Search results for: self-regulated learning theory
8520 Motivational Strategies for Young Learners in Distance Education
Authors: Saziye Darendeli
Abstract:
Motivation has a significant impact on a second/foreign language learning process, so it plays a vital role while achieving the learning goal. As it is defined by Simon (1967, p. 29), motivation is “a goal terminating mechanism, permitting goals to be processed serially.”AccordingtoSimon, if a learning goal is activated and enough attention is given, the learner starts learning. In connection with this view, the more attention is given on a subject, and the more activation takes place on it, the quicker learning will occur. Moreover, today almost every teacher is familiar with the term “distance education” regardless of their student's age group. As it is stated by Visser (2002), when compared to the traditional classrooms, in distance education, the rate and success of language learningdecreasesandone of the most essential reasons is that motivating students in distance education contexts, in which interaction is lower, is much more challenging than face-to-face training especially with young learners(Lim& Kim, 2003). Besides, there are limited numbers of studies conducted on motivational strategies for young learners in distance education contexts since we have been experiencing full time the online schooling process recently, yet online teaching seems to be permanent in our lives with the new technological era. Therefore, there appears to be a need for various strategies to motivate young learners in distance education, and the current study aims to find out the strategies that young learners’ teachers use to increase their students’ motivation level in distance education. To achieve this aim, a qualitative research approach and a phenomenological method with an interpretive design will be used. The participants, who are teachers of young learners, will be interviewed using a structured interview format consisting of 7 questions. As the participants are young learners’teacherswhohavebeenexperiencingteaching online, exploring thestrategiesthattheyusetoincreasetheirstudents’ motivationlevelwillprovidesomesuggestionsaboutthemotivationalstrategiesforfuture online classes. Also, in this paper, I will move beyond the traditional classrooms that have face-to-face lessons and discuss the effective motivational strategies for young learners in distance education.Keywords: motivation, distance education, young learners, strategies
Procedia PDF Downloads 1918519 The Roles of Parental Involvement in the Teaching-Learning Process of Students with Special Needs: Perceptions of Special Needs Education Teachers
Authors: Chassel T. Paras, Tryxzy Q. Dela Cruz, Ma. Carmela Lousie V. Goingco, Pauline L. Tolentino, Carmela S. Dizon
Abstract:
In implementing inclusive education, parental involvement is measured to be an irreplaceable contributing factor. Parental involvement is described as an indispensable aspect of the teaching-learning process and has a remarkable effect on the student's academic performance. However, there are still differences in the viewpoints, expectations, and needs of both parents and teachers that are not yet fully conveyed in their relationship; hence, the perceptions of SNED teachers are essential in their collaboration with parents. This qualitative study explored how SNED teachers perceive the roles of parental involvement in the teaching-learning process of students with special needs. To answer this question, one-on-one face-to-face semi-structured interviews with three SNED teachers in a selected public school in Angeles City, Philippines, that offer special needs education services were conducted. The gathered data are then analyzed using Interpretative Phenomenological Analysis (IPA). The results revealed four superordinate themes, which include: (1) roles of parental involvement, (2) parental involvement opportunities, (3) barriers to parental involvement, and (4) parent-teacher collaboration practices. These results indicate that SNED teachers are aware of the roles and importance of parental involvement; however, despite parent-teacher collaboration, there are still barriers that impede parental involvement. Also, SNED teachers acknowledge the big roles of parents as they serve as main figures in the teaching-learning process of their children with special needs. Lastly, these results can be used as input in developing a school-facilitated parenting involvement framework that encompasses the contribution of SNED teachers in planning, developing, and evaluating parental involvement programs, which future researchers can also use in their studiesKeywords: parental involvement, special needs education, teaching-learning process, teachers’ perceptions, special needs education teachers, interpretative phenomenological analysis
Procedia PDF Downloads 1128518 The Professionalization of Teachers in the Context of the Development of a Future-Oriented Technical and Vocational Education and Training System in Egypt
Authors: Sherin Ahmed El-Badry Sadek
Abstract:
