Search results for: mathematical modeling membrane bioreactor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6436

Search results for: mathematical modeling membrane bioreactor

3676 Explosion Mechanics of Aluminum Plates Subjected to the Combined Effect of Blast Wave and Fragment Impact Loading: A Multicase Computational Modeling Study

Authors: Atoui Oussama, Maazoun Azer, Belkassem Bachir, Pyl Lincy, Lecompte David

Abstract:

For many decades, researchers have been focused on understanding the dynamic behavior of different structures and materials subjected to fragment impact or blast loads separately. The explosion mechanics, as well as the impact physics studies dealing with the numerical modeling of the response of protective structures under the synergistic effect of a blast wave and the impact of fragments, are quite limited in the literature. This article numerically evaluates the nonlinear dynamic behavior and damage mechanisms of Aluminum plates EN AW-1050A- H24 under different combined loading scenarios varied by the sequence of the applied loads using the commercial software LS-DYNA. For one hand, with respect to the terminal ballistic field investigations, a Lagrangian (LAG) formulation is used to evaluate the different failure modes of the target material in case of a fragment impact. On the other hand, with respect to the blast field analysis, an Arbitrary Lagrangian-Eulerian (ALE) formulation is considered to study the fluid-structure interaction (FSI) of the shock wave and the plate in case of a blast loading. Four different loading scenarios are considered: (1) only blast loading, (2) only fragment impact, (3) blast loading followed by a fragment impact and (4) a fragment impact followed by blast loading. From the numerical results, it was observed that when the impact load is applied to the plate prior to the blast load, it suffers more severe damage due to the hole enlargement phenomenon and the effects of crack propagation on the circumference of the damaged zone. Moreover, it was found that the hole from the fragment impact loading was enlarged to about three times in diameter as compared to the diameter of the projectile. The validation of the proposed computational model is based in part on previous experimental data obtained by the authors and in the other part on experimental data obtained from the literature. A good correspondence between the numerical and experimental results is found.

Keywords: computational analysis, combined loading, explosion mechanics, hole enlargement phenomenon, impact physics, synergistic effect, terminal ballistic

Procedia PDF Downloads 189
3675 DPED Trainee Teachers' Views and Practice on Mathematics Lesson Study in Bangladesh

Authors: Mihir Halder

Abstract:

The main aim and objective of the eighteen-month long Diploma in Primary Education (DPED) teacher education training course for in-service primary teachers in Bangladesh is to acquire professional knowledge as well as make them proficient in professional practice. The training, therefore, introduces a variety of theoretical and practical approaches as well as some professional development activities—lesson study being one of them. But, in the field of mathematics teaching, even after implementing the lesson study method, the desired practical teaching skills of the teachers have not been developed. In addition, elementary students also remain quite raw in mathematics. Although there have been various studies to solve the problem, the need for the teachers' views on mathematical ideas has not been taken into consideration. The researcher conducted the research to find out the cause of the discussed problem. In this case, two teams of nine DPED trainee teachers and two instructors conducted two lesson studies in two schools located in the city and town of Khulna Province, Bangladesh. The researcher observed group lesson planning by trainee teachers, followed by a trainee teacher teaching the planned lesson plan to an actual mathematics classroom, and finally, post-teaching reflective discussion in each lesson study. Two DPED instructors acted as mentors in the lesson study. DPED trainee teachers and instructors were asked about mathematical concepts and classroom practices through questionnaires as well as videotaped mathematics classroom teaching. For this study, the DPED mathematics course, curriculum, and assessment activities were analyzed. In addition, the mathematics lesson plans prepared by the trainee teachers for the lesson study and their pre-teaching and post-teaching reflective discussions were analyzed by some analysis categories and rubrics. As a result, it was found that the trainee teachers' views of mathematics are not mature, and therefore, their mathematics teaching practice is not appropriate. Therefore, in order to improve teachers' mathematics teaching, the researcher recommended including some action-oriented aspects in each phase of mathematics lesson study in DPED—for example, emphasizing mathematics concepts of the trainee teachers, preparing appropriate teaching materials, presenting lessons using the problem-solving method, using revised rubrics for assessing mathematics lesson study, etc.

