Search results for: linear differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5917

Search results for: linear differential equations

3127 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach

Authors: M. Zamurad Shah, M. Kemal Ozgoren, Raza Samar

Abstract:

This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances.

Keywords: unmanned aerial vehicles, sliding mode control, 3D guidance, nonlinear sliding manifolds

Procedia PDF Downloads 450
3126 Anthraquinone Labelled DNA for Direct Detection and Discrimination of Closely Related DNA Targets

Authors: Sarah A. Goodchild, Rachel Gao, Philip N. Bartlett

Abstract:

A novel detection approach using immobilized DNA probes labeled with Anthraquinone (AQ) as an electrochemically active reporter moiety has been successfully developed as a new, simple, reliable method for the detection of DNA. This method represents a step forward in DNA detection as it can discriminate between multiple nucleotide polymorphisms within target DNA strands without the need for any additional reagents, reporters or processes such as melting of DNA strands. The detection approach utilizes single-stranded DNA probes immobilized on gold surfaces labeled at the distal terminus with AQ. The effective immobilization has been monitored using techniques such as AC impedance and Raman spectroscopy. Simple voltammetry techniques (Differential Pulse Voltammetry, Cyclic Voltammetry) are then used to monitor the reduction potential of the AQ before and after the addition of complementary strand of target DNA. A reliable relationship between the shift in reduction potential and the number of base pair mismatch has been established and can be used to discriminate between DNA from highly related pathogenic organisms of clinical importance. This indicates that this approach may have great potential to be exploited within biosensor kits for detection and diagnosis of pathogenic organisms in Point of Care devices.

Keywords: Anthraquinone, discrimination, DNA detection, electrochemical biosensor

Procedia PDF Downloads 390
3125 Development of Low Noise Savonius Wind Turbines

Authors: Sanghyeon Kim, Cheolung Cheong

Abstract:

Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB.

Keywords: aerodynamic noise, Savonius wind turbine, vertical-axis wind turbine

Procedia PDF Downloads 457
3124 Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity

Authors: Nicolas Thiers, Romain Gers, Olivier Skurtys

Abstract:

In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers.

Keywords: direct numerical simulation, heat transfer enhancement, localized thermal perturbations, natural convection, rectangular differentially-heated cavity

Procedia PDF Downloads 141
3123 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 132
3122 Analysing the Cost of Immigrants to the National Health System in Eastern Macedonia and Thrace

Authors: T. Theodosiou, P. Polychronidou, A. G. Karasavvoglou

Abstract:

The latest years the number of immigrants at Greece has increased dramatically. Their impact on the National Health System (NHS) has not been yet thoroughly investigated. This paper analyses the cost of immigrants to the NHS hospitals of the region of Eastern Macedonia and Thrace. The data are collected from 2005 to 2011 from five different hospitals and are analysed using linear mixed effects models in order to investigate the effects of nationality and year on the cost of hospitalization and treatment. The results show that generally the Greek nationality patients have a higher mean cost of hospitalization compared to the immigrants and that there is an increasing trend for the cost except for the year 2010.

Keywords: cost, Eastern Macedonia and Thrace, immigrants, national health system

Procedia PDF Downloads 244
3121 Influence of Recombination of Free and Trapped Charge Carriers on the Efficiency of Conventional and Inverted Organic Solar Cells

Authors: Hooman Mehdizadeh Rad, Jai Singh

Abstract:

Organic solar cells (OSCs) have been actively investigated in the last two decades due to their several merits such as simple fabrication process, low-cost manufacturing, and lightweight. In this paper, using the optical transfer matrix method (OTMM) and solving the drift-diffusion equations processes of recombination are studied in inverted and conventional bulk heterojunction (BHJ) OSCs. Two types of recombination processes are investigated: 1) recombination of free charge carriers using the Langevin theory and 2) of trapped charge carriers in the tail states with exponential energy distribution. These recombination processes are incorporated in simulating the current- voltage characteristics of both conventional and inverted BHJ OSCs. The results of this simulation produces a higher power conversion efficiency in the inverted structure in comparison with conventional structure, which agrees well with the experimental results.

