Search results for: bathymetric change
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7038

Search results for: bathymetric change

4278 A Numerical Investigation of Lamb Wave Damage Diagnosis for Composite Delamination Using Instantaneous Phase

Authors: Haode Huo, Jingjing He, Rui Kang, Xuefei Guan

Abstract:

This paper presents a study of Lamb wave damage diagnosis of composite delamination using instantaneous phase data. Numerical experiments are performed using the finite element method. Different sizes of delamination damages are modeled using finite element package ABAQUS. Lamb wave excitation and responses data are obtained using a pitch-catch configuration. Empirical mode decomposition is employed to extract the intrinsic mode functions (IMF). Hilbert–Huang Transform is applied to each of the resulting IMFs to obtain the instantaneous phase information. The baseline data for healthy plates are also generated using the same procedure. The size of delamination is correlated with the instantaneous phase change for damage diagnosis. It is observed that the unwrapped instantaneous phase of shows a consistent behavior with the increasing delamination size.

Keywords: delamination, lamb wave, finite element method, EMD, instantaneous phase

Procedia PDF Downloads 322
4277 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, rayleigh fading channel

Procedia PDF Downloads 454
4276 Design of Collaborative Web System: Based on Case Study of PBL Support Systems

Authors: Kawai Nobuaki

Abstract:

This paper describes the design and implementation of web system for continuable and viable collaboration. This study proposes the improvement of the system based on a result of a certain practice. As contemporary higher education information environments transform, this study highlights the significance of university identity and college identity that are formed continuously through independent activities of the students. Based on these discussions, the present study proposes a practical media environment design which facilitates the processes of organizational identity formation based on a continuous and cyclical model. Even if users change by this system, the communication system continues operation and cooperation. The activity becomes the archive and produces new activity. Based on the result, this study elaborates a plan with a re-design by a system from the viewpoint of second-order cybernetics. Systems theory is a theoretical foundation for our study.

Keywords: collaborative work, learning management system, second-order cybernetics, systems theory, user generated contents, viable system model

Procedia PDF Downloads 213
4275 Metric Suite for Schema Evolution of a Relational Database

Authors: S. Ravichandra, D. V. L. N. Somayajulu

Abstract:

Requirement of stakeholders for adding more details to the database is the main cause of the schema evolution in the relational database. Further, this schema evolution causes the instability to the database. Hence, it is aimed to define a metric suite for schema evolution of a relational database. The metric suite will calculate the metrics based on the features of the database, analyse the queries on the database and measures the coupling, cohesion and component dependencies of the schema for existing and evolved versions of the database. This metric suite will also provide an indicator for the problems related to the stability and usability of the evolved database. The degree of change in the schema of a database is presented in the forms of graphs that acts as an indicator and also provides the relations between various parameters (metrics) related to the database architecture. The acquired information is used to defend and improve the stability of database architecture. The challenges arise in incorporating these metrics with varying parameters for formulating a suitable metric suite are discussed. To validate the proposed metric suite, an experimentation has been performed on publicly available datasets.

Keywords: cohesion, coupling, entropy, metric suite, schema evolution

Procedia PDF Downloads 456
4274 Performance of Armchair Graphene Nanoribbon Resonant Tunneling Diode under Uniaxial Strain

Authors: Milad Zoghi, M. Zahangir Kabir

Abstract:

Performance of armchair graphene nanoribbon (AGNR) resonant tunneling diodes (RTD) alter if they go under strain. This may happen due to either using stretchable substrates or real working conditions such as heat generation. Therefore, it is informative to understand how mechanical deformations such as uniaxial strain can impact the performance of AGNR RTDs. In this paper, two platforms of AGNR RTD consist of width-modified AGNR RTD and electric-field modified AGNR RTD are subjected to both compressive and tensile uniaxial strain ranging from -2% to +2%. It is found that characteristics of AGNR RTD markedly change under both compressive and tensile strain. In particular, peak to valley ratio (PVR) can be totally disappeared upon strong enough strain deformation. Numerical tight binding (TB) coupled with Non-Equilibrium Green's Function (NEGF) is derived for this study to calculate corresponding Hamiltonian matrices and transport properties.