Keywords: mathematics lesson study, knowledge of mathematics, knowledge of teaching mathematics, teachers' views

Procedia PDF Downloads 75
3674 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks

Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia

Abstract:

PH, temperature, and time of extraction of each stage, agitation speed, and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.

Keywords: zinc extraction, efficiency, neural networks, operating condition

Procedia PDF Downloads 550
3673 Effect of Cellular Water Transport on Deformation of Food Material during Drying

Authors: M. Imran Hossen Khan, M. Mahiuddin, M. A. Karim

Abstract:

Drying is a food processing technique where simultaneous heat and mass transfer take place from surface to the center of the sample. Deformation of food materials during drying is a common physical phenomenon which affects the textural quality and taste of the dried product. Most of the plant-based food materials are porous and hygroscopic in nature that contains about 80-90% water in different cellular environments: intercellular environment and intracellular environment. Transport of this cellular water has a significant effect on material deformation during drying. However, understanding of the scale of deformation is very complex due to diverse nature and structural heterogeneity of food material. Knowledge about the effect of transport of cellular water on deformation of material during drying is crucial for increasing the energy efficiency and obtaining better quality dried foods. Therefore, the primary aim of this work is to investigate the effect of intracellular water transport on material deformation during drying. In this study, apple tissue was taken for the investigation. The experiment was carried out using 1H-NMR T2 relaxometry with a conventional dryer. The experimental results are consistent with the understanding that transport of intracellular water causes cellular shrinkage associated with the anisotropic deformation of whole apple tissue. Interestingly, it is found that the deformation of apple tissue takes place at different stages of drying rather than deforming at one time. Moreover, it is found that the penetration rate of heat energy together with the pressure gradient between intracellular and intercellular environments is the responsible force to rupture the cell membrane.

Keywords: heat and mass transfer, food material, intracellular water, cell rupture, deformation

Procedia PDF Downloads 223
3672 Alleviation of Salt Stress Effects on Solanum lycopersicum (L.) Plants Grown in a Saline Soil by Foliar Spray with Salicylic Acid

Authors: Saad Howladar

Abstract:

Salinity stress is one of the major abiotic stresses, restricting plant growth and crop productivity in different world regions, especially in arid and semi-arid regions, including Saudi Arabia. The tomato plant is proven to be moderately sensitive to salt stress. Therefore, two field experiments were conducted using tomato plants (Hybrid 6130) to evaluate the effect of four concentrations of salicylic acid (SA; 0, 20, 40, and 60 µM) applied as foliar spraying in improving plant tolerance to saline soil conditions. Tomato plant growth, yield, osmoprotectants, chloeophyll fluorescence, and ionic contents were determined. The results of this study displayed that growth and yield components and physiological attributes of water-sprayed plants (the control) grown under saline soil conditions were negatively impacted. However, under the adverse conditions of salinity, SA-treated plants had enhanced growth and yield components of tomato plants compared to the control. Free proline, soluble sugars, chlorophyll fluorescence, relative water content, membrane stability index, and nutrients contents (e.g., N, P, K⁺, and Ca²⁺) were also improved significantly, while Na⁺ content was significantly reduced in SA-applied tomato plants. SA at 40 µM was the best treatment, which could be recommended to use for salt-stressed tomato plants to enable them to tolerate the adverse conditions of saline soils.

Keywords: tomatoes, salt stress, chlorophyll fluorescence, dehydration tolerance, osmoprotectants

Procedia PDF Downloads 113
3671 Emergency Treatment of Methanol Poisoning: A Mathematical Approach

Authors: Priyanka Ghosh, Priti Kumar Roy

Abstract:

Every year a considerable number of people die due to methyl alcohol poisoning, in which most of them die even before proper treatment. This work gives a simple and cheap first aid to those affected individuals by the administration of activated charcoal. In this article, we emphasise on the adsorption capability of activated charcoal for the treatment of poisoning and use an impulsive differential equation to study the effect of activated charcoal during adsorption. We also investigate the effects of various parameters on the adsorption which are incorporated in the model system.

