Search results for: co-authorship network analysis
28427 Novel IPN Hydrogel Beads as pH Sensitive Drug Delivery System for an Anti-Ulcer Drug
Authors: Vishal Kumar Gupta
Abstract:
Purpose: This study has been undertaken to develop novel pH sensitive interpenetrating network hydrogel beads. Methods: The pH sensitive PAAM-g-Guar gum copolymer was synthesized by free radical polymerization followed by alkaline hydrolysis. Beads of guar gum-grafted-polyacrylamide and sodium Carboxy methyl cellulose (Na CMC) loaded with Pantoprazole sodium were prepared and evaluated for pH sensitivity, swelling properties, drug entrapment efficiency and in vitro drug release characteristics. Seven formulations were prepared for the drug with varying polymer and cross linker concentrations. Results: The grafting and alkaline hydrolysis reactions were confirmed by FT-IR spectroscopy. Differential scanning calorimetry was carried out to know the compatibility of encapsulated drug with the polymers. Scanning electron microscopic study revealed that the IPN beads were spherical. The entrapment efficiency was found to be in the range of 85-92%. Particle size analysis was carried out by optical microscopy. As the pH of the medium was changed from 1.2 to 7.4, a considerable increase in swelling was observed for all beads. Increase in the copolymer concentration showed sustained the drug release up to 12 hrs. Drug release from the beads followed super case II transport mechanism. Conclusion: It was concluded that guar gum-acrylamide beads, cross-linked with aluminum chloride offer an opportunity for controlled drug release of pantoprazole sodium.Keywords: IPN, hydrogels, DSC, SEM
Procedia PDF Downloads 27128426 Argumentative and Enunciative Analysis of Spanish Political Discourse
Authors: Cristina Diez
Abstract:
One of the most important challenges of discourse analysis is to find the linguistic mechanisms of subjectivity. The present article aims to raise the need for an argumentative and enunciative analysis to reach the subjective tissue of language. The intention is to prove that the instructions inscribed in the own language are those that indicate how a statement is to be interpreted and that the argumentative value is implied at the semantic level. For that, the theory of argumentation from Ducrot and Anscombre will be implemented. First, a reflection on the study about subjectivity and enunciation in language will be exposed, followed by concrete proposals on the linguistic mechanisms that speakers use either consciously or unconsciously, to finally focus on those argumentative tools that political discourse uses in order to influence the audience.Keywords: argumentation, enunciation, discourse analysis, subjectivity
Procedia PDF Downloads 20428425 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 8328424 Study on 3D FE Analysis on Normal and Osteoporosis Mouse Models Based on 3-Point Bending Tests
Authors: Tae-min Byun, Chang-soo Chon, Dong-hyun Seo, Han-sung Kim, Bum-mo Ahn, Hui-suk Yun, Cheolwoong Ko
Abstract:
In this study, a 3-point bending computational analysis of normal and osteoporosis mouse models was performed based on the Micro-CT image information of the femurs. The finite element analysis (FEA) found 1.68 N (normal group) and 1.39 N (osteoporosis group) in the average maximum force, and 4.32 N/mm (normal group) and 3.56 N/mm (osteoporosis group) in the average stiffness. In the comparison of the 3-point bending test results, the maximum force and the stiffness were different about 9.4 times in the normal group and about 11.2 times in the osteoporosis group. The difference between the analysis and the test was greatly significant and this result demonstrated improvement points of the material properties applied to the computational analysis of this study. For the next study, the material properties of the mouse femur will be supplemented through additional computational analysis and test.Keywords: 3-point bending test, mouse, osteoporosis, FEA
Procedia PDF Downloads 35428423 Analysis of Risks of Adopting Integrated Project Delivery: Application of Bayesian Theory
Abstract:
Integrated project delivery (IPD) is a project delivery method distinguished by a shared risk/rewards mechanism and multiparty agreement. IPD has drawn increasing attention from construction industry due to its reliability to deliver high-performing buildings. However, unavailable IPD specific insurance concerns the industry participants who are interested in IPD implementation. Even though the risk management capability can be enhanced using shared risk mechanism, some risks may occur when the partners do not commit themselves into the integrated practices in a desired manner. This is because the intense collaboration and close integration can not only create added value but bring new opportunistic behaviors and disputes. The study is aimed to investigate the risks of implementing IPD using Bayesian theory. IPD risk taxonomy is presented to identify all