Keywords: conventional organic solar cells, exponential tail state recombination, inverted organic solar cells, Langevin recombination

Procedia PDF Downloads 185
3120 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 102
3119 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 285
3118 Valorization of Gypsum as Industrial Waste

Authors: Hasna Soli

Abstract:

The main objective of this work is the extraction of sulfur from gypsum here is industrial waste. Indeed the sulfuric acid production, passing through the following process; melting sulfur, filtration of the liquid sulfur, sulfur combustion to produce SO₂, conversion of SO₂ to SO₃ and SO₃ absorption in water to produce H₂SO₄ product as waste CaSO₄ the anhydrous calcium sulfate. The main objectives of this work are improving the industrial practices and to find other ways to manage these solid wastes. It should also assess the consequences of treatment in terms of training and become byproducts. Firstly there will be a characterization of this type of waste by an X-ray diffraction; to obtain phase solid compositions and chemical analysis; gravimetrically and atomic absorption spectrometry or by ICP. The samples are mineralized in suitable acidic or basic solutions. The elements analyzed are CaO, Sulfide (SO₃), Al₂O₃, Fe₂O₃, MgO, SiO₂. Then an analysis by EDS energy dispersive spectrometry using an Oxford EDX probe and differential thermal and gravimetric analyzes. Gypsum’s valuation will be performed. Indeed, the CaSO₄ will be reused to produce sulfuric acid, which will be reintroduced into the production line. The second approach explored in this work is the thermal utilization of solid waste to remove sulfur as a dilute sulfuric acid solution.

Keywords: environment, gypsum, sulfur, waste

Procedia PDF Downloads 294
3117 The Fabrication and Characterization of Hierarchical Carbon Nanotube/Carbon Fiber/High-Density Polyethylene Composites via Twin-Screw Extrusion

Authors: Chao Hu, Xinwen Liao, Qing-Hua Qin, Gang Wang

Abstract:

The hierarchical carbon nanotube (CNT)/carbon fiber (CF)/high density polyethylene (HDPE) was fabricated via compound extrusion and injection molding, in which to author’s best knowledge CNT was employed as a nano-coatings on the surface of CF for the first time by spray coating technique. The CNT coatings relative to CF was set at 1 wt% and the CF content relative to the composites varied from 0 to 25 wt% to study the influence of CNT coatings and CF contents on the mechanical, thermal and morphological performance of this hierarchical composites. The results showed that with the rise of CF contents, the mechanical properties, including the tensile properties, flexural properties, and hardness of CNT/CF/HDPE composites, were effectively improved. Furthermore, the CNT-coated composites showed overall higher mechanical performance than the uncoated counterparts. It can be ascribed to the enhancement of interfacial bonding between the CF and HDPE via the incorporation of CNT, which was demonstrated by the scanning electron microscopy observation. Meanwhile, the differential scanning calorimetry data indicated that by the introduction of CNT and CF, the crystallization temperature and crystallinity of HDPE were affected while the melting temperature did not have an obvious alteration.

Keywords: carbon fibers, carbon nanotubes, extrusion, high density polyethylene

Procedia PDF Downloads 137
3116 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: natural convection in enclosure, inclined enclosure, Nusselt number, entropy generation analyze

Procedia PDF Downloads 258
3115 The Determinants of Financing to Deposit Ratio of Islamic Bank in Malaysia

Authors: Achsania Hendratmi, Puji Sucia Sukmaningrum, Fatin Fadhilah Hasib, Nisful Laila

Abstract:

The research aimed to know the influence of Capital Adequacy Ratio (CAR), Return on Assets (ROA) and Size of the Financing to Deposit Ratio (FDR) Islamic Banks in Malaysia by using eleven Islamic Banks in Indonesia and fifteen Islamic Banks in Malaysia in the period 2012 to 2016 as samples. The research used a quantitative approach method, and the analysis technique used multiple linear regression. Based on the result of t-test (partial), CAR, ROA and size significantly affect of FDR. While the results of f-test (simultaneous) showed that CAR, ROA and Size significant effect on FDR.