Keywords: activated charcoal, adsorption, impulsive differential equation, methanol poisoning

Procedia PDF Downloads 315
3670 Protective Effect of L-Carnitine against Gentamicin-Induced Nephrotoxicity in Rats

Authors: Mohamed F. Ahmed, Mabruka S. Elashheb, Fatma M. Ben Rabha

Abstract:

This study aimed to determine the possible protective effects of L‐carnitine against gentamicin‐induced nephrotoxicity. Forty male albino rats were divided into 4 groups (10 rats each); Group 1: normal control, group 2: induced nephrotoxicity (gentamicin 50 mg/kg/day S.C; 8 days) , group 3: treated with L‐carnitine (40 mg/kg/d SC for 12 days) and group 4: treated with L‐carnitine 4 days before and for 8 days in concomitant with gentamicin. Gentamicin‐induced nephrotoxicity (group 2): caused significant increase in serum urea, creatinine, urinary N‐acetyl‐B‐D‐glucosaminidase (NAG), gamma glutamyl transpeptidase (GGT), urinary total protein and kidney tissue malondialdehyde (MDA) with significant decrease in serum superoxide dismutase (SOD), serum catalase and creatinine clearance and marked tubular necrosis in the proximal convoluted tubules with interruption in the basement membrane around the necrotic tubule compared to the normal control group. L‐carnitine 4 days before and for 8 days in concomitant with gentamicin (group 4) offered marked decrease in serum urea, serum creatinine, urinary NAG, urinary GGT, urinary proteins and kidney tissue MDA, with marked increase in serum SOD, serum catalase and creatinine clearance with marked improvement in the tubular damage compared to gentamicin‐induced nephrotoxicity group. L‐carnitine administered for 12 days produced no change in the above-mentioned parameters as compared to the normal control group. In conclusion: L‐carnitine could reduce most of the biochemical parameters and also improve the histopathological features of the kidney associated with gentamicin-induced nephrotoxicity.

Keywords: gentamicin, nephrotoxicity, L‐carnitine, kidney disease

Procedia PDF Downloads 360
3669 Predictive Analytics for Theory Building

Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim

Abstract:

Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.

Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building

Procedia PDF Downloads 283
3668 Comparision of Neospora caninum Experimental Infection in Pigeons and Chickens Embryonated Eggs

Authors: S. Bahrami, A. Rezaie, Z. Boroumand, S. Ghavami

Abstract:

Neospora caninum is protozoan parasite which can cause a serious disease in dogs and cattle. It has been shown that birds may be a permissive intermediate host for N. caninum since parasite DNA has been detected in tissues from birds. It is showed that embryonated chicken egg can be used as an animal model for experimental infection. The aim of present study was to compare experimental infection of Neospora in chicken and pigeons embryonated eggs. An infection with N. caninum Nc1 isolate was conducted in chicken and pigeons embryonated eggs to evaluate LD50. After calculation of LD50, 2LD50 of tachyzoites were injected to eggs. Macroscopic changes of each embryo were noticed and to investigate the parasite distribution in tissues immunohistochemistry (IHC) and molecular methods were used. In the present study, histopathological changes were considered and sections to those used for histopathological examination including heart, liver, brain and chorioallantoic (CA) membrane were subjected to IHC, too. For PCR procedure, primer pair Np21/Np6 was used for amplification of the Nc5 gene. Pigeon's embryo showed more macroscopic changes than chicken embryo. A hemorrhage of the CA was the main grass lesion. All the infected tissues had histopathological changes. Microscopic examination of tissues revealed acute neosporosis due to hemorrhage, necrosis and infiltration of mononuclear inflammatory cells. Based on IHC and molecular results, the parasite aggregation in the heart was more predominant than in the other tissues. These results reinforce that there is genetic susceptibility to N. caninum in pigeons embryonated eggs like chickens embryonated eggs and provide new insights to research an inexpensive and available animal model for N. caninum.