In this research, it is scientifically examined what contribution the professionalization of teachers can make to the development of a future-oriented vocational education and training system in Egypt. For this purpose, a needs assessment of the Egyptian vocational training system with the central actors and prevailing structures forms the foundation of the study, which theoretically underpinned with the attempt to resolve to some extent the tension between Luhmann's systems theory approach and the actor-centered theory of professional teacher competence. The vocational education system, in particular, must be adaptable and flexible due to the rapidly changing qualification requirements. In view of the pace of technological progress and the associated market changes, vocational training is no longer to be understood only as an educational tool aimed at those who achieve poorer academic performance or are not motivated to take up a degree. Rather, it is to be understood as a cornerstone for the development of society, and international experience shows that it is the core of lifelong learning. But to what extent have the education systems been able to react to these changes in their political, social, and technological systems? And how effective and sustainable are these changes actually? The vocational training system, in particular, has a particular impact on other social systems, which is why the appropriate parameters with the greatest leverage must be identified and adapted. Even if systems and structures are highly relevant, teachers must not hide behind them and must instead strive to develop further and to constantly learn. Despite numerous initiatives and programs to reform vocational training in Egypt, including the EU-funded Technical and Vocational Education and Training (TVET) reform phase I and phase II, the fit of the skilled workers to the needs of the labor market is still insufficient. Surveys show that the majority of employers are very dissatisfied with the graduates that the vocational training system produces. The data was collected through guideline-based interviews with experts from the education system and relevant neighboring systems, which allowed me to reconstruct central in-depth structures, as well as patterns of action and interpretation, in order to subsequently feed these into a matrix of recommendations for action. These recommendations are addressed to different decision-makers and stakeholders and are intended to serve as an impetus for the sustainable improvement of the Egyptian vocational training system. The research findings have shown that education, and in particular vocational training, is a political field that is characterized by a high degree of complexity and which is embedded in a barely manageable, highly branched landscape of structures and actors. At the same time, the vocational training system is not only determined by endogenous factors but also increasingly shaped by the dynamics of the environment and the neighboring social subsystems, with a mutual dependency relationship becoming apparent. These interactions must be taken into account in all decisions, even if prioritization of measures and thus a clear sequence and process orientation are of great urgency.Keywords: competence orientation, educational policies, education systems, expert interviews, globalization, organizational development, professionalization, systems theory, teacher training, TVET system, vocational training
Procedia PDF Downloads 1538517 Enhancing Engineering Students Educational Experience: Studying Hydrostatic Pumps Association System in Fluid Mechanics Laboratories
Authors: Alexandre Daliberto Frugoli, Pedro Jose Gabriel Ferreira, Pedro Americo Frugoli, Lucio Leonardo, Thais Cavalheri Santos
Abstract:
Laboratory classes in Engineering courses are essential for students to be able to integrate theory with practical reality, by handling equipment and observing experiments. In the researches of physical phenomena, students can learn about the complexities of science. Over the past years, universities in developing countries have been reducing the course load of engineering courses, in accordance with cutting cost agendas. Quality education is the object of study for researchers and requires educators and educational administrators able to demonstrate that the institutions are able to provide great learning opportunities at reasonable costs. Didactic test benches are indispensable equipment in educational activities related to turbo hydraulic pumps and pumping facilities study, which have a high cost and require long class time due to measurements and equipment adjustment time. In order to overcome the aforementioned obstacles, aligned with the professional objectives of an engineer, GruPEFE - UNIP (Research Group in Physics Education for Engineering - Universidade Paulista) has developed a multi-purpose stand for the discipline of fluid mechanics which allows the study of velocity and flow meters, loads losses and pump association. In this work, results obtained by the association in series and in parallel of hydraulic pumps will be presented and discussed, mainly analyzing the repeatability of experimental procedures and their agreement with the theory. For the association in series two identical pumps were used, consisting of the connection of the discharge of a pump to the suction of the next one, allowing the fluid to receive the power of all machines in the association. The characteristic curve of the set is obtained from the curves of each of the pumps, by adding the heads corresponding to the same flow rates. The same pumps were associated in parallel. In this association, the discharge