Keywords: capital adequacy ratio, financing to deposit ratio, return on assets, size

Procedia PDF Downloads 337
3114 Harnessing the Benefits and Mitigating the Challenges of Neurosensitivity for Learners: A Mixed Methods Study

Authors: Kaaryn Cater

Abstract:

People vary in how they perceive, process, and react to internal, external, social, and emotional environmental factors; some are more sensitive than others. Compassionate people have a highly reactive nervous system and are more impacted by positive and negative environmental conditions (Differential Susceptibility). Further, some sensitive individuals are disproportionately able to benefit from positive and supportive environments without necessarily suffering negative impacts in less supportive environments (Vantage Sensitivity). Environmental sensitivity is underpinned by physiological, genetic, and personality/temperamental factors, and the phenotypic expression of high sensitivity is Sensory Processing Sensitivity. The hallmarks of Sensory Processing Sensitivity are deep cognitive processing, emotional reactivity, high levels of empathy, noticing environmental subtleties, a tendency to observe new and novel situations, and a propensity to become overwhelmed when over-stimulated. Several educational advantages associated with high sensitivity include creativity, enhanced memory, divergent thinking, giftedness, and metacognitive monitoring. High sensitivity can also lead to some educational challenges, particularly managing multiple conflicting demands and negotiating low sensory thresholds. A mixed methods study was undertaken. In the first quantitative study, participants completed the Perceived Success in Study Survey (PSISS) and the Highly Sensitive Person Scale (HSPS-12). Inclusion criteria were current or previous postsecondary education experience. The survey was presented on social media, and snowball recruitment was employed (n=365). The Excel spreadsheets were uploaded to the statistical package for the social sciences (SPSS)26, and descriptive statistics found normal distribution. T-tests and analysis of variance (ANOVA) calculations found no difference in the responses of demographic groups, and Principal Components Analysis and the posthoc Tukey calculations identified positive associations between high sensitivity and three of the five PSISS factors. Further ANOVA calculations found positive associations between the PSISS and two of the three sensitivity subscales. This study included a response field to register interest in further research. Respondents who scored in the 70th percentile on the HSPS-12 were invited to participate in a semi-structured interview. Thirteen interviews were conducted remotely (12 female). Reflexive inductive thematic analysis was employed to analyse data, and a descriptive approach was employed to present data reflective of participant experience. The results of this study found that compassionate students prioritize work-life balance; employ a range of practical metacognitive study and self-care strategies; value independent learning; connect with learning that is meaningful; and are bothered by aspects of the physical learning environment, including lighting, noise, and indoor environmental pollutants. There is a dearth of research investigating sensitivity in the educational context, and these studies highlight the need to promote widespread education sector awareness of environmental sensitivity, and the need to include sensitivity in sector and institutional diversity and inclusion initiatives.

Keywords: differential susceptibility, highly sensitive person, learning, neurosensitivity, sensory processing sensitivity, vantage sensitivity

Procedia PDF Downloads 64
3113 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption

Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu

Abstract:

In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.

Keywords: comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control

Procedia PDF Downloads 160
3112 Studies of Substituent and Solvent Effect on Spectroscopic Properties Of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 Coumarin

Authors: Sanjay Kumar

Abstract:

This paper reports the solvent effects on the electronic absorption and fluorescence emission spectra of 6-OH-4-CH3, 7-OH-4-CH3 and 7-OH-4-CF3 coumarin derivatives having -OH, -CH3 and -CF3 substituent at different positions in various solvents (Polar and Non-Polar). The first excited singlet state dipole moment and ground state dipole moment were calculated using Bakhshiev, Kawski-Chamma-Viallet and Reichardt-Dimroth equations and were compared for all the coumarin studied. In all cases the dipole moments were found to be higher in the excited singlet state than in the ground state indicating a substantial redistribution of Π-electron density in the excited state. The angle between the excited singlet state and ground state dipole moment is also calculated. The red shift of the absorption and fluorescence emission bands, observed for all the coumarin studied upon increasing the solvent polarity indicating that the electronic transitions were Π → Π* nature.

