability barrier to many antibacterials and the rise of Mutli-Drug Resistant strains (MDR) is eroding the efficacy of the few remaining clinical options. In addition when PA infection becomes established it forms an antibi-otic-resistant biofilm, embedded in which are slow growing cells that are refractive to drug treat-ment. Making the development of new antibacterials a major challenge. This work describes the development of new type of nanoparticulate oligonucleotide antibacterial capable of tackling PA infections, including MDR strains. It is being developed to both block growth and prevent biofilm formation. These oligonucleotide therapeutics, Transcription Factor Decoys (TFD), act on novel genomic targets by capturing key regulatory proteins to block essential bacterial genes and defeat infection. They have been successfully transfected into a wide range of pathogenic bacteria, both in vitro and in vivo, using a proprietary delivery technology. The surfactant used self-assembles with TFD to form a nanoparticle stable in biological fluids, which protects the TFD from degradation and preferentially transfects prokaryotic membranes. Key challenges are to adapt the nanoparticle so it is active against PA in the context of biofilms and to formulate it for administration by inhalation. This would allow the drug to be delivered to the respiratory tract, thereby achieving drug concentrations sufficient to eradicate the pathogenic organisms at the site of infection.

Keywords: antibacterials, transcriptional factor decoys (TFDs), pseudomonas aeruginosa

Procedia PDF Downloads 281
691 Reduction Shrinkage of Concrete without Use Reinforcement

Authors: Martin Tazky, Rudolf Hela, Lucia Osuska, Petr Novosad

Abstract:

Concrete’s volumetric changes are natural process caused by silicate minerals’ hydration. These changes can lead to cracking and subsequent destruction of cementitious material’s matrix. In most cases, cracks can be assessed as a negative effect of hydration, and in all cases, they lead to an acceleration of degradation processes. Preventing the formation of these cracks is, therefore, the main effort. Once of the possibility how to eliminate this natural concrete shrinkage process is by using different types of dispersed reinforcement. For this application of concrete shrinking, steel and polymer reinforcement are preferably used. Despite ordinarily used reinforcement in concrete to eliminate shrinkage it is possible to look at this specific problematic from the beginning by itself concrete mix composition. There are many secondary raw materials, which are helpful in reduction of hydration heat and also with shrinkage of concrete during curing. The new science shows the possibilities of shrinkage reduction also by the controlled formation of hydration products, which could act by itself morphology as a traditionally used dispersed reinforcement. This contribution deals with the possibility of controlled formation of mono- and tri-sulfate which are considered like degradation minerals. Mono- and tri- sulfate's controlled formation in a cementitious composite can be classified as a self-healing ability. Its crystal’s growth acts directly against the shrinking tension – this reduces the risk of cracks development. Controlled formation means that these crystals start to grow in the fresh state of the material (e.g. concrete) but stop right before it could cause any damage to the hardened material. Waste materials with the suitable chemical composition are very attractive precursors because of their added value in the form of landscape pollution’s reduction and, of course, low cost. In this experiment, the possibilities of using the fly ash from fluidized bed combustion as a mono- and tri-sulphate formation additive were investigated. The experiment itself was conducted on cement paste and concrete and specimens were subjected to a thorough analysis of physicomechanical properties as well as microstructure from the moment of mixing up to 180 days. In cement composites, were monitored the process of hydration and shrinkage. In a mixture with the used admixture of fluidized bed combustion fly ash, possible failures were specified by electronic microscopy and dynamic modulus of elasticity. The results of experiments show the possibility of shrinkage concrete reduction without using traditionally dispersed reinforcement.

Keywords: shrinkage, monosulphates, trisulphates, self-healing, fluidized fly ash

Procedia PDF Downloads 181
690 The Effectiveness of E-Training on the Attitude and Skill Competencies of Vocational High School Teachers during Covid-19 Pandemic in Indonesia

Authors: Sabli, Eddy Rismunandar, Akhirudin, Nana Halim, Zulfikar, Nining Dwirosanti, Wila Ningsih, Pipih Siti Sofiah, Danik Dania Asadayanti, Dewi Eka Arini Algozi, Gita Mahardika Pamuji, Ajun, Mangasa Aritonang, Nanang Rukmana, Arief Rachman Wonodhipo, Victor Imanuel Nahumury, Lili Husada, Wawan Saepul Irwan, Al Mukhlas Fikri

Abstract:

Covid-19 pandemic has widely impacted the lives. An adaptive strategy must be quickly formulated to maintain the quality of education, especially by vocational school which technical skill competencies are highly needed. This study aimed to evaluate the effectiveness of e-training on the attitude and skill competencies of vocational high school teachers in Indonesia. A total of 720 Indonesian vocational high school teachers with various programs, including hospitality, administration, online business and marketing, culinary arts, fashion, cashier, tourism, haircut, and accounting participated e-training for a month. The training used electronic learning management system to provide materials (modules, presentation slides, and tutorial videos), tasks, and evaluations. Tutorial class was carried out by video conference meeting. Attitude and skill competencies were evaluated before and after the training. Meanwhile, the teachers also gave satisfactory feedback on the quality of the organizer and tutors. Data analysis used paired sample t-test and Anova with Tukey’s post hoc test. The results showed that e-training significantly increased the score of attitude and skill competencies of the teachers (p <0,05). Moreover, the remarkable increase was found among hospitality (57,5%), cashier (50,1%), and online business and marketing (48,7%) teachers. However, the effect among fashion, tourism and haircut teachers was less obvious. In addition, the satisfactory score on the quality of the organizer and tutors were 88,9 (very good), and 93,5 (excellence), respectively. The study concludes that a well-organized e-training could increase the attitude and skill competencies of Indonesian vocational high school teachers during Covid-19 pandemic.

Keywords: E-training, skill, teacher, vocational high school

Procedia PDF Downloads 138