Search results for: quantum image encryption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3463

Search results for: quantum image encryption

673 Revitalization of Industrial Brownfields in Historical Districts

Authors: Adel Menchawy, Noha Labib

Abstract:

Many cities have quarters that confer on them sense of identity and place through its cultural history. They are often vital part of the cities charm and appeal, their functional and visual qualities are important to the city’s image and identity. Brownfield sites present an important part of our built landscape. They provide tangible and intangible links to our past and have great potential to play significant roles in the future of our cities, towns and rural environments. Brownfield sites are places that were previously industrial factories or areas that might have had waste kept at that location or been exposed to many types of hazards. Thus its redevelopment revitalizes and strengthens towns and communities as it helps in economic growth, builds community pride and protects public health and the environment Three case studies are discussed in this paper; the first one is the city of Sterling which was developed and revitalized entirely and became a city with identity after it was derelict, the Second is the city of Castlefield with was a place no one was eager to visit now it became a touristic area. And finally the city of Cleveland which adopted a strategy that transferred it from being a polluted, derelict place into a mixed use development city Brownfield revitalization offers a great opportunity to transfer the city from being derelict, useless and contaminated into a place where tourists would love to come. Also it will increase the economy of the place, increase the social level, it can improve energy efficiency, reduce natural consumption, clean air, water and land and take advantage of existing buildings and sites and transfers them into an adaptive reuse after being remediated

Keywords: Brownfield Revitalization, Sustainable Brownfield, Historical conservation, Adaptive reuse

Procedia PDF Downloads 266
672 Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment

Authors: Mazifah Simis, Azahan Awang, Kadir Arifin

Abstract:

The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020.

Keywords: brownfield regeneration, ex-landfill redevelopment, integrated approach, stakeholders' perception

Procedia PDF Downloads 352
671 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 322
670 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria

Authors: Salah Hadjout, Mohamed Zouidi

Abstract:

In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.

Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria

Procedia PDF Downloads 100
669 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 247
668 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 480
667 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series

Procedia PDF Downloads 143
666 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 54
665 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 81
664 Rapid Weight Loss in Athletes: A Look at Suppressive Effects on Immune System

Authors: Nazari Maryam, Gorji Saman

Abstract:

For most competitions, athletes usually engage in a process called rapid weight loss (RWL) and subsequent rapid weight gain (RWG) in the days preceding the event. Besides the perfection of performance, weight regulation mediates a self-image of being “a real athlete” which is mentally important as a part of the pre-competition preparation. This feeling enhances the focus and commitment of the athlete. There is a large body of evidence that weight loss, particularly in combat sports, results in several health benefits. However, intentional weight loss beyond normal levels might have unknown negative special effects on the immune system. As the results show, a high prevalence (50%) of RWL is happening among combat athletes. It seems that energy deprivation and intense exercise to reach RWL results in altered blood cell distribution through modification of body composition that, in turn, changes B and T-Lymphocyte and/or CD4 T-Helper response. Moreover, it may diminish IgG antibody levels and modulate IgG glycosylation after this course. On the other hand, some studies show suppression of signaling and regulation of IgE antibody and chemokine production are responsible for immunodeficiency following a period of low-energy availability. Some researchers hypothesize that severe glutamine depletion, which occurs during exercise and calorie restriction, is responsible for this immune system weakness. However, supplementation by this amino acid is not prescribed yet. Therefore, weight loss is achieved not only through chronic strategies (body fat losses) but also through acute manipulations prior to competition should be supervised by a sports nutritionist to minimize side effects on the immune system and other body systems.