Keywords: armchair graphene nanoribbon, resonant tunneling diode, uniaxial strain, peak to valley ratio

Procedia PDF Downloads 183
4273 Generalized Uncertainty Principle Modified Hawking Radiation in Bumblebee Gravity

Authors: Sara Kanzi, Izzet Sakalli

Abstract:

The effect of Lorentz symmetry breaking (LSB) on the Hawking radiation of Schwarzschild-like black hole found in the bumblebee gravity model (SBHBGM) is studied in the framework of quantum gravity. To this end, we consider Hawking radiation spin-0 (bosons) and spin-12particles (fermions), which go in and out through the event horizon of the SBHBGM. We use the modified Klein-Gordon and Dirac equations, which are obtained from the generalized uncertainty principle (GUP) to show how Hawking radiation is affected by the GUP and LSB. In particular, we reveal that independent of the spin of the emitted particles, GUP causes a change in the Hawking temperature of the SBHBGM. Furthermore, we compute the semi-analytic greybody factors (for both bosons and fermions) of the SBHBGM. Thus, we reveal that LSB is effective on the greybody factor of the SBHBGM such that its redundancy decreases the value of the greybody factor. Our findings are graphically depicted.

Keywords: bumblebee gravity model, Hawking radiation, generalized uncertainty principle, Lorentz symmetry breaking

Procedia PDF Downloads 141
4272 The Effect of Irgafos 168 in the Thermostabilization of High Density Polyethylene

Authors: Mahdi Almaky

Abstract:

The thermostabilization of High Density Polyethylene (HDPE) is realized through the action of primary antioxidant such as phenolic antioxidants and secondary antioxidants as aryl phosphates. The efficiency of two secondary antioxidants, commercially named Irgafos 168 and Weston 399, was investigated using different physical, mechanical, spectroscopic, and calorimetric methods. The effect of both antioxidants on the processing stability and long term stability of HDPE produced in Ras Lanuf oil and gas processing Company were measured and compared. The combination of Irgafos 168 with Irganox 1010, as used in smaller concentration, results in a synergetic effect against thermo-oxidation and protect better than the combination of Weston 399 with Irganox 1010 against the colour change at processing temperature and during long term oxidation process.

Keywords: thermostabilization, high density polyethylene, primary antioxidant, phenolic antioxidant, Irgafos 168, Irganox 1010, Weston 399

Procedia PDF Downloads 360
4271 Polymer Composites Containing Gold Nanoparticles for Biomedical Use

Authors: Bozena Tyliszczak, Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Agnieszka Sobczak-Kupiec

Abstract:

Introduction: Nanomaterials become one of the leading materials in the synthesis of various compounds. This is a reason for the fact that nano-size materials exhibit other properties compared to their macroscopic equivalents. Such a change in size is reflected in a change in optical, electric or mechanical properties. Among nanomaterials, particular attention is currently directed into gold nanoparticles. They find application in a wide range of areas including cosmetology or pharmacy. Additionally, nanogold may be a component of modern wound dressings, which antibacterial activity is beneficial in the viewpoint of the wound healing process. Specific properties of this type of nanomaterials result in the fact that they may also be applied in cancer treatment. Studies on the development of new techniques of the delivery of drugs are currently an important research subject of many scientists. This is due to the fact that along with the development of such fields of science as medicine or pharmacy, the need for better and more effective methods of administering drugs is constantly growing. The solution may be the use of drug carriers. These are materials that combine with the active substance and lead it directly to the desired place. A role of such a carrier may be played by gold nanoparticles that are able to covalently bond with many organic substances. This allows the combination of nanoparticles with active substances. Therefore gold nanoparticles are widely used in the preparation of nanocomposites that may be used for medical purposes with special emphasis on drug delivery. Methodology: As part of the presented research, synthesis of composites was carried out. The mentioned composites consisted of the polymer matrix and gold nanoparticles that were introduced into the polymer network. The synthesis was conducted with the use of a crosslinking agent, and photoinitiator and the materials were obtained by means of the photopolymerization process. Next, incubation studies were conducted using selected liquids that simulated fluids are occurring in the human body. The study allows determining the biocompatibility of the tested composites in relation to selected environments. Next, the chemical structure of the composites was characterized as well as their sorption properties. Conclusions: Conducted research allowed for the preliminary characterization of prepared polymer composites containing gold nanoparticles in the viewpoint of their application for biomedical use. Tested materials were characterized by biocompatibility in tested environments. What is more, synthesized composites exhibited relatively high swelling capacity that is essential in the viewpoint of their potential application as drug carriers. During such an application, composite swells and at the same time releases from its interior introduced active substance; therefore, it is important to check the swelling ability of such material. Acknowledgements: The authors would like to thank The National Science Centre (Grant no: UMO - 2016/21/D/ST8/01697) for providing financial support to this project. This paper is based upon work from COST Action (CA18113), supported by COST (European Cooperation in Science and Technology).