Keywords: immunohistochemistry, Neospora caninum, PCR, pigeon embryonated egg

Procedia PDF Downloads 346
3667 Steady State Analysis of Distribution System with Wind Generation Uncertainity

Authors: Zakir Husain, Neem Sagar, Neeraj Gupta

Abstract:

Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.

Keywords: distributed generation, distribution network, radial network, wind turbine generating system

Procedia PDF Downloads 411
3666 Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach

Authors: D. S. Nagesh, G. L. Datta

Abstract:

In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.

Keywords: smaw, genetic algorithm, bead geometry, optimization/inverse mapping

Procedia PDF Downloads 458
3665 Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding

Authors: D. S. Nagesh, G. L. Datta

Abstract:

In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.

Keywords: SMAW, genetic algorithm, bead geometry, optimization/inverse mapping

Procedia PDF Downloads 424
3664 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector

Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi

Abstract:

The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.

Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport

Procedia PDF Downloads 118
3663 The Impacts of Technology on Operations Costs: The Mediating Role of Operation Flexibility

Authors: Fazli Idris, Jihad Mohammad

Abstract:

The study aims to determine the impact of technology and service operations flexibility, which is divided into external flexibility and internal robustness, on operations costs. A mediation model is proposed that links technology to operations costs via operation flexibility. Drawing on a sample of 475 of operations managers of various service sectors in Malaysia and South Africa, Structural Equation Modeling (SEM) was employed to test the relationship using Smart-PLS procedures. It was found that a significant relationship was established between technologies to operations costs via both operations flexibility dimensions. Theoretical and managerial implications are offered to explain the results.

Keywords: Operations flexibility, technology, costs, mediation

Procedia PDF Downloads 617
3662 Understanding the Mechanisms of Salmonella typhimurium Resistance to Cannabidiol

Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel Abugri, Boakai Robertson, Olufemi S. Ajayi

Abstract:

The emergence of multidrug resistance poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate, with resistance rates significantly outpacing the speed of antibiotic development. This, therefore, presents an aura of related health issues such as untreatable nosocomial infections arising from organ transplants and surgeries, as well as community-acquired infections that are related to people with compromised immunity, e.g., diabetic and HIV patients, etc. There is a global effort to fight multidrug-resistant pathogens spearheaded by the World Health Organization, thus calling for research into novel antimicrobial agents to fight multiple drug resistance. Previously, our laboratory demonstrated that Cannabidiol (CBD) was an effective antimicrobial against Salmonella typhimurium (S. typhimurium). However, we observed resistance development over time. To understand the mechanisms S. typhimurium uses to develop resistance to Cannabidiol (CBD), we studied the abundance of bacteria lipopolysaccharide (LPS) and membrane sterols of both susceptible and resistant S. typhimurium. Using real-time quantitative polymerase chain reaction (RT-qPCR), we also analyzed the expression of selected genes known for aiding resistance development in S. typhimurium. We discovered that there was a significantly higher expression of blaTEM, fimA, fimZ, and integrons in the CBD-resistant bacteria, and these were also accompanied by a shift in abundance in cell surface molecules such as lipopolysaccharide (LPS) and sterols.

Keywords: antimicrobials, resistance, cannabidiol, gram-negative bacteria, integrons, blaTEM, Fim, LPS, ergosterols

Procedia PDF Downloads 106
3661 Potential Energy Expectation Value for Lithium Excited State (1s2s3s)

Authors: Khalil H. Al-Bayati, G. Nasma, Hussein Ban H. Adel

Abstract:

The purpose of the present work is to calculate the expectation value of potential energy for different spin states (ααα ≡ βββ, αβα ≡ βαβ) and compare it with spin states (αββ, ααβ ) for lithium excited state (1s2s3s) and Li-like ions (Be+, B+2) using Hartree-Fock wave function by partitioning technique. The result of inter particle expectation value shows linear behaviour with atomic number and for each atom and ion the shows the trend ααα < ααβ < αββ < αβα.