Keywords: athletes, immune system, rapid weight loss, weight loss strategies

Procedia PDF Downloads 120
663 Examining the Skills of Establishing Number and Space Relations of Science Students with the 'Integrative Perception Test'

Authors: Ni̇sa Yeni̇kalayci, Türkan Aybi̇ke Akarca

Abstract:

The ability of correlation the number and space relations, one of the basic scientific process skills, is being used in the transformation of a two-dimensional object into a three-dimensional image or in the expression of symmetry axes of the object. With this research, it is aimed to determine the ability of science students to establish number and space relations. The research was carried out with a total of 90 students studying in the first semester of the Science Education program of a state university located in the Turkey’s Black Sea Region in the fall semester of 2017-2018 academic year. An ‘Integrative Perception Test (IPT)’ was designed by the researchers to collect the data. Within the scope of IPT, the courses and workbooks specific to the field of science were scanned and the ones without symmetrical structure from the visual items belonging to the ‘Physics - Chemistry – Biology’ sub-fields were selected and listed. During the application, it was expected that students would imagine and draw images of the missing half of the visual items that were given incomplete in the first place. The data obtained from the test in which there are 30 images or pictures in total (f Physics = 10, f Chemistry = 10, f Biology = 10) were analyzed descriptively based on the drawings created by the students as ‘complete (2 points), incomplete/wrong (1 point), empty (0 point)’. For the teaching of new concepts in small aged groups, images or pictures showing symmetrical structures and similar applications can also be used.

Keywords: integrative perception, number and space relations, science education, scientific process skills

Procedia PDF Downloads 152
662 High Aspect Ratio Micropillar Array Based Microfluidic Viscometer

Authors: Ahmet Erten, Adil Mustafa, Ayşenur Eser, Özlem Yalçın

Abstract:

We present a new viscometer based on a microfluidic chip with elastic high aspect ratio micropillar arrays. The displacement of pillar tips in flow direction can be used to analyze viscosity of liquid. In our work, Computational Fluid Dynamics (CFD) is used to analyze pillar displacement of various micropillar array configurations in flow direction at different viscosities. Following CFD optimization, micro-CNC based rapid prototyping is used to fabricate molds for microfluidic chips. Microfluidic chips are fabricated out of polydimethylsiloxane (PDMS) using soft lithography methods with molds machined out of aluminum. Tip displacements of micropillar array (300 µm in diameter and 1400 µm in height) in flow direction are recorded using a microscope mounted camera, and the displacements are analyzed using image processing with an algorithm written in MATLAB. Experiments are performed with water-glycerol solutions mixed at 4 different ratios to attain 1 cP, 5 cP, 10 cP and 15 cP viscosities at room temperature. The prepared solutions are injected into the microfluidic chips using a syringe pump at flow rates from 10-100 mL / hr and the displacement versus flow rate is plotted for different viscosities. A displacement of around 1.5 µm was observed for 15 cP solution at 60 mL / hr while only a 1 µm displacement was observed for 10 cP solution. The presented viscometer design optimization is still in progress for better sensitivity and accuracy. Our microfluidic viscometer platform has potential for tailor made microfluidic chips to enable real time observation and control of viscosity changes in biological or chemical reactions.

Keywords: Computational Fluid Dynamics (CFD), high aspect ratio, micropillar array, viscometer

Procedia PDF Downloads 247
661 Exploring the Cultural Significance of Mural Paintings in the Tombs of Gilan, Iran: Evaluation of Drawn Figures

Authors: Zeinab Mirabulqasemi, Gholamali Hatam

Abstract:

This article discusses the significance of mural paintings in Iranian culture, particularly within the context of religious tombs known as Imamzadehs. These tombs, dedicated to Shiite imams and other revered religious figures, serve as important religious and communal spaces. The tradition of tomb construction evolved from early Islamic practices, gradually transforming burial sites into places of worship. In the Gilan region of Iran, these tombs hold a revered status, serving as focal points for religious observances and social gatherings. The murals adorning these tombs often depict religious motifs, with a particular emphasis on events like the Day of Judgment and the martyrdom of the Imams, notably the saga of Ashura. These paintings also reflect the community's social perspectives and historical allegiances. Various architectural styles are employed in constructing these tombs, including Islamic, traditional, local, and aesthetic architecture. However, the region's climate poses challenges to the preservation of these structures and their murals. Despite these challenges, efforts are made to document and preserve these artworks to ensure their accessibility for future generations. This research also studies tomb paintings by adopting a multifaceted approach, including library research, image analysis, and field research. Finally, it examines the portrayal of significant figures such as the Shiite imams, prophets, and Imamzadehs within these murals, highlighting their thematic significance and cultural importance.