piping is common to the two machines together. The characteristic curve of the set was obtained by adding to each value of H (head height), the flow rates of each pump. For the tests, the input and output pressure of each pump were measured. For each set there were three sets of measurements, varying the flow rate in range from 6.0 to 8.5 m 3 / h. For the two associations, the results showed an excellent repeatability with variations of less than 10% between sets of measurements and also a good agreement with the theory. This variation agrees with the instrumental uncertainty. Thus, the results validate the use of the fluids bench designed for didactic purposes. As a future work, a digital acquisition system is being developed, using differential sensors of extremely low pressures (2 to 2000 Pa approximately) for the microcontroller Arduino.Keywords: engineering education, fluid mechanics, hydrostatic pumps association, multi-purpose stand
Procedia PDF Downloads 2208516 Exploring the Difficulties of Acceleration Concept from the Perspective of Historical Textual Analysis
Authors: Yun-Ju Chiu, Feng-Yi Chen
Abstract:
Kinematics is the beginning to learn mechanics in physics course. The concept of acceleration plays an important role in learning kinematics. Teachers usually instruct the conception through the formulas and graphs of kinematics and the well-known law F = ma. However, over the past few decades, a lot of researchers reveal numerous students’ difficulties in learning acceleration. One of these difficulties is that students frequently confuse acceleration with velocity and force. Why is the concept of acceleration so difficult to learn? The aim of this study is to understand the conceptual evolution of acceleration through the historical textual analysis. Text analysis and one-to-one interviews with high school students and teachers are used in this study. This study finds the history of science constructed from textbooks is usually quite different from the real evolution of history. For example, most teachers and students believe that the best-known law F = ma was written down by Newton. The expression of the second law is not F = ma in Newton’s best-known book Principia in 1687. Even after more than one hundred years, a famous Cambridge textbook titled An Elementary Treatise on Mechanics by Whewell of Trinity College did not express this law as F = ma. At that time of Whewell, the early mid-nineteenth century Britain, the concept of acceleration was not only ambiguous but also confused with the concept of force. The process of learning the concept of acceleration is analogous to its conceptual development in history. The study from the perspective of historical textual analysis will promote the understanding of the concept learning difficulties, the development of professional physics teaching, and the improvement of the context of physics textbooks.Keywords: acceleration, textbooks, mechanics, misconception, history of science
Procedia PDF Downloads 2528515 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 1858514 Smart Energy Consumers: An Empirical Investigation on the Intention to Adopt Innovative Consumption Behaviour
Authors: Cecilia Perri, Vincenzo Corvello
Abstract:
The aim of the present study is to investigate consumers' determinants of intention toward the adoption of Smart Grid solutions and technologies. Ajzen's Theory of Planned Behaviour (TPB) model is applied and tested to explain the formation of such adoption intention. An exogenous variable, taking into account the resistance to change of individuals, was added to the basic model. The elicitation study allowed obtaining salient modal beliefs, which were used, with the support of literature, to design the questionnaire. After the screening phase, data collected from the main survey were analysed for evaluating measurement model's reliability and validity. Consistent with the theory, the results of structural equation analysis revealed that attitude, subjective norm, and perceived behavioural control positively, which affected the adoption intention. Specifically, the variable with the highest estimate loading factor was found to be the perceived behavioural control, and, the most important belief related to each construct was determined (e.g., energy saving was observed to be the most significant belief linked with attitude). Further investigation indicated that the added exogenous variable has a negative influence on intention; this finding confirmed partially the hypothesis, since this influence was indirect: such relationship was mediated by attitude. Implications and suggestions for future research are discussed.Keywords: adoption of innovation, consumers behaviour, energy management, smart grid, theory of planned behaviour
Procedia PDF Downloads 4088513 Gender Inequality in the Nigerian Labour Market as a Cause of Unemployment among Female Graduates
Authors: Temitope Faloye
Abstract:
The absence of equity and transparency in Nigeria's economic system has resulted in unemployment. Women’s unemployment rate remains higher because women's range of jobs is often narrower due to discriminatory attitudes of employers and gender segregation in the labor market. Gender inequality is one of the strong factors of unemployment, especially in developing countries like Nigeria, where the female gender is marginalized in the labor force market. However, gender equality in terms of labor market access and employment condition has not yet been attained. Feminist theory is considered as an appropriate theory for this study. The study will use a mixed-method design, collecting qualitative and quantitative data to provide answers to the research questions. Therefore, the research study aims to investigate the present situation of gender inequality in the Nigerian labor market.Keywords: unemployment, gender inequality, gender equality, labor market, female graduate
Procedia PDF Downloads 2438512 The Effect of Physical Guidance on Learning a Tracking Task in Children with Cerebral Palsy
Authors: Elham Azimzadeh, Hamidollah Hassanlouei, Hadi Nobari, Georgian Badicu, Jorge Pérez-Gómez, Luca Paolo Ardigò
Abstract:
Children with cerebral palsy (CP) have weak physical abilities and their limitations may have an effect on performing everyday motor activities. One of the most important and common debilitating factors in CP is the malfunction in the upper extremities to perform motor skills and there is strong evidence that task-specific training may lead to improve general upper limb function among this population. However, augmented feedback enhances the acquisition and learning of a motor task. Practice conditions may alter the difficulty, e.g., the reduced frequency of PG could be more challenging for this population to learn a motor task. So, the purpose of this study was to investigate the effect of physical guidance (PG) on learning a tracking task in children with cerebral palsy (CP). Twenty-five independently ambulant children with spastic hemiplegic CP aged 7-15 years were assigned randomly to five groups. After the pre-test, experimental groups participated in an intervention for eight sessions, 12 trials during each session. The 0% PG group received no PG; the 25% PG group received PG for three trials; the 50% PG group received PG for six trials; the 75% PG group received PG for nine trials; and the 100% PG group, received PG for all 12 trials. PG consisted of placing the experimenter's hand around the children's hand, guiding them to stay on track and complete the task. Learning was inferred by acquisition and delayed retention tests. The tests involved two blocks of 12 trials of the tracking task without any PG being performed by all participants. They were asked to make the movement as accurate as possible (i.e., fewer errors) and the number of total touches (errors) in 24 trials was calculated as the scores of the tests. The results showed that the higher frequency of PG led to more accurate performance during the practice phase. However, the group that received 75% PG had significantly better performance compared to the other groups in the retention phase. It is concluded that the optimal frequency of PG played a critical role in learning a tracking task in children with CP and likely this population may benefit from an optimal level of PG to get the appropriate amount of information confirming the challenge point framework (CPF), which state that too much or too little information will retard learning a motor skill. Therefore, an optimum level of PG may help these children to identify appropriate patterns of motor skill using extrinsic information they receive through PG and improve learning by activating the intrinsic feedback mechanisms.Keywords: cerebral palsy, challenge point framework, motor learning, physical guidance, tracking task
Procedia PDF Downloads 728511 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1258510 Theoretical Study of Electronic Structure of Erbium (Er), Fermium (Fm), and Nobelium (No)
Authors: Saleh O. Allehabi, V. A. Dzubaa, V. V. Flambaum, Jiguang Li, A. V. Afanasjev, S. E. Agbemava
Abstract:
Recently developed versions of the configuration method for open shells, configuration interaction with perturbation theory (CIPT), and configuration interaction with many-body perturbation theory (CI+MBPT) techniques are used to study the electronic structure of Er, Fm, and No atoms. Excitation energies of odd states connected to the even ground state by electric dipole transitions, the corresponding transition rates, isotope shift, hyperfine structure, ionization potentials, and static scalar polarizabilities are calculated. The way of extracting parameters of nuclear charge distribution beyond nuclear root mean square (RMS) radius, e.g., a parameter of quadrupole deformation β, is demonstrated. In nuclei with spin > 1/2, parameter β is extracted from the quadrupole hyperfine structure. With zero nuclear spin or spin 1/2, it is impossible since quadrupole zero, so a different method was developed. The measurements of at least two atomic transitions are needed to disentangle the contributions of the changes in deformation and nuclear RMS radius into field isotopic shift. This is important for testing nuclear theory and for searching for the hypothetical island of stability. Fm and No are heavy elements approaching the superheavy region, for which the experimental data are very poor, only seven lines for the Fm element and one line for the No element. Since Er and Fm have similar electronic structures, calculations for Er serve as a guide to the accuracy of the calculations. Twenty-eight new levels of Fm atom are reported.Keywords: atomic spectra, electronic transitions, isotope effect, electron correlation calculations for atoms