Keywords: nanocomposites, gold nanoparticles, drug carriers, swelling properties

Procedia PDF Downloads 119
4270 Introduction of Dams Impacts on Downstream Wetlands: Case Study in Ahwar Delta in Yemen

Authors: Afrah Saad Mohsen Al-Mahfadi

Abstract:

The construction of dams can provide various ecosystem services, but it can also lead to ecological changes such as habitat loss and coastal degradation. Yemen faces multiple risks, including water crises and inadequate environmental policies, which are particularly detrimental to coastal zones like the Ahwar Delta in Abyan. This study aims to examine the impacts of dam construction on downstream wetlands and propose sustainable management approaches. Research Aim: The main objective of this study is to assess the different impacts of dam construction on downstream wetlands, specifically focusing on the Ahwar Delta in Yemen. Methodology: The study utilizes a literature review approach to gather relevant information on dam impacts and adaptation measures. Interviews with decision-making stakeholders and local community members are conducted to gain insights into the specific challenges faced in the Ahwar Delta. Additionally, sensing data, such as Arc-GIS and precipitation data from 1981 to 2020, are analyzed to examine changes in hydrological dynamics. Questions Addressed: This study addresses the following questions: What are the impacts of dam construction on downstream wetlands in the Ahwar delta? How can environmental management planning activities be implemented to minimize these impacts? Findings: The results indicate several future issues arising from dam construction in the coastal areas, including land loss due to rising sea levels and increased salinity in drinking water wells. Climate change has led to a decrease in rainfall rates, impacting vegetation and increasing sedimentation and erosion. Downstream areas with dams exhibit lower sediment levels and slower flowing habitats compared to those without dams. Theoretical Importance: The findings of this study provide valuable insights into the ecological impacts of dam construction on downstream wetlands. Understanding these dynamics can inform decision-makers about the need for adaptation measures and their potential benefits in improving coastal biodiversity under dam impacts. Data Collection and Analysis Procedures: The study collects data through a literature review, interviews, and sensing technology. The literature review helps identify relevant studies on dam impacts and adaptation measures. Interviews with stakeholders and local community members provide firsthand information on the specific challenges faced in the Ahwar Delta. Sensing data, such as Arc-GIS and precipitation data, are analyzed to understand changes in hydrological dynamics over time. Conclusion: The study concludes that while the situation can worsen due to dam construction, practical adaptation measures can help mitigate the impacts. Recommendations include improving water management, developing integrated coastal zone planning, raising awareness among stakeholders, improving health and education, and implementing emergency projects to combat climate change.