Keywords: cultural ritual, Shiite imams, mural, belief foundations, religious paintings

Procedia PDF Downloads 55
660 Experiencing Scarred Body among Thai Women Living with Breast Cancer

Authors: Dusanee Suwankhong, Pranee Liamputtong

Abstract:

Breast surgery leaves undesirable scars to all women who experienced mastectomy, despite the fact that this could be a principle approach to save one life. This paper explores how Thai women living with breast cancer perceived and experienced a scarred body after breast surgery. In-depth interviews and drawing methods were employed among 20 women diagnosed with breast cancer. The interviewed data were analysed using thematic analysis method. The results showed that all women with breast cancer who underwent breast surgery perceived and experienced scar as a persisting and visible side-effect. This disfigurement appearance presented a negative image of feminine identity and led to emotional burdens among women. They responded to being scarred in different ways relating to their perceptions of body and changes. The older group had less embarrassed feelings towards being scarred comparing to the younger one. All women tried to seek means to cope with such physical impairment and keep balance life related to their condition. For example, they relied on Buddhism practice and tried to heal the keloid using natural products. Scars appeared to be an unpleasant effect for women who underwent breast mastectomy. Nurses and health care professionals in the local health service sectors need to pay close attention to how the women see the scarred body and their experiences of living with the distorted feminine appearance, and to provide sensitive support that meets the needs of these vulnerable women. The suitable supports can reduce the sense of embarrassment and increase their sense of self-confidence about their social femininity.

Keywords: breast surgery, emotional response, qualitative study, scars, Thai women

Procedia PDF Downloads 168
659 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 80
658 Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging

Authors: Vaia N. Koukou, Niki D. Martini, George P. Fountos, Christos M. Michail, Athanasios Bakas, Ioannis S. Kandarakis, George C. Nikiforidis

Abstract:

Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori).

Keywords: calcification materials, CNR, dual energy, X-rays

Procedia PDF Downloads 357
657 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 71
656 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 133
655 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326
654 Reimaging Archetype of Mosque: A Case Study on Contemporary Mosque Architecture in Bangladesh

Authors: Sabrina Rahman

Abstract:

The Mosque is Islam’s most symbolic structure, as well as the expression of collective identity. From the explicit words of our Prophet, 'The earth has been created for me as a masjid and a place of purity, and whatever man from my Ummah finds himself in need of prayer, let him pray' (anywhere)! it is obvious that a devout Muslim does not require a defined space or structure for divine worship since the whole earth is his prayer house. Yet we see that from time immemorial man throughout the Muslim world has painstakingly erected innumerable mosques. However, mosque design spans time, crosses boundaries, and expresses cultures. It is a cultural manifestation as much as one based on a regional building tradition or a certain interpretation of religion. The trend to express physical signs of religion is not new. Physical forms seem to convey symbolic messages. However, in recent times physical forms of mosque architecture are dominantly demising from mosque architecture projects in Bangladesh. Dome & minaret, the most prominent symbol of the mosque, is replacing by contextual and contemporary improvisation rather than subcontinental mosque architecture practice of early fellows. Thus the recent mosque projects of the last 15 years established the contemporary architectural realm in their design. Contextually, spiritual lighting, the serenity of space, tranquility of outdoor spaces, the texture of materials is widely establishing a new genre of Muslim prayer space. A case study based research will lead to specify its significant factors of modernism. Based on the findings, the paper presents evidence of recent projects as well as a guideline for the future image of contemporary Mosque architecture in Bangladesh.