Procedia PDF Downloads 1558509 Deep Q-Network for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, Gazebo, navigation
Procedia PDF Downloads 778508 From the Classroom to Digital Learning Environments: An Action Research on Pedagogical Practices in Higher Education
Authors: Marie Alexandre, Jean Bernatchez
Abstract:
This paper focuses on the complexity of the face-to-face-to-distance learning transition process. Our research action aims to support the process of transition from classroom to distance learning for teachers in higher education with regard to pedagogical practices that can meet the various needs of students using digital learning environments. In Quebec and elsewhere in the world, the advent of digital education is helping to transform teaching, which is significantly changing the role of teachers. While distance education implies a dissociation of teaching and learning to a variable degree in space and time, distance education (DE) is becoming more and increasingly becoming a preferred option for maintaining the delivery of certain programs and providing access to programs and to provide access to quality activities throughout Quebec. Given the impact of teaching practices on educational success, this paper reports on the results of three research objectives: 1) To document teachers' knowledge of teaching in distance education through the design, experimentation and production of a repertoire of the determinants of pedagogical practices in response to students' needs. 2) Explain, according to a gendered logic, the adequacy between the pedagogical practices implemented in distance learning and the response to the profiles and needs expressed by students using digital learning environments; 3) Produce a model of a support approach during the process of transition from classroom to distance learning at the college level. A mixed methodology, i.e., a quantitative component (questionnaire survey) and a qualitative component (explanatory interviews and living lab) was used in cycles that were part of an ongoing validation process. The intervention includes the establishment of a professional collaboration group, webinars training webinars for the participating teachers on the didactic issue of knowledge-teaching in FAD, the didactic use of technologies, and the differentiated socialization models of educational success in college education. All of the tools developed will be used by partners in the target environment as well as by all teacher educators, students in initial teacher training, practicing teachers, and the general public. The results show that access to training leading to qualifications and commitment to educational success reflects the existing links between the people in the educational community. The relational stakes of being present in distance education take on multiple configurations and different dimensions of learning testify to needs and realities that are sometimes distinct depending on the life cycle. This project will be of interest to partners in the targeted field as well as to all teacher trainers, students in initial teacher training, practicing college teachers, and to university professors. The entire educational community will benefit from digital resources in education. The scientific knowledge resulting from this action research will benefit researchers in the fields of pedagogy, didactics, teacher training and pedagogy in higher education in a digital context.Keywords: action research, didactics, digital learning environment, distance learning, higher education, pedagogy technological, pedagogical content knowledge
Procedia PDF Downloads 878507 Hierarchical Tree Long Short-Term Memory for Sentence Representations
Authors: Xiuying Wang, Changliang Li, Bo Xu
Abstract:
A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis
Procedia PDF Downloads 3498506 Creative Thinking through Mindful Practices: A Business Class Case Study
Authors: Malavika Sundararajan
Abstract:
This study introduces the use of mindfulness techniques in the classroom to make individuals aware of how the creative thinking process works, resulting in more constructive learning and application. Case observation method was utilized within a classroom setting in a graduate class in the Business School. It entailed, briefing the student participants about the use of a template called the dots and depths map, and having them complete it for themselves, compare it to their team members and reflect on the outputs. Finally, they were debriefed about the use of the template and its value to their learning and creative application process. The major finding is the increase in awareness levels of the participants following the use of the template, leading to a subsequent pursuit of diverse knowledge and acquisition of relevant information and not jumping to solutions directly, which increased their overall creative outputs for the given assignment. The significant value of this study is that it can be applied to any classroom on any subject as a powerful mindfulness tool which increases creative problem solving through constructive knowledge building.Keywords: connecting dots, mindful awareness, constructive knowledge building, learning creatively
Procedia PDF Downloads 1498505 'I Broke the Line Back to the Ancient Ones': Rethinking Intersectional Theory through Wounded Histories in Once Were Warriors (1994) and Whale Rider (2002).