Keywords: coumarin, solvent effects, absorption spectra, emission spectra, excited singlet state dipole moment, ground state dipole moment, solvatochromism

Procedia PDF Downloads 831
3111 Towards a Rigorous Analysis for a Supercritical Particulate Process

Authors: Yousef Bakhbakhi

Abstract:

Crystallization with supercritical fluids (SCFs), as a developed technology to produce particles of micron and sub-micron size with narrow size distribution, has found appreciable importance as an environmentally friendly technology. Particle synthesis using SCFs can be achieved employing a number of special processes involving solvent and antisolvent mechanisms. In this study, the compressed antisolvent (PCA) process is utilized as a model to analyze the theoretical complexity of crystallization with supercritical fluids. The population balance approach has proven to be an effectual technique to simulate and predict the particle size and size distribution. The nucleation and growth mechanisms of the particles formation in the PCA process is investigated using the population balance equation, which describes the evolution of the particle through coalescence and breakup levels with time. The employed mathematical population balance model contains a set of the partial differential equation with algebraic constraints, which demands a rigorous numerical approach. The combined Collocation and Galerkin finite element method are proposed as a high-resolution technique to solve the dynamics of the PCA process.

Keywords: particle formation, particle size and size distribution, PCA, supercritical carbon dioxide

Procedia PDF Downloads 195
3110 Review of Dielectric Permittivity Measurement Techniques

Authors: Ahmad H. Abdelgwad, Galal E. Nadim, Tarek M. Said, Amr M. Gody

Abstract:

The prime objective of this manuscript is to provide intensive review of the techniques used for permittivity measurements. The measurement techniques, relevant for any desired application, rely on the nature of the measured dielectric material, both electrically and physically, the degree of accuracy required, and the frequency of interest. Regardless of the way that distinctive sorts of instruments can be utilized, measuring devices that provide reliable determinations of the required electrical properties including the obscure material in the frequency range of interest can be considered. The challenge in making precise dielectric property or permittivity measurements is in designing of the material specimen holder for those measurements (RF and MW frequency ranges) and adequately modeling the circuit for reliable computation of the permittivity from the electrical measurements. If the RF circuit parameters such as the impedance or admittance are estimated appropriately at a certain frequency, the material’s permittivity at this frequency can be estimated by the equations which relate the way in which the dielectric properties of the material affect on the parameters of the circuit.

Keywords: dielectric permittivity, free space measurement, waveguide techniques, coaxial probe, cavity resonator

Procedia PDF Downloads 368
3109 Micromechanism of Ionization Effects on Metal/Gas Mixing Instabilty at Extreme Shock Compressing Conditions

Authors: Shenghong Huang, Weirong Wang, Xisheng Luo, Xinzhu Li, Xinwen Zhao

Abstract:

Understanding of material mixing induced by Richtmyer-Meshkov instability (RMI) at extreme shock compressing conditions (high energy density environment: P >> 100GPa, T >> 10000k) is of great significance in engineering and science, such as inertial confinement fusion(ICF), supersonic combustion, etc. Turbulent mixing induced by RMI is a kind of complex fluid dynamics, which is closely related with hydrodynamic conditions, thermodynamic states, material physical properties such as compressibility, strength, surface tension and viscosity, etc. as well as initial perturbation on interface. For phenomena in ordinary thermodynamic conditions (low energy density environment), many investigations have been conducted and many progresses have been reported, while for mixing in extreme thermodynamic conditions, the evolution may be very different due to ionization as well as large difference of material physical properties, which is full of scientific problems and academic interests. In this investigation, the first principle based molecular dynamic method is applied to study metal Lithium and gas Hydrogen (Li-H2) interface mixing in micro/meso scale regime at different shock compressing loading speed ranging from 3 km/s to 30 km/s. It's found that, 1) Different from low-speed shock compressing cases, in high-speed shock compresing (>9km/s) cases, a strong acceleration of metal/gas interface after strong shock compression is observed numerically, leading to a strong phase inverse and spike growing with a relative larger linear rate. And more specially, the spike growing rate is observed to be increased with shock loading speed, presenting large discrepancy with available empirical RMI models; 2) Ionization is happened in shock font zone at high-speed loading cases(>9km/s). An additional local electric field induced by the inhomogeneous diffusion of electrons and nuclei after shock font is observed to occur near the metal/gas interface, leading to a large acceleration of nuclei in this zone; 3) In conclusion, the work of additional electric field contributes to a mechanism of RMI in micro/meso scale regime at extreme shock compressing conditions, i.e., a Rayleigh-Taylor instability(RTI) is induced by additional electric field during RMI mixing process and thus a larger linear growing rate of interface spike.