potential risks of implementing IPD and a risk network map is developed to capture the interdependencies between IPD risks. The conditional relations between risk occurrences and the impacts of IPD risks on project performances are evaluated and simulated based on Bayesian theory. The probability of project outcomes is predicted by simulation. In addition, it is found that some risks caused by integration are most possible occurred risks. This study can help the IPD project participants identify critical risks of adopting IPD to improve project performances. In addition, it is helpful to develop IPD specific insurance when the pertinent risks can be identified.Keywords: Bayesian theory, integrated project delivery, project risks, project performances
Procedia PDF Downloads 30128422 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems
Authors: Lei Chen, Jian Jiao, Tingdi Zhao
Abstract:
Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system
Procedia PDF Downloads 12228421 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China
Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li
Abstract:
Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.Keywords: heterogeneity, homogeneous unit, multiscale, shale
Procedia PDF Downloads 45528420 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 6128419 Analysis of a Strengthening of a Building Reinforced Concrete Structure
Authors: Nassereddine Attari
Abstract:
Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building.Keywords: pushover analysis, earthquake, damage, strengthening
Procedia PDF Downloads 43128418 Analytical Derivative: Importance on Environment and Water Analysis/Cycle
Authors: Adesoji Sodeinde
Abstract:
Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light].Keywords: analytical derivative, environment, water analysis, chemical/biochemical analysis
Procedia PDF Downloads 33928417 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization
Procedia PDF Downloads 36828416 A Series Solution of Fuzzy Integro-Differential Equation
Authors: Maryam Mosleh, Mahmood Otadi
Abstract:
The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.Keywords: Fuzzy number, parametric form of a fuzzy number, fuzzy integrodifferential equation, homotopy analysis method
Procedia PDF Downloads 56028415 Evaluation of the Cytotoxicity and Genotoxicity of Chemical Material in Filters PM2.5 of the Monitoring Stations of the Network of Air Quality in the Valle De Aburrá, Colombia
Authors: Alejandra Betancur Sánchez, Carmen Elena Zapata Sánchez, Juan Bautista López Ortiz
Abstract:
Adverse effects and increased air pollution has raised concerns about regulatory policies and has fostered the development of new air quality standards; this is due to the complexity of the composition and the poorly understood reactions in the atmospheric environment. Toxic compounds act as environmental agents having various effects, from irritation to death of cells and tissues. A toxic agent is defined an adverse response in a biological system. There is a particular class that produces some kind of alteration in the genetic material or associated components, so they are recognized as genotoxic agents. Within cells, they interact directly or indirectly with DNA, causing mutations or interfere with some enzymatic repair processes or in the genesis or polymerization of proteinaceous material involved in chromosome segregation. An air pollutant may cause or contribute to increased mortality or serious illness and even pose a potential danger to human health. The aim of this study was to evaluate the effect on the viability and the genotoxic potential on the cell lines CHO-K1 and Jurkat and peripheral blood of particulate matter PM T lymphocytes 2.5 obtained from filters collected three monitoring stations network air quality Aburrá Valley. Tests, reduction of MTT, trypan blue, NRU, comet assay, sister chromatid exchange (SCE) and chromosomal aberrations allowed evidence reduction in cell viability in cell lines CHO-K1 and Jurkat and damage to the DNA from cell line CHOK1, however, no significant effects were observed in the number of SCEs and chromosomal aberrations. The results suggest that PM2.5 material has genotoxic potential and can induce cancer development, as has been suggested in other studies.Keywords: PM2.5, cell line Jurkat, cell line CHO-K1, cytotoxicity, genotoxicity
Procedia PDF Downloads 26628414 Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant
Authors: J. R. Wang, S. W. Chen, Y. Chiang, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih
Abstract:
In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.Keywords: PWR, HABIT, Habitability, Maanshan
Procedia PDF Downloads 44628413 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 4328412 Meta-Analysis of the Impact of Positive Psychological Capital on Employees Outcomes: The Moderating Role of Tenure
Authors: Hyeondal Jeong, Yoonjung Baek
Abstract:
This research examines the effects of positive psychological capital (or PsyCap) on employee’s outcomes (satisfaction, commitment, organizational citizenship behavior, innovation behavior and individual creativity). This study conducted a meta-analysis of articles published in the Republic of Korea. As a result, positive psychological capital has a positive effect on the behavior of employees. Heterogeneity was identified among the studies included in the analysis and the context factors were analyzed; the study proposes contextual factors such as team tenure. The moderating effect of team tenure was not statistically significant. The implications were discussed based on the analysis results.Keywords: positive psychological capital , satisfaction, commitment, OCB, creativity, meta-analysis
Procedia PDF Downloads 31828411 Efficiency of the Slovak Commercial Banks Applying the DEA Window Analysis
Authors: Iveta Řepková
Abstract:
The aim of this paper is to estimate the efficiency of the Slovak commercial banks employing the Data Envelopment Analysis (DEA) window analysis approach during the period 2003-2012. The research is based on unbalanced panel data of the Slovak commercial banks. Undesirable output was included into analysis of banking efficiency. It was found that most efficient banks were Postovabanka, UniCredit Bank and Istrobanka in CCR model and the most efficient banks were Slovenskasporitelna, Istrobanka and UniCredit Bank in BCC model. On contrary, the lowest efficient banks were found Privatbanka and CitiBank. We found that the largest banks in the Slovak banking market were lower efficient than medium-size and small banks. Results of the paper is that during the period 2003-2008 the average efficiency was increasing and then during the period 2010-2011 the average efficiency decreased as a result of financial crisis.Keywords: data envelopment analysis, efficiency, Slovak banking sector, window analysis
Procedia PDF Downloads 36028410 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools
Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami
Abstract:
The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design
Procedia PDF Downloads 7828409 Analysis of Friction Stir Welding Process for Joining Aluminum Alloy
Authors: A. M. Khourshid, I. Sabry
Abstract:
Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2 mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical feasibility of friction stir welding for joining Al 6061 aluminum alloy welding was performed on pipe with different thickness 2, 3 and 4 mm,five rotational speeds (485,710,910,1120 and 1400) rpm and a traverse speed (4, 8 and 10)mm/min was applied. This work focuses on two methods such as artificial neural networks using software (pythia) and response surface methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminum alloy. An artificial neural network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. The tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters Tool rotation speed, material thickness and travel speed as a function. A comparison was made between measured and predicted data. Response surface methodology (RSM) also developed and the values obtained for the response Tensile strengths, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameter on mechanical properties of 6061 aluminum alloy has been analyzed in detail.Keywords: friction stir welding (FSW), al alloys, mechanical properties, microstructure
Procedia PDF Downloads 46428408 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms
Authors: Ahmad E. Aldousaria, Abdulla Al Kafy
Abstract:
Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing
Procedia PDF Downloads 22828407 Dynamic Analysis of Transmission Line Towers
Authors: L. Srikanth, D. Neelima Satyam
Abstract:
The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987 (Wind Load), IS: 802:1995 (Structural Steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.Keywords: response spectra, dynamic analysis, central difference method, transmission tower
Procedia PDF Downloads 40028406 Valence and Arousal-Based Sentiment Analysis: A Comparative Study
Authors: Usama Shahid, Muhammad Zunnurain Hussain
Abstract:
This research paper presents a comprehensive analysis of a sentiment analysis approach that employs valence and arousal as its foundational pillars, in comparison to traditional techniques. Sentiment analysis is an indispensable task in natural language processing that involves the extraction of opinions and emotions from textual data. The valence and arousal dimensions, representing the intensity and positivity/negativity of emotions, respectively, enable the creation of four quadrants, each representing a specific emotional state. The study seeks to determine the impact of utilizing these quadrants to identify distinct emotional states on the accuracy and efficiency of sentiment analysis, in comparison to traditional techniques. The results reveal that the valence and arousal-based approach outperforms other approaches, particularly in identifying nuanced emotions