Authors: Kerry Mackereth
Abstract:
Kimberle Crenshaw’s theory of intersectionality has become immensely influential in the fields of women’s and gender studies. However, intersectionality’s widespread use among feminist scholars and activists has been accompanied by critiques of its reliance upon subject categorization. These critiques are of particular import when connected to Wendy Brown’s characterization of identity politics as static 'wounded attachments'. Together, these critiques show how the gridlock model proposed by intersectionality’s primary metaphor, the traffic accident at the intersection, is useful for identifying discrimination but not for remembering historical injustices or imagining feminist and anti-racist resistance. Through the lens of New Zealand Maori film, focusing upon Once Were Warriors (1994) and Whale Rider (2002), this article examines how wounded histories need not be passively reproduced by contemporaneously oppressed groups. Instead, the metaphor of the traffic intersection should be complemented by the metaphor of the wound. Against Brown’s characterization of wounded attachments as negative, static identities, Gloria Anzaldua’s account of the borderland between the United States and Mexico as “una herida abierta”, an open wound, offers an alternative reading of the wound. Through Anzaldua’s and Hortense Spillers’ political thought, the wound is reconceptualized as not only a site of suffering but also as a regenerative space. The coexistence of deterioration and regeneration at the site of the wound underpins the narrative arc of both Once Were Warriors and Whale Rider. In both films, the respective child protagonists attempt to reconcile the pain of wounded histories with the imagination of cultural regeneration. The metaphor of the wound thus serves as an alternative theoretical resource for mapping experiences of oppression, one that enriches feminist theory by balancing the remembrance of historical grievance with the forging of hopeful political projects.Keywords: gender theory, historical grievance, intersectionality, New Zealand film, postcolonialism
Procedia PDF Downloads 2538504 Testing Supportive Feedback Strategies in Second/Foreign Language Vocabulary Acquisition between Typically Developing Children and Children with Learning Disabilities
Authors: Panagiota A. Kotsoni, George S. Ypsilandis
Abstract:
Learning an L2 is a demanding process for all students and in particular for those with learning disabilities (LD) who demonstrate an inability to catch up with their classmates’ progress in a given period of time. This area of study, i.e. examining children with learning disabilities in L2 has not (yet) attracted the growing interest that is registered in L1 and thus remains comparatively neglected. It is this scientific field that this study wishes to contribute to. The longitudinal purpose of this study is to locate effective Supportive Feedback Strategies (SFS) and add to the quality of learning in second language vocabulary in both typically developing (TD) and LD children. Specifically, this study aims at investigating and comparing the performance of TD with LD children on two different types of SFSs related to vocabulary short and long-term retention. In this study two different SFSs have been examined to a total of ten (10) unknown vocabulary items. Both strategies provided morphosyntactic clarifications upon new contextualized vocabulary items. The traditional SFS (direct) provided the information only in one hypertext page with a selection on the relevant item. The experimental SFS (engaging) provided the exact same split information in three successive hypertext pages in the form of a hybrid dialogue asking from the subjects to move on to the next page by selecting the relevant link. It was hypothesized that this way the subjects would engage in their own learning process by actively asking for more information which would further lead to their better retention. The participants were fifty-two (52) foreign language learners (33 TD and 19 LD) aged from 9 to 12, attending an English language school at the level of A1 (CEFR). The design of the study followed a typical pre-post-post test procedure after an hour and after a week. The results indicated statistically significant group differences with TD children performing significantly better than the LD group in both short and long-term memory measurements and in both SFSs. As regards the effectiveness of one SFS over another the initial hypothesis was not supported by the evidence as the traditional SFS was more effective compared to the experimental one in both TD and LD children. This difference proved to be statistically significant only in the long-term memory measurement and only in the TD group. It may be concluded that the human brain seems to adapt to different SFS although it shows a small preference when information is provided in a direct manner.Keywords: learning disabilities, memory, second/foreign language acquisition, supportive feedback
Procedia PDF Downloads 2848503 Amharic Text News Classification Using Supervised Learning
Authors: Misrak Assefa
Abstract:
The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.Keywords: text categorization, supervised machine learning, naive Bayes, decision tree