Keywords: ionization, micro/meso scale, material mixing, shock

Procedia PDF Downloads 224
3108 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids

Authors: A. Giniatoulline

Abstract:

We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.

Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations

Procedia PDF Downloads 257
3107 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems

Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin

Abstract:

Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.

Keywords: expanded perlite, oil ash, scoria, energy storage material

Procedia PDF Downloads 87
3106 The Scientific Study of the Relationship Between Physicochemical and Microstructural Properties of Ultrafiltered Cheese: Protein Modification and Membrane Separation

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

The loss of curd cohesiveness and syneresis are two common problems in the ultrafiltered cheese industry. In this study, by using membrane technology and protein modification, a modified cheese was developed and its properties were compared with a control sample. In order to decrease the lactose content and adjust the protein, acidity, dry matter and milk minerals, a combination of ultrafiltration, nanofiltration and reverse osmosis technologies was employed. For protein modification, a two-stage chemical and enzymatic reaction was employed before and after ultrafiltration. The physicochemical and microstructural properties of the modified ultrafiltered cheese were compared with the control one. Results showed that the modified protein enhanced the functional properties of the final cheese significantly (pvalue< 0.05), even if the protein content was 50% lower than the control one. The modified cheese showed 21 ± 0.70, 18 ± 1.10 & 25±1.65% higher hardness, cohesiveness and water-holding capacity values, respectively, than the control sample. This behavior could be explained by the developed microstructure of the gel network. Furthermore, chemical-enzymatic modification of milk protein induced a significant change in the network parameter of the final cheese. In this way, the indices of network linkage strength, network linkage density, and time scale of junctions were 10.34 ± 0.52, 68.50 ± 2.10 & 82.21 ± 3.85% higher than the control sample, whereas the distance between adjacent linkages was 16.77 ± 1.10% lower than the control sample. These results were supported by the results of the textural analysis. A non-linear viscoelastic study showed a triangle waveform stress of the modified protein contained cheese, while the control sample showed rectangular waveform stress, which suggested a better sliceability of the modified cheese. Moreover, to study the shelf life of the products, the acidity, as well as molds and yeast population, were determined in 120 days. It’s worth mentioning that the lactose content of modified cheese was adjusted at 2.5% before fermentation, while the lactose of the control one was at 4.5%. The control sample showed 8 weeks shelf life, while the shelf life of the modified cheese was 18 weeks in the refrigerator. During 18 weeks, the acidity of modified and control samples increased from 82 ± 1.50 to 94 ± 2.20 °D and 88 ± 1.64 to 194 ± 5.10 °D, respectively. The mold and yeast populations, with time, followed the semicircular shape model (R2 = 0.92, R2adj = 0.89, RMSE = 1.25). Furthermore, the mold and yeast counts and their growth rate in the modified cheese were lower than those for control one; Aforementioned result could be explained by the shortage of the source of energy for the microorganism in the modified cheese. The lactose content of the modified sample was less than 0.2 ± 0.05% at the end of fermentation, while this was 3.7 ± 0.68% in the control sample.

Keywords: non-linear viscoelastic, protein modification, semicircular shape model, ultrafiltered cheese

Procedia PDF Downloads 72
3105 Optimal Capacitor Placement in Distribution Systems

Authors: Sana Ansari, Sirus Mohammadi

Abstract:

In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: power losses, voltage stability, radial distribution systems, capacitor

Procedia PDF Downloads 645
3104 The Perception and Integration of Lexical Tone and Vowel in Mandarin-speaking Children with Autism: An Event-Related Potential Study

Authors: Rui Wang, Luodi Yu, Dan Huang, Hsuan-Chih Chen, Yang Zhang, Suiping Wang

Abstract:

Enhanced discrimination of pure tones but diminished discrimination of speech pitch (i.e., lexical tone) were found in children with autism who speak a tonal language (Mandarin), suggesting a speech-specific impairment of pitch perception in these children. However, in tonal languages, both lexical tone and vowel are phonemic cues and integrally dependent on each other. Therefore, it is unclear whether the presence of phonemic vowel dimension contributes to the observed lexical tone deficits in Mandarin-speaking children with autism. The current study employed a multi-feature oddball paradigm to examine how vowel and tone dimensions contribute to the neural responses for syllable change detection and involuntary attentional orienting in school-age Mandarin-speaking children with autism. In the oddball sequence, syllable /da1/ served as the standard stimulus. There were three deviant stimulus conditions, representing tone-only change (TO, /da4/), vowel-only change (VO, /du1/), and change of tone and vowel simultaneously (TV, /du4/). EEG data were collected from 25 children with autism and 20 age-matched normal controls during passive listening to the stimulation. For each deviant condition, difference waveform measuring mismatch negativity (MMN) was derived from subtracting the ERP waveform to the standard sound from that to the deviant sound for each participant. Additionally, the linear summation of TO and VO difference waveforms was compared to the TV difference waveform, to examine whether neural sensitivity for TV change detection reflects simple summation or nonlinear integration of the two individual dimensions. The MMN results showed that the autism group had smaller amplitude compared with the control group in the TO and VO conditions, suggesting impaired discriminative sensitivity for both dimensions. In the control group, amplitude of the TV difference waveform approximated the linear summation of the TO and VO waveforms only in the early time window but not in the late window, suggesting a time course from dimensional summation to nonlinear integration. In the autism group, however, the nonlinear TV integration was already present in the early window. These findings suggest that speech perception atypicality in children with autism rests not only in the processing of single phonemic dimensions, but also in the dimensional integration process.

Keywords: autism, event-related potentials , mismatch negativity, speech perception

Procedia PDF Downloads 216
3103 Numerical Simulation of Convective Flow of Nanofluids with an Oriented Magnetic Field in a Half Circular-Annulus

Authors: M. J. Uddin, M. M. Rahman

Abstract:

The unsteady convective heat transfer flow of nanofluids in a half circular-annulus shape enclosure using nonhomogeneous dynamic model has been investigated numerically. The round upper wall of the enclosure is maintained at constant low temperature whereas the bottom wall is heated by three different thermal conditions. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To discover the best performer, the average Nusselt number is demonstrated for different types of nanofluids. The heat transfer rate for different flow parameters, positions of the annulus, thicknesses of the half circular-annulus and thermal conditions is also exhibited.

Keywords: nanofluid, convection, semicircular-annulus, nonhomogeneous dynamic model, finite element method

Procedia PDF Downloads 220
3102 Carbonation and Mechanical Performance of Reactive Magnesia Based Formulations

Authors: Cise Unluer

Abstract:

Reactive MgO hydrates to form brucite (Mg(OH)2, magnesium hydroxide), which can then react with CO2 and additional water to form a range of strength providing hydrated magnesium carbonates (HMCs) within cement-based formulations. The presented work focuses on the use of reactive MgO in a range of concrete mixes, where it carbonates by absorbing CO2 and gains strength accordingly. The main goal involves maximizing the amount of CO2 absorbed within construction products, thereby reducing the overall environmental impact of the designed formulations. Microstructural analyses including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetry/differential thermal analysis (TG/DTA) are used in addition to porosity, permeability and unconfined compressive strength (UCS) testing to understand the performance mechanisms. XRD Reference Intensity Ratio (RIR), acid digestion and TG/DTA are utilized to quantify the amount of CO2 sequestered, with the goal of achieving 100% carbonation through careful mix design, leading to a range of carbon neutral products with high strengths. As a result, samples stronger than those containing Portland cement (PC) were produced, revealing the link between the mechanical performance and microstructural development of the developed formulations with the amount of CO2 sequestered.

Keywords: carbonation, compressive strength, reactive MgO cement, sustainability

Procedia PDF Downloads 176
3101 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method

Authors: Berker Bayazit, Gulgun Kayakutlu

Abstract:

The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.

Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy

Procedia PDF Downloads 242
3100 Designing of Multi-Epitope Peptide Vaccines for Fasciolosis (Fasciola gigantica) using Immune Epitope and Analysis Resource (IEDB) Server

Authors: Supanan Chansap, Werachon Cheukamud, Pornanan Kueakhai, Narin Changklungmoa

Abstract:

Fasciola species (Fasciola spp.) is caused fasciolosis in ruminants such as cattle, sheep, and buffalo. Fasciola gigantica (F.gigantica) commonly infects tropical regions. Fasciola hepatica (F.hepatica) in temperate regions. Liver fluke infection affects livestock economically, for example, reduced milk and meat production, weight loss, sterile animals. Currently, Triclabendazole is used to treat liver flukes. However, liver flukes have also been found to be resistant to drugs in countries. Therefore, vaccination is an attractive alternative to prevent liver fluke infection. Peptide vaccines are new vaccine technologies that mimic epitope antigens that trigger an immune response. An interesting antigen used in vaccine production is catepsin L, a family of proteins that play an important role in the life of the parasite in the host. This study aims to identify immunogenic regions of protein and construct a multi-epidetope vaccine using an immunoinformatic tool. Fasciola gigantica Cathepsin L1 (FgCatL1), Fasciola gigantica Cathepsin L1G (FgCatL1G), and Fasciola gigantica Cathepsin L1H (FgCatL1H) were predicted B-cell and Helper T lymphocytes (HTL) by Immune Epitope and Analysis Resource (IEDB) servers. Both B-cell and HTL epitopes aligned with cathepsin L of the host and Fasciola hepatica (F. hepatica). Epitope groups were selected from non-conserved regions and overlapping sequences with F. hepatica. All overlapping epitopes were linked with the GPGPG and KK linker. GPGPG linker was linked between B-cell epitope. KK linker was linked between HTL epitope and B-cell and HTL epitope. The antigenic scores of multi-epitope peptide vaccine was 0.7824. multi-epitope peptide vaccine was non-allergen, non-toxic, and good soluble. Multi-epitope peptide vaccine was predicted tertiary structure and refinement model by I-Tasser and GalaxyRefine server, respectively. The result of refine structure model was good quality that was generated by Ramachandran plot analysis. Discontinuous and linear B-cell epitopes were predicted by ElliPro server. Multi-epitope peptide vaccine model was two and seven of discontinuous and linear B-cell epitopes, respectively. Furthermore, multi-epitope peptide vaccine was docked with Toll-like receptor 2 (TLR-2). The lowest energy ranged from -901.3 kJ/mol. In summary, multi-epitope peptide vaccine was antigenicity and probably immune response. Therefore, multi-epitope peptide vaccine could be used to prevent F. gigantica infections in the future.

Keywords: fasciola gigantica, Immunoinformatic tools, multi-epitope, Vaccine

Procedia PDF Downloads 76
3099 Fatigue Life Estimation Using N-Code for Drive Shaft of Passenger Vehicle

Authors: Tae An Kim, Hyo Lim Kang, Hye Won Han, Seung Ho Han

Abstract:

The drive shaft of passenger vehicle has its own function such as transmitting the engine torque from the gearbox and differential gears to the wheels. It must also compensate for all variations in angle or length resulting from manoeuvring and deflection for perfect synchronization between joints. Torsional fatigue failures occur frequently at the connection parts of the spline joints in the end of the drive shaft. In this study, the fatigue life of a drive shaft of passenger vehicle was estimated by using the finite element analysis. A commercial software of n-Code was applied under twisting load conditions, i.e. 0~134kgf•m and 0~188kgf•m, in which the shear strain range-fatigue life relationship considering Signed Shear method, Smith-Watson-Topper equation, Neuber-Hoffman Seeger method, size sensitivity factor and surface roughness effect was taken into account. The estimated fatigue life was verified by a twisting load test of the real drive shaft in a test rig. (Human Resource Training Project for Industry Matched R & D, KIAT, N036200004).

Keywords: drive shaft, fatigue life estimation, passenger vehicle, shear strain range-fatigue life relationship, torsional fatigue failure

Procedia PDF Downloads 274
3098 Active Disturbance Rejection Control for Wind System Based on a DFIG

Authors: R. Chakib, A. Essadki, M. Cherkaoui

Abstract:

This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.

Keywords: doubly fed induction generator (DFIG), active disturbance rejection control (ADRC), vector control, MPPT, extended state observer, back-to-back converter, wind turbine

Procedia PDF Downloads 482