Keywords: dam impact, delta wetland, hydrology, Yemen

Procedia PDF Downloads 73
4269 Changing Faces of the Authoritarian Reflex and Islamist Actors in the Maghreb and Mashreq after Arab Uprisings

Authors: Nur Köprülü

Abstract:

One of the main questions that have arisen after the Arab uprisings has centered on whether they will lead to democratic transition and what the roles of Islamist actors will be. It has become apparent today that one of the key outcomes has been the partial, if not total, overthrow of authoritarian regimes in some cases. So, this article aims to analyse three synchronous upshots brought about by the uprisings, referring to patterns of state formation in the Maghreb and Mashreq. One of the main outcomes has been the persistence of authoritarianism in various forms, and the fragility of the Arab republics coping with the protests as compared to the more resilient character of the monarchies. In addition, none of the uprisings has brought an Islamist organization to incontestable power, as some predicted. However, ‘old’ Islamist actors have since re-emerged as key players, namely the Muslim Brotherhood in Tunisia, Egypt, Jordan and elsewhere. Thus, to understand the synthesis of change and continuity in the Middle East in the aftermath of the Arab Spring, analysing the changing faces of authoritarianism in the region and the impact on Islamists in both the Maghreb and the Mashreq is imperative.

Keywords: authoritarianism, democratization, Arab spring, Islamists

Procedia PDF Downloads 224
4268 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 128
4267 Analysis of Bending Abilities of Soft Pneumatic Actuator

Authors: Jeevan Balaji, Shreyas Chigurupati

Abstract:

Pneumatic gripper use compressed air to operate its actuators (fingers). Unlike the conventional metallic gripper, a soft pneumatic actuator (SPA) can be used for relocating fragile objects. An added advantage for this gripper is that the pressure exerted on the object can be varied by changing the dimensions of the air chambers and also by the number of chambers. SPAs have many benefits over conventional robots in the military, medical fields because of their compliance nature and are easily produced using the 3D printing process. In the paper, SPA is proposed to perform pick and place tasks. A design was developed for the actuators, which is convenient for gripping any fragile objects. Thermoplastic polyurethane (TPU) is used for 3D printing the actuators. The actuator model behaves differently as the parameters such as its chamber height, number of chambers change. A detailed FEM model of the actuator is drafted for different pressure inputs using ABAQUS CAE software, and a safe loading pressure range is found.

Keywords: soft robotics, pneumatic actuator, design and modelling, bending analysis

Procedia PDF Downloads 170
4266 Estimation of State of Charge, State of Health and Power Status for the Li-Ion Battery On-Board Vehicle

Authors: S. Sabatino, V. Calderaro, V. Galdi, G. Graber, L. Ippolito

Abstract:

Climate change is a rapidly growing global threat caused mainly by increased emissions of carbon dioxide (CO₂) into the atmosphere. These emissions come from multiple sources, including industry, power generation, and the transport sector. The need to tackle climate change and reduce CO₂ emissions is indisputable. A crucial solution to achieving decarbonization in the transport sector is the adoption of electric vehicles (EVs). These vehicles use lithium (Li-Ion) batteries as an energy source, making them extremely efficient and with low direct emissions. However, Li-Ion batteries are not without problems, including the risk of overheating and performance degradation. To ensure its safety and longevity, it is essential to use a battery management system (BMS). The BMS constantly monitors battery status, adjusts temperature and cell balance, ensuring optimal performance and preventing dangerous situations. From the monitoring carried out, it is also able to optimally manage the battery to increase its life. Among the parameters monitored by the BMS, the main ones are State of Charge (SoC), State of Health (SoH), and State of Power (SoP). The evaluation of these parameters can be carried out in two ways: offline, using benchtop batteries tested in the laboratory, or online, using batteries installed in moving vehicles. Online estimation is the preferred approach, as it relies on capturing real-time data from batteries while operating in real-life situations, such as in everyday EV use. Actual battery usage conditions are highly variable. Moving vehicles are exposed to a wide range of factors, including temperature variations, different driving styles, and complex charge/discharge cycles. This variability is difficult to replicate in a controlled laboratory environment and can greatly affect performance and battery life. Online estimation captures this variety of conditions, providing a more accurate assessment of battery behavior in real-world situations. In this article, a hybrid approach based on a neural network and a statistical method for real-time estimation of SoC, SoH, and SoP parameters of interest is proposed. These parameters are estimated from the analysis of a one-day driving profile of an electric vehicle, assumed to be divided into the following four phases: (i) Partial discharge (SoC 100% - SoC 50%), (ii) Partial discharge (SoC 50% - SoC 80%), (iii) Deep Discharge (SoC 80% - SoC 30%) (iv) Full charge (SoC 30% - SoC 100%). The neural network predicts the values of ohmic resistance and incremental capacity, while the statistical method is used to estimate the parameters of interest. This reduces the complexity of the model and improves its prediction accuracy. The effectiveness of the proposed model is evaluated by analyzing its performance in terms of square mean error (RMSE) and percentage error (MAPE) and comparing it with the reference method found in the literature.