Procedia PDF Downloads 2118502 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation
Procedia PDF Downloads 1918501 The Analogue of a Property of Pisot Numbers in Fields of Formal Power Series
Authors: Wiem Gadri
Abstract:
This study delves into the intriguing properties of Pisot and Salem numbers within the framework of formal Laurent series over finite fields, a domain where these numbers’ spectral charac-teristics, Λm(β) and lm(β), have yet to be fully explored. Utilizing a methodological approach that combines algebraic number theory with the analysis of power series, we extend the foundational work of Erdos, Joo, and Komornik to this new setting. Our research uncovers bounds for lm(β), revealing how these depend on the degree of the minimal polynomial of β and thus offering a novel characterization of Pisot and Salem formal power series. The findings significantly contribute to our understanding of these numbers, highlighting their distribution and properties in the context of formal power series. This investigation not only bridges number theory with formal power series analysis but also sets the stage for further interdisciplinary research in these areas.Keywords: Pisot numbers, Salem numbers, formal power series, over a finite field
Procedia PDF Downloads 518500 A Readiness Framework for Digital Innovation in Education: The Context of Academics and Policymakers in Higher Institutions of Learning to Assess the Preparedness of Their Institutions to Adopt and Incorporate Digital Innovation
Authors: Lufungula Osembe
Abstract:
The field of education has witnessed advances in technology and digital transformation. The methods of teaching have undergone significant changes in recent years, resulting in effects on various areas such as pedagogies, curriculum design, personalized teaching, gamification, data analytics, cloud-based learning applications, artificial intelligence tools, advanced plug-ins in LMS, and the emergence of multimedia creation and design. The field of education has not been immune to the changes brought about by digital innovation in recent years, similar to other fields such as engineering, health, science, and technology. There is a need to look at the variables/elements that digital innovation brings to education and develop a framework for higher institutions of learning to assess their readiness to create a viable environment for digital innovation to be successfully adopted. Given the potential benefits of digital innovation in education, it is essential to develop a framework that can assist academics and policymakers in higher institutions of learning to evaluate the effectiveness of adopting and adapting to the evolving landscape of digital innovation in education. The primary research question addressed in this study is to establish the preparedness of higher institutions of learning to adopt and adapt to the evolving landscape of digital innovation. This study follows a Design Science Research (DSR) paradigm to develop a framework for academics and policymakers in higher institutions of learning to evaluate the readiness of their institutions to adopt digital innovation in education. The Design Science Research paradigm is proposed to aid in developing a readiness framework for digital innovation in education. This study intends to follow the Design Science Research (DSR) methodology, which includes problem awareness, suggestion, development, evaluation, and conclusion. One of the major contributions of this study will be the development of the framework for digital innovation in education. Given the various opportunities offered by digital innovation in recent years, the need to create a readiness framework for digital innovation will play a crucial role in guiding academics and policymakers in their quest to align with emerging technologies facilitated by digital innovation in education.Keywords: digital innovation, DSR, education, opportunities, research
Procedia PDF Downloads 698499 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 3248498 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 878497 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management
Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix
Abstract:
A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings
Procedia PDF Downloads 3708496 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning
Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker
Abstract:
Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning
Procedia PDF Downloads 1488495 Teacher-Student Relationship and Achievement in Chinese: Potential Mediating Effects of Motivation
Authors: Yuan Liu, Hongyun Liu
Abstract:
Teacher-student relationship plays an important role on facilitating students’ learning behavior, school engagement, and academic outcomes. It is believed that good relationship will enhance the human agency—the intrinsic motivation—mainly through the strengthening of autonomic support, feeling of relatedness, and the individual’s competence to increase the academic outcomes. This is in line with self-determination theory (SDT), which generally views that the intrinsic motivation imbedded with human basic needs is one of the most important factors that would lead to better school engagement, academic outcomes, and well-being. Based on SDT, the present study explored the relation of among teacher-student relationship (teacher’s encouragement, respect), students’ motivation (extrinsic and intrinsic), and achievement outcomes. The study was based on a large scale academic assessment and questionnaire survey conducted by the Center for Assessment and Improvement of Basic Education Quality in Mainland China (2013) on Grade 8 students. The results indicated that intrinsic motivation mediated the relation between teacher-student relationship and academic achievement outcomes.Keywords: teacher-student relationship, intrinsic motivation, academic achievement, mediation
Procedia PDF Downloads 4348494 Educational Innovation through Coaching and Mentoring in Thailand: A Mixed Method Evaluation of the Training Outcomes
Authors: Kanu Priya Mohan
Abstract:
Innovation in education is one of the essential pathways to achieve both educational, and development goals in today’s dynamically changing world. Over the last decade, coaching and mentoring have been applied in the field of education as positive intervention techniques for fostering teaching and learning reforms in the developed countries. The context of this research was Thailand’s educational reform process, wherein a project on coaching and mentoring (C&M) was launched in 2014. The C&M project endeavored to support the professional development of the school teachers in the various provinces of Thailand, and to also enable them to apply C&M for teaching innovative instructional techniques. This research aimed to empirically investigate the learning outcomes for the master trainers, who trained for coaching and mentoring as the first step in the process to train the school teachers. A mixed method study was used for evaluating the learning outcomes of training in terms of cognitive- behavioral-affective dimensions. In the first part of the research a quantitative research design was incorporated to evaluate the effects of learner characteristics and instructional techniques, on the learning outcomes. In the second phase, a qualitative method of in-depth interviews was used to find details about the training outcomes, as well as the perceived barriers and enablers of the training process. Sample size constraints were there, yet these exploratory results, integrated from both methods indicated the significance of evaluating training outcomes from the three dimensions, and the perceived role of other factors in the training. Findings are discussed in terms of their implications for the training of C&M, and also their impact in fostering positive education through innovative educational techniques in the developing countries.Keywords: cognitive-behavioral-affective learning outcomes, mixed method research, teachers in Thailand, training evaluation
Procedia PDF Downloads 2748493 Some Discrepancies between Experimentally-Based Theory of Toxic Metals Combined Action and Actual Approaches to Occupational and Environmental Health Risk Assessment and Management
Authors: Ilzira A. Minigalieva
Abstract:
Assessment of cumulative health risks associated with the widely observed combined exposures to two or more metals and their compounds on the organism in industrial or general environment, as well as respective regulatory and technical risk management decision-making have presumably the theoretical and experimental toxicology of mixtures as their reliable scientific basis. Analysis of relevant literature and our own experience proves, however, that there is no full match between these different practices. Moreover, some of the contradictions between them are of a fundamental nature. This unsatisfactory state of things may be explained not only by unavoidable simplifications characteristic of the methodologies of risk assessment and permissible exposure standards setting but also by the extreme intrinsic complexity of the combined toxicity theory, the most essential issues of which are considered and briefly discussed in this paper.Keywords: toxic metals, nanoparticles, typology of combined toxicity, mathematical modeling, health risk assessment and management
Procedia PDF Downloads 3258492 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 3038491 The Impact of Online Advertising on Consumer Purchase Behaviour Based on Malaysian Organizations
Authors: Naser Zourikalatehsamad, Seyed Abdorreza Payambarpour, Ibrahim Alwashali, Zahra Abdolkarimi
Abstract:
The paper aims to evaluate the effect of online advertising on consumer purchase behavior in Malaysian organizations. The paper has potential to extend and refine theory. A survey was distributed among Students of UTM university during the winter 2014 and 160 responses were collected. Regression analysis was used to test the hypothesized relationships of the model. Result shows that the predictors (cost saving factor, convenience factor and customized product or services) have positive impact on intention to continue seeking online advertising.Keywords: consumer purchase, convenience, customized product, cost saving, customization, flow theory, mass communication, online advertising ads, online advertising measurement, online advertising mechanism, online intelligence system, self-confidence, willingness to purchase
Procedia PDF Downloads 481