Keywords: lithium excited state, potential energy, 1s2s3s, mathematical physics

Procedia PDF Downloads 493
3660 Induction Machine Bearing Failure Detection Using Advanced Signal Processing Methods

Authors: Abdelghani Chahmi

Abstract:

This article examines the detection and localization of faults in electrical systems, particularly those using asynchronous machines. First, the process of failure will be characterized, relevant symptoms will be defined and based on those processes and symptoms, a model of those malfunctions will be obtained. Second, the development of the diagnosis of the machine will be shown. As studies of malfunctions in electrical systems could only rely on a small amount of experimental data, it has been essential to provide ourselves with simulation tools which allowed us to characterize the faulty behavior. Fault detection uses signal processing techniques in known operating phases.

Keywords: induction motor, modeling, bearing damage, airgap eccentricity, torque variation

Procedia PDF Downloads 141
3659 Effect of Particle Size and Concentration of Pomegranate (Punica granatum l.) Peel Powder on Suppression of Oxidation of Edible Plant Oils

Authors: D. G. D. C. L. Munasinghe, M. S. Gunawardana, P. H. P. Prasanna, C. S. Ranadheera, T. Madhujith

Abstract:

Lipid oxidation is an important process that affects the shelf life of edible oils. Oxidation produces off flavors, off odors and chemical compounds that lead to adverse health effects. Chemical mechanisms such as autoxidation, photo-oxidation and thermal oxidation are responsible for lipid oxidation. Refined, Bleached and Deodorized (RBD) coconut oil, Virgin Coconut Oil (VCO) and corn oil are widely used plant oils. Pomegranate fruit is known to possess high antioxidative efficacy. Peel of pomegranate contains high antioxidant activity than aril and pulp membrane. The study attempted to study the effect of particle size and concentration of pomegranate peel powder on suppression of oxidation of RBD coconut oil, VCO and corn oil. Pomegranate peel powder was incorporated into each oil sample as micro (< 250 µm) and nano particles (280 - 300 nm) at 100 ppm and 200 ppm concentrations. The control sample of each oil was prepared, devoid of pomegranate peel powder. The stability of oils against autoxidation was evaluated by storing oil samples at 60 °C for 28 days. The level of oxidation was assessed by peroxide value and thiobarbituric acid reactive substances on 0,1,3,5,7,14 and 28 day, respectively. VCO containing pomegranate particles of 280 - 300 nm at 200 ppm showed the highest oxidative stability followed by RBD coconut oil and corn oil. Results revealed that pomegranate peel powder with 280 - 300 nm particle size at 200 ppm concentration was the best in mitigating oxidation of RBD coconut oil, VCO and corn oil. There is a huge potential of utilizing pomegranate peel powder as an antioxidant agent in reducing oxidation of edible plant oils.

Keywords: antioxidant, autoxidation, micro particles, nano particles, pomegranate peel powder

Procedia PDF Downloads 456
3658 Modeling and Optimization of Micro-Grid Using Genetic Algorithm

Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi

Abstract:

This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.

Keywords: micro-grid, optimization, genetic algorithm, MG

Procedia PDF Downloads 516
3657 Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy

Authors: Chieh-Chung Tsou, Chun-Min Lo, Yeh-Shiu Chu

Abstract:

Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion.

Keywords: cadherin, intercellular adhesion, protein micropattern, traction force microscopy

Procedia PDF Downloads 251
3656 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management

Authors: A. Giannakopoulos, S. B. Buckley

Abstract:

Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.