Keywords: contemporary architecture, modernism, prayer space, symbolism

Procedia PDF Downloads 121
653 Re-Envisioning Modernity: Transformations of Postwar Suburban Landscapes

Authors: Shannon Clayton

Abstract:

In an effort to explore the potential transformation of North American postwar suburbs, this M.Arch thesis actively engages in the ongoing critique of modernism from the mid 20th century to the present. Contemporary urban design practice has emerged out of the reaction to orthodox modernism. Typically, new suburban development falls into one of two strategies; an attempt to replicate pre-war fabric that never existed, or a reliance on high-density to create instant urbanism. In both cases, the critical role of architecture has been grossly undervalued. Ironically, it is the denial of suburbia’s inherent modernity that has served to prevent genuine place-making. As history demonstrates, modernism is not antithetical to architecture and place. In the postwar years, a critical discussion emerged amongst architects, which sought to evolve modernism beyond functionalism. This was demonstrated through critical discussions on image, experience, and monumentality. As well as increased interest in civic space, and investigations into mat urbanism and the megastructure. The undercurrent within these explorations was a belief that the scale and complexity of modern development could become an opportunity to create urbanism, rather than squander it. This critical discourse has continued through architectural work in the Netherlands and Denmark since the early 1990s, where an emphasis on visual variety, human scale, and public interaction has been given high priority. This thesis applies principles from this ongoing dialogue, and identifies hidden potential within existing North American suburban networks. As a result, the project re-evaluates the legacy of the master plan from a contemporary perspective.

Keywords: urbanism, modernism, suburbia, place-making

Procedia PDF Downloads 252
652 Treaties-Fulfilled or Breached: A Study for Peacefulness of Religions

Authors: Syed A. Alam, Arifa Bilal

Abstract:

A propagated wave of barbaric and injustice Muslims has been popularized by the International powers in the recent past to divert the winning force of Muslims in the Afghan war against Russia. It is a tactic to demolish the power of Jihaad and the religious image of Islam. The propaganda picturized that Muslims were not peaceful or trustworthy people by displaying some brutal actions of a little number of funded people. The word ‘Islam’ is titled as ‘complete codes of life’ because of the peacefulness and trustworthiness of these codes for whole lives. These codes help the whole of humanity beyond the boundaries of any religion, sect, creed, color, geography, or race to lead their lives peacefully and trustfully. The human beings who act upon these codes of life, Islam, can be called Muslims. Those people are not Muslims who do not act upon these codes of life. History is evident that the Muslims proved themselves, collectively, that they are acting upon these codes of life. In this article, an analytical study was conducted regarding popular treaties signed between Muslims and non-Muslim communities in different times and regions on different matters. The study included the treaties of Hudabiyah Treaty, Mithaq-e-Madinah, Lucknow Pact, Indus Water Pact, Air Space Violation Treaty, Gallipoli Treaty, Amity Treaty, US-Russia Peace Treaty, and Wadi Arab Peace Treaty. After critical analysis of these treaties, it can be clearly concluded that Muslims fulfilled these treatises, but non-Muslim stakeholders of these treaties broke these treaties in one aspect or many and in the start or later. It can be concluded that the history of treaties between Muslim and non-Muslim communities declared that Muslims had fulfilled these treaties and pacts, so they are more trustworthy and peaceful people.

Keywords: fulfilled treaties, Muslim and non-muslim pacts, Islam and peacefulness, Islam and treaties

Procedia PDF Downloads 131
651 Study of a Few Additional Posterior Projection Data to 180° Acquisition for Myocardial SPECT

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Takao Kanzaki

Abstract:

A Dual-detector SPECT system is widely by use of myocardial SPECT studies. With 180-degree (180°) acquisition, reconstructed images are distorted in the posterior wall of myocardium due to the lack of sufficient data of posterior projection. We hypothesized that quality of myocardial SPECT images can be improved by the addition of data acquisition of only a few posterior projections to ordinary 180° acquisition. The proposed acquisition method (180° plus acquisition methods) uses the dual-detector SPECT system with a pair of detector arranged in 90° perpendicular. Sampling angle was 5°, and the acquisition range was 180° from 45° right anterior oblique to 45° left posterior oblique. After the acquisition of 180°, the detector moved to additional acquisition position of reverse side once for 2 projections, twice for 4 projections, or 3 times for 6 projections. Since these acquisition methods cannot be done in the present system, actual data acquisition was done by 360° with a sampling angle of 5°, and projection data corresponding to above acquisition position were extracted for reconstruction. We underwent the phantom studies and a clinical study. SPECT images were compared by profile curve analysis and also quantitatively by contrast ratio. The distortion was improved by 180° plus method. Profile curve analysis showed increased of cardiac cavity. Analysis with contrast ratio revealed that SPECT images of the phantoms and the clinical study were improved from 180° acquisition by the present methods. The difference in the contrast was not clearly recognized between 180° plus 2 projections, 180° plus 4 projections, and 180° plus 6 projections. 180° plus 2 projections method may be feasible for myocardial SPECT because distortion of the image and the contrast were improved.

Keywords: 180° plus acquisition method, a few posterior projections, dual-detector SPECT system, myocardial SPECT

Procedia PDF Downloads 295
650 Narrative Function of Public Meeting Places in Uzalo Soap Opera

Authors: Michelle Micah Augustine

Abstract:

Soap opera narrative creates a sense of community. Uzalo is a South African local soap opera television series. It is unique because Uzalo tells the story of black people and their everyday struggle centered in KwaMashu township community, which is an excellent example of how moving image culture has contributed in portraying township community that was once marginalized by the apartheid regime in contemporary South Africa. While soap opera importance and promotion of social change and behaviours have been extensively studied throughout history, little research has examined the importance of space and place in its narrative. This study explored the conventional community space and place, the core elements that drive soap opera narrative. By means of qualitative content analysis, the study investigated the construction of public meeting places in Uzalo, using a purposive sampling technique to collect data by choosing episodes. The result indicates that characters convergence in public meeting places in soap opera creates disequilibrium which drives the narrative; reveals that construction of a public meeting place is an important way of creating a minimum of homogeneousness among disparate characters, gives a sense of unified experience drawing on the notion of the particular characteristics or attitude generated from such place. The result shows that the use of camera angles, movements, editing, music and usual tricks (mise-en-scene) applied in the narrative setting function as a guide for viewers comprehension of emotional responses of the story and to connect with the space in which the narrative is set.

Keywords: community, narrative, place, space, soap opera

Procedia PDF Downloads 146
649 Geospatial Techniques and VHR Imagery Use for Identification and Classification of Slums in Gujrat City, Pakistan

Authors: Muhammad Ameer Nawaz Akram

Abstract:

The 21st century has been revealed that many individuals around the world are living in urban settlements than in rural zones. The evolution of numerous cities in emerging and newly developed countries is accompanied by the rise of slums. The precise definition of a slum varies countries to countries, but the universal harmony is that slums are dilapidated settlements facing severe poverty and have lacked access to sanitation, water, electricity, good living styles, and land tenure. The slum settlements always vary in unique patterns within and among the countries and cities. The core objective of this study is the spatial identification and classification of slums in Gujrat city Pakistan from very high-resolution GeoEye-1 (0.41m) satellite imagery. Slums were first identified using GPS for sample site identification and ground-truthing; through this process, 425 slums were identified. Then Object-Oriented Analysis (OOA) was applied to classify slums on digital image. Spatial analysis softwares, e.g., ArcGIS 10.3, Erdas Imagine 9.3, and Envi 5.1, were used for processing data and performing the analysis. Results show that OOA provides up to 90% accuracy for the identification of slums. Jalal Cheema and Allah Ho colonies are severely affected by slum settlements. The ratio of criminal activities is also higher here than in other areas. Slums are increasing with the passage of time in urban areas, and they will be like a hazardous problem in coming future. So now, the executive bodies need to make effective policies and move towards the amelioration process of the city.