Keywords: electric vehicle, Li-Ion battery, BMS, state-of-charge, state-of-health, state-of-power, artificial neural networks

Procedia PDF Downloads 73
4265 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer

Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang

Abstract:

Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.

Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network

Procedia PDF Downloads 326
4264 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi

Abstract:

The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: automatic bias control, optical fiber communication, optical modulation, optical devices

Procedia PDF Downloads 193
4263 Interval Functional Electrical Stimulation Cycling and Nutritional Counseling Improves Lean Mass to Fat Mass Ratio and Decreases Cardiometabolic Disease Risk in Individuals with Spinal Cord Injury

Authors: David Dolbow, Daniel Credeur, Mujtaba Rahimi, Dobrivoje Stokic, Jennifer Lemacks, Andrew Courtner

Abstract:

Introduction: Obesity is at epidemic proportions in the spinal cord injury (SCI) population (66-75%), as individuals who suffer from paralysis undergo a dramatic decrease in muscle mass and a dramatic increase in adipose deposition. Obesity is a major public health concern which includes a doubling of the risk of heart disease, stroke and type II diabetes mellitus. It has been demonstrated that physical activity, and especially HIIT, can promote a healthy body composition and decrease the risk cardiometabolic disease in the able-bodied population. However, SCI typically limits voluntary exercise to the arms, but a high prevalence of shoulder pain in persons with chronic SCI (60-90%) can cause increased arm exercise to be problematic. Functional electrical stimulation (FES) cycling has proven to be a safe and effective way to exercise paralyzed leg muscles in clinical and home settings, saving the often overworked arms. Yet, HIIT-FES cycling had not been investigated prior to the current study. The purpose of this study was to investigate the body composition changes with combined HIIT-FES cycling and nutritional counseling on individuals with SCI. Design: A matched (level of injury, time since injury, body mass index) and controlled trail. Setting: University exercise performance laboratory. Subjects: Ten individuals with chronic SCI (C5-T9) ASIA impairment classification (A & B) were divided into the treatment group (n=5) for 30 minutes of HIIT-FES cycling 3 times per week for 8 weeks and nutritional counseling over the phone for 30 minutes once per week for 8 weeks and the control group (n=5) who received nutritional counseling only. Results: There was a statistically significant difference between the HIIT-FES group and the control group in mean body fat percentage change (-1.14 to +0.24) respectively, p = .030). There was also a statistically significant difference between the HIIT-FES and control groups in mean change in legs lean mass (+0.78 kg to -1.5 kg) respectively, p = 0.004. There was a nominal decrease in weight, BMI, total fat mass and a nominal increase in total lean mass for the HIIT-FES group over the control group. However, these changes were not found to be statistically significant. Additionally, there was a nominal decrease in the mean blood glucose levels for both groups 101.8 to 97.8 mg/dl for the HIIT-FES group and 94.6 to 93 mg/dl for the Nutrition only group, however, neither were found to be statistically significant. Conclusion: HIIT-FES cycling combined with nutritional counseling can provide healthful body composition changes including decreased body fat percentage in just 8 weeks. Future study recommendations include a greater number of participants, a primer electrical stimulation exercise program to better ready participants for HIIT-FES cycling and a greater volume of training above 30 minutes, 3 times per week for 8 weeks.