Keywords: critical thinking, knowledge management, mathematics, problem solving

Procedia PDF Downloads 601
3655 Slow and Controlled Release Fertilizer Technology via Application of Plant-available Inorganic Coatings

Authors: Eugene Rybin

Abstract:

Reduction of nutrient losses when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. This paper shows the production of slow- and controlled release fertilizers through application of inorganic coatings, which make the released nutrients plant-available. The method of production of coated fertilizers with inorganic cover material is an alternative to other methods where polymer coatings are used. The method is based on spraying an aqueous slurry onto the surface of granules with simultaneous drying in drums under certain conditions and subsequent cooling of granules. This method of production of slow- and controlled-release fertilizers is more ecofriendly compared with others because inorganic materials are used to create a membrane. That is why the coating material is definitely biodegradable. There is also shown the effect of these coatings on the properties of fertilizers, as well as on the agrochemical efficiency and nutrient efficiency/ availability to the plants. The agrochemical tests have proved the increase of nutrient efficiency for every nutrient in compound fertilizers (NPK, NPS) for 3 consecutive years by 10-20 % and by 25-28% for urea, as well as an increase in crop yield, by 10-15% in general, and its quality. Moreover, the decrease in caking by almost 70% was proven as well as slowing down the release rate of nutrients from fertilizers. Control of the release rate was achieved by regulation of thickness and contents of coating materials. All of those characteristics were researched according to the standard-used methods. The performed research has developed the fertilizer technology of slow- and controlled release of nutrients through applying of plant-available inorganic coatings. It leads to a better synchronization of nutrient release rate and plants needs, as well as reduces the harmful effects on the environment from the fertilizers applied.

Keywords: controlled release, fertilizers, nutrients, plant-available coatings

Procedia PDF Downloads 99
3654 Using Support Vector Machines for Measuring Democracy

Authors: Tommy Krieger, Klaus Gruendler

Abstract:

We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.

Keywords: democracy, democracy index, machine learning, support vector machines

Procedia PDF Downloads 383
3653 Cognitive Models of Future in Political Texts

Authors: Solopova Olga

Abstract:

The present paper briefly recalls theoretical preconditions for investigating cognitive-discursive models of future in political discourse. The author reviews theories and methods used for strengthening a future focus in this discourse working out two main tools – a model of future and a metaphorical scenario. The paper examines the implications of metaphorical analogies for modeling future in mass media. It argues that metaphor is not merely a rhetorical ornament in the political discourse of media regulation but a conceptual model that legislates and regulates our understanding of future.

Keywords: cognitive approach, future research, political discourse, model, scenario, metaphor

Procedia PDF Downloads 400
3652 Modeling of International Financial Integration: A Multicriteria Decision

Authors: Zouari Ezzeddine, Tarchoun Monaem

Abstract:

Despite the multiplicity of advanced approaches, the concept of financial integration couldn’t be an explicit analysis. Indeed, empirical studies appear that the measures of international financial integration are one-dimensional analyses. For the ambivalence of the concept and its multiple determinants, it must be analyzed in multidimensional level. The interest of this research is a proposal of a decision support by multicriteria approach for determining the positions of countries according to their international and financial dependencies links with the behavior of financial actors (trying to make governance decisions or diversification strategies of international portfolio ...

Keywords: financial integration, decision support, behavior, multicriteria approach, governance and diversification

Procedia PDF Downloads 531
3651 Approximation of Geodesics on Meshes with Implementation in Rhinoceros Software

Authors: Marian Sagat, Mariana Remesikova

Abstract:

In civil engineering, there is a problem how to industrially produce tensile membrane structures that are non-developable surfaces. Nondevelopable surfaces can only be developed with a certain error and we want to minimize this error. To that goal, the non-developable surfaces are cut into plates along to the geodesic curves. We propose a numerical algorithm for finding approximations of open geodesics on meshes and surfaces based on geodesic curvature flow. For practical reasons, it is important to automatize the choice of the time step. We propose a method for automatic setting of the time step based on the diagonal dominance criterion for the matrix of the linear system obtained by discretization of our partial differential equation model. Practical experiments show reliability of this method. Because approximation of the model is made by numerical method based on classic derivatives, it is necessary to solve obstacles which occur for meshes with sharp corners. We solve this problem for big family of meshes with sharp corners via special rotations which can be seen as partial unfolding of the mesh. In practical applications, it is required that the approximation of geodesic has its vertices only on the edges of the mesh. This problem is solved by a specially designed pointing tracking algorithm. We also partially solve the problem of finding geodesics on meshes with holes. We implemented the whole algorithm in Rhinoceros (commercial 3D computer graphics and computer-aided design software ). It is done by using C# language as C# assembly library for Grasshopper, which is plugin in Rhinoceros.