Keywords: slums, GPS, satellite imagery, object oriented analysis, zonal change detection

Procedia PDF Downloads 134
648 Impact of Soci̇al Media in Tourism Marketing

Authors: Betül Garda

Abstract:

Technological developments have diversified marketing activities of the tourism sector and it has increased tourism opportunities to compete on a global scale for tourism businesses. Tourism businesses have been forced to use its core skills and knowledge effectively with the increase in effectiveness of the technology in the global competitive environment. Tourism businesses have been reached beyond the traditional boundaries because of their commercial activities, so, the boundaries of the national market either eliminated or blurred. Therefore, the internet is the alternative promotion tool and distribution channel to providing unlimited facilities for tourism suppliers. For example, the internet provides an opportunity to reach customers on a global scale with direct email marketing, advertising, customer service, promotion, sales, and marketing. Tourism businesses have improved themselves with the continuous information flows and also they have provided the permanence of the changes. Especially in terms of tourism businesses, social media is emerging as an extremely important tool in the use of knowledge effectively. This research paper investigates the impact of social media on the tourism businesses. A social networking site is a type of social media that provides a platform for business and people to connect with each other. Social media is so flexible that it can be used for both leisure and business purposes. In the tourism industry, social networking sites are one of the essential tools that play an important and beneficial role. The topic that will be discussed in this research paper are consumer behavior, connection with consumers, effectiveness in terms of time and cost, creating brand awareness and building the image of the company, promoting company, targeting consumers in a conceptual frame.

Keywords: branding, promoting, social media in tourism, tourism marketing tools

Procedia PDF Downloads 283
647 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes

Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono

Abstract:

Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is a widely used approach for LV segmentation but suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is proposed to improve the accuracy and speed of the model-based segmentation. Firstly, a robust and efficient detector based on Hough forest is proposed to localize cardiac feature points, and such points are used to predict the initial fitting of the LV shape model. Secondly, to achieve more accurate and detailed segmentation, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. The performance of the proposed method is evaluated on a dataset of 800 cardiac ultrasound images that are mostly of abnormal shapes. The proposed method is compared to several combinations of ASM and existing initialization methods. The experiment results demonstrate that the accuracy of feature point detection for initialization was improved by 40% compared to the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops, thus speeding up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.

Keywords: hough forest, active shape model, segmentation, cardiac left ventricle

Procedia PDF Downloads 339
646 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops

Authors: Catalina Albornoz, Giacomo Barbieri

Abstract:

Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.

Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature

Procedia PDF Downloads 388
645 Applying Kinect on the Development of a Customized 3D Mannequin

Authors: Shih-Wen Hsiao, Rong-Qi Chen

Abstract:

In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.

Keywords: 3D mannequin, kinect scanner, interactive closest point, shape morphing, subdivision

Procedia PDF Downloads 306
644 Artificial Intelligence-Generated Previews of Hyaluronic Acid-Based Treatments

Authors: Ciro Cursio, Giulia Cursio, Pio Luigi Cursio, Luigi Cursio

Abstract:

Communication between practitioner and patient is of the utmost importance in aesthetic medicine: as of today, images of previous treatments are the most common tool used by doctors to describe and anticipate future results for their patients. However, using photos of other people often reduces the engagement of the prospective patient and is further limited by the number and quality of pictures available to the practitioner. Pre-existing work solves this issue in two ways: 3D scanning of the area with manual editing of the 3D model by the doctor or automatic prediction of the treatment by warping the image with hand-written parameters. The first approach requires the manual intervention of the doctor, while the second approach always generates results that aren’t always realistic. Thus, in one case, there is significant manual work required by the doctor, and in the other case, the prediction looks artificial. We propose an AI-based algorithm that autonomously generates a realistic prediction of treatment results. For the purpose of this study, we focus on hyaluronic acid treatments in the facial area. Our approach takes into account the individual characteristics of each face, and furthermore, the prediction system allows the patient to decide which area of the face she wants to modify. We show that the predictions generated by our system are realistic: first, the quality of the generated images is on par with real images; second, the prediction matches the actual results obtained after the treatment is completed. In conclusion, the proposed approach provides a valid tool for doctors to show patients what they will look like before deciding on the treatment.

Keywords: prediction, hyaluronic acid, treatment, artificial intelligence

Procedia PDF Downloads 114