that may be missed by conventional methods. The study's findings are crucial for applications such as social media monitoring and market research, where the accurate classification of emotions and opinions is paramount. Overall, this research highlights the potential of using valence and arousal as a framework for sentiment analysis and offers invaluable insights into the benefits of incorporating specific types of emotions into the analysis. These findings have significant implications for researchers and practitioners in the field of natural language processing, as they provide a basis for the development of more accurate and effective sentiment analysis tools.Keywords: sentiment analysis, valence and arousal, emotional states, natural language processing, machine learning, text analysis, sentiment classification, opinion mining
Procedia PDF Downloads 10328405 Input-Output Analysis in Laptop Computer Manufacturing
Authors: H. Z. Ulukan, E. Demircioğlu, M. Erol Genevois
Abstract:
The scope of this paper and the aim of proposed model were to apply monetary Input –Output (I-O) analysis to point out the importance of reusing know-how and other requirements in order to reduce the production costs in a manufacturing process for a laptop computer. I-O approach using the monetary input-output model is employed to demonstrate the impacts of different factors in a manufacturing process. A sensitivity analysis showing the correlation between these different factors is also presented. It is expected that the recommended model would have an advantageous effect in the cost minimization process.Keywords: input-output analysis, monetary input-output model, manufacturing process, laptop computer
Procedia PDF Downloads 39328404 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion
Procedia PDF Downloads 6828403 A Survey on Internet of Things and Fog Computing as a Platform for Internet of Things
Authors: Samira Kalantary, Sara Taghipour, Mansoure Ghias Abadi
Abstract:
The Internet of Things (IOT) is a technological revolution that represents the future of computing and communications. IOT is the convergence of Internet with RFID, NFC, Sensor, and smart objects. Fog Computing is the natural platform for IOT. At present, the IOT as a new network communication technology has rapidly shifted from concept to application under fog computing virtual storage computing platform. In this paper, we describe everything about IOT and difference between cloud computing and fog computing.Keywords: cloud computing, fog computing, Internet of Things (IoT), IOT application
Procedia PDF Downloads 58628402 Ecosystems: An Analysis of Generation Z News Consumption, Its Impact on Evolving Concepts and Applications in Journalism
Authors: Bethany Wood
Abstract:
The world pandemic led to a change in the way social media was used by audiences, with young people spending more hours on the platform due to lockdown. Reports by Ofcom have demonstrated that the internet is the second most popular platform for accessing news after television in the UK with social media and the internet ranked as the most popular platform to access news for those aged between 16-24. These statistics are unsurprising considering that at the time of writing, 98 percent of Generation Z (Gen Z) owned a smartphone and the subsequent ease and accessibility of social media. Technology is constantly developing and with this, its importance is becoming more prevalent with each generation: the Baby Boomers (1946-1964) consider it something useful whereas millennials (1981-1997) believe it a necessity for day to day living. Gen Z, otherwise known as the digital native, have grown up with this technology at their fingertips and social media is a norm. It helps form their identity, their affiliations and opens gateways for them to engage with news in a new way. It is a common misconception that Gen Z do not consume news, they are simply doing so in a different way to their predecessors. Using a sample of 800 18-20 year olds whilst utilising Generational theory, Actor Network Theory and the Social Shaping of Technology, this research provides a critical analyse regarding how Gen Z’s news consumption and engagement habits are developing along with technology to sculpture the future format of news and its distribution. From that perspective, allied with the empirical approach, it is possible to provide research orientated advice for the industry and even help to redefine traditional concepts of journalism.Keywords: journalism, generation z, digital, social media
Procedia PDF Downloads 8728401 Theta-Phase Gamma-Amplitude Coupling as a Neurophysiological Marker in Neuroleptic-Naive Schizophrenia
Authors: Jun Won Kim
Abstract:
Objective: Theta-phase gamma-amplitude coupling (TGC) was used as a novel evidence-based tool to reflect the dysfunctional cortico-thalamic interaction in patients with schizophrenia. However, to our best knowledge, no studies have reported the diagnostic utility of the TGC in the resting-state electroencephalographic (EEG) of neuroleptic-naive patients with schizophrenia compared to healthy controls. Thus, the purpose of this EEG study was to understand the underlying mechanisms in patients with schizophrenia by comparing the TGC at rest between two groups and to evaluate the diagnostic utility of TGC. Method: The subjects included 90 patients with schizophrenia and 90 healthy controls. All patients were diagnosed with schizophrenia according to the criteria of Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) by two independent psychiatrists using semi-structured clinical interviews. Because patients were either drug-naïve (first episode) or had not been taking psychoactive drugs for one month before the study, we could exclude the influence of medications. Five frequency bands were defined for spectral analyses: delta (1–4 Hz), theta (4–8 Hz), slow alpha (8–10 Hz), fast alpha (10–13.5 Hz), beta (13.5–30 Hz), and gamma (30-80 Hz). The spectral power of the EEG data was calculated with fast Fourier Transformation using the 'spectrogram.m' function of the signal processing toolbox in Matlab. An analysis of covariance (ANCOVA) was performed to compare the TGC results between the groups, which were adjusted using a Bonferroni correction (P < 0.05/19 = 0.0026). Receiver operator characteristic (ROC) analysis was conducted to examine the discriminating ability of the TGC data for schizophrenia diagnosis. Results: The patients with schizophrenia showed a significant increase in the resting-state TGC at all electrodes. The delta, theta, slow alpha, fast alpha, and beta powers showed low accuracies of 62.2%, 58.4%, 56.9%, 60.9%, and 59.0%, respectively, in discriminating the patients with schizophrenia from the healthy controls. The ROC analysis performed on the TGC data generated the most accurate result among the EEG measures, displaying an overall classification accuracy of 92.5%. Conclusion: As TGC includes phase, which contains information about neuronal interactions from the EEG recording, TGC is expected to be useful for understanding the mechanisms the dysfunctional cortico-thalamic interaction in patients with schizophrenia. The resting-state TGC value was increased in the patients with schizophrenia compared to that in the healthy controls and had a higher discriminating ability than the other parameters. These findings may be related to the compensatory hyper-arousal patterns of the dysfunctional default-mode network (DMN) in schizophrenia. Further research exploring the association between TGC and medical or psychiatric conditions that may confound EEG signals will help clarify the potential utility of TGC.Keywords: quantitative electroencephalography (QEEG), theta-phase gamma-amplitude coupling (TGC), schizophrenia, diagnostic utility
Procedia PDF Downloads 14528400 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia
Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski
Abstract:
The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils
Procedia PDF Downloads 36828399 Retrospective Audit of Antibiotic Prophylaxis in Spinal Patient at Mater Private Network Cork 2019 vs 2021
Authors: Ciaran Smiddy, Fergus Nugent, Karen Fitzmaurice
Abstract:
A measure of prescribing and administration of Antimicrobial Prophylaxis before and during Covid-19(2019 vs. 2021) was desired to assess how these were affected by Covid-19. Antimicrobial Prophylaxis was assessed for 60 patients, under 3 Orthopaedic Consultants, against local guidelines. The study found that compliance with guidelines improved significantly, from 60% to 83%, but Appropriate use of Vancomycin reduced from 37% to 29%.Keywords: antimicrobial stewardship, prescribing, spinal surgery, vancomycin
Procedia PDF Downloads 17428398 Numerical and Experimental Investigations of Cantilever Rectangular Plate Structure on Subsonic Flutter
Authors: Mevlüt Burak Dalmış, Kemal Yaman
Abstract:
In this study, flutter characteristics of cantilever rectangular plate structure under incompressible flow regime are investigated by comparing the results of commercial flutter analysis program ZAERO© with wind tunnel tests conducted in Ankara Wind Tunnel (ART). A rectangular polycarbonate (PC) plate, 5x125x1000 mm in dimensions, is used for both numerical and experimental investigations. Analysis and test results are very compatible with each other. A comparison between two different solution methods (g and k-method) of ZAERO© is also done. It is seen that, k-method gives closer result than the other one. However, g-method results are on conservative side and it is better to use conservative results namely g-method results. Even if the modal analysis results are used for the flutter analysis for this simple structure, a modal test should be conducted in order to validate the modal analysis results to have accurate flutter analysis results for more complicated structures.Keywords: flutter, plate, subsonic flow, wind tunnel
Procedia PDF Downloads 521