Keywords: geodesic, geodesic curvature flow, mesh, Rhinoceros software

Procedia PDF Downloads 155
3650 Identification of the Parameters of a AC Servomotor Using Genetic Algorithm

Authors: J. G. Batista, K. N. Sousa, ¬J. L. Nunes, R. L. S. Sousa, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measured and/or expected values.

Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control

Procedia PDF Downloads 475
3649 Effect of the Fluid Temperature on the Crude Oil Fouling in the Heat Exchangers of Algiers Refinery

Authors: Rima Harche, Abdelkader Mouheb

Abstract:

The Algiers refinery as all the other refineries always suffers from the problem of stopping of the tubes of heat exchanger. For that a study experimental of this phenomenon was undertaken in site on the cell of heat exchangers E101 (E101 CBA and E101 EDF) intended for the heating of the crude before its fractionation, which are exposed to the problem of the fouling on the side tubes exchangers. It is of tube-calenders type with head floating. Each cell is made up of three heat exchangers, laid out in series.

Keywords: fouling, fluid temperatue , oil, tubular heat exchanger, fouling resistance, modeling, heat transfer coefficient

Procedia PDF Downloads 436
3648 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaning-making characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.

Keywords: learning activity, mathematics, motivation, student

Procedia PDF Downloads 421
3647 Optimal Data Selection in Non-Ergodic Systems: A Tradeoff between Estimator Convergence and Representativeness Errors

Authors: Jakob Krause

Abstract:

Past Financial Crisis has shown that contemporary risk management models provide an unjustified sense of security and fail miserably in situations in which they are needed the most. In this paper, we start from the assumption that risk is a notion that changes over time and therefore past data points only have limited explanatory power for the current situation. Our objective is to derive the optimal amount of representative information by optimizing between the two adverse forces of estimator convergence, incentivizing us to use as much data as possible, and the aforementioned non-representativeness doing the opposite. In this endeavor, the cornerstone assumption of having access to identically distributed random variables is weakened and substituted by the assumption that the law of the data generating process changes over time. Hence, in this paper, we give a quantitative theory on how to perform statistical analysis in non-ergodic systems. As an application, we discuss the impact of a paragraph in the last iteration of proposals by the Basel Committee on Banking Regulation. We start from the premise that the severity of assumptions should correspond to the robustness of the system they describe. Hence, in the formal description of physical systems, the level of assumptions can be much higher. It follows that every concept that is carried over from the natural sciences to economics must be checked for its plausibility in the new surroundings. Most of the probability theory has been developed for the analysis of physical systems and is based on the independent and identically distributed (i.i.d.) assumption. In Economics both parts of the i.i.d. assumption are inappropriate. However, only dependence has, so far, been weakened to a sufficient degree. In this paper, an appropriate class of non-stationary processes is used, and their law is tied to a formal object measuring representativeness. Subsequently, that data set is identified that on average minimizes the estimation error stemming from both, insufficient and non-representative, data. Applications are far reaching in a variety of fields. In the paper itself, we apply the results in order to analyze a paragraph in the Basel 3 framework on banking regulation with severe implications on financial stability. Beyond the realm of finance, other potential applications include the reproducibility crisis in the social sciences (but not in the natural sciences) and modeling limited understanding and learning behavior in economics.

Keywords: banking regulation, non-ergodicity, risk management, semimartingale modeling

Procedia PDF Downloads 153