Keywords: body composition, functional electrical stimulation cycling, high-intensity interval training, spinal cord injury

Procedia PDF Downloads 119
4262 Detection of Nanotoxic Material Using DNA Based QCM

Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na

Abstract:

Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nanotoxic material, qcm, frequency, in situ sensing

Procedia PDF Downloads 425
4261 Innovation Ecosystems in Construction Industry

Authors: Cansu Gülser, Tuğce Ercan

Abstract:

The construction sector is a key driver of the global economy, contributing significantly to growth and employment through a diverse array of sub-sectors. However, it faces challenges due to its project-based nature, which often hampers long-term collaboration and broader incentives beyond individual projects. These limitations are frequently discussed in scientific literature as obstacles to innovation and industry-wide change. Traditional practices and unwritten rules further hinder the adoption of new processes within the construction industry. The disadvantages of the construction industry’s project-based structure in fostering innovation and long-term relationships include limited continuity, fragmented collaborations, and a focus on short-term goals, which collectively hinder the development of sustained partnerships, inhibit the sharing of knowledge and best practices, and reduce incentives for investing in innovative processes and technologies. This structure typically emphasizes specific projects, which restricts broader collaborations and incentives that extend beyond individual projects, thus impeding innovation and change. The temporal complexities inherent in project-based sectors like construction make it difficult to address societal challenges through collaborative efforts. Traditional management approaches are inadequate for scaling up innovations and adapting to significant changes. For systemic transformation in the construction sector, there is a need for more collaborative relationships and activities beyond traditional supply chains. This study delves into the concept of an innovation ecosystem within the construction sector, highlighting various research findings. It aims to explore key questions about the components that enhance innovation capacity, the relationship between a robust innovation ecosystem and this capacity, and the reasons why innovation is less prevalent and implemented in this sector compared to others. Additionally, it examines the main factors hindering innovation within companies and identifies strategies to improve these efforts, particularly in developing countries. The innovation ecosystem in the construction sector generates various outputs through interactions between business resources and external components. These outputs include innovative value creation, sustainable practices, robust collaborations, knowledge sharing, competitiveness, and advanced project management, all of which contribute significantly to company market performance and competitive advantage. This article offers insights and strategic recommendations for industry professionals, policymakers, and researchers interested in developing and sustaining innovation ecosystems in the construction sector. Future research should focus on broader samples for generalization, comparative sector analysis, and application-focused studies addressing real industry challenges. Additionally, studying the long-term impacts of innovation ecosystems, integrating advanced technologies like AI and machine learning into project management, and developing future application strategies and policies are also important.

Keywords: construction industry, innovation ecosystem, innovation ecosystem components, project management

Procedia PDF Downloads 40
4260 The Effect of Awareness-Raising on Household Water Consumption

Authors: R. Morbidelli, C. Saltalippi, A. Flammini, J. Dari

Abstract:

This work analyses what effect systematic awareness-raising of the population on domestic water consumption produces. In a period where the availability of water is continually decreasing due to reduced rainfall, it is of paramount importance to raise awareness among the population. We conducted an experiment on a large sample of homes in urban areas of Central Italy. In the first phase, lasting three weeks, normal per capita, water consumption was quantified. Subsequently, instructions were given on how to save water during various uses in the household (showers, cleaning hands, use of water in toilets, watering small green areas, use of water in the kitchen, ...), and small visual messages were posted at water dispensers to remind users to behave properly. Finally, household consumption was assessed again for a further three weeks. This experiment made it possible to quantify the effect of the awareness-raising action on the reduction of water consumption without the use of any structural action (replacement of dispensers, improvement of the water system, ...).

Keywords: water saving, urban areas, awareness-raising, climate change

Procedia PDF Downloads 111
4259 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar

Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh

Abstract:

Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.

Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring

Procedia PDF Downloads 182
4258 Gene Expression Profiling of Iron-Related Genes of Pasteurella multocida Serotype A Strain PMTB2.1

Authors: Shagufta Jabeen, Faez Jesse Firdaus Abdullah, Zunita Zakaria, Nurulfiza Mat Isa, Yung Chie Tan, Wai Yan Yee, Abdul Rahman Omar

Abstract:

Pasteurella multocida is associated with acute, as well as, chronic infections in avian and bovine such as pasteurellosis and hemorrhagic septicemia (HS) in cattle and buffaloes. Iron is one of the most important nutrients for pathogenic bacteria including Pasteurella and acts as a cofactor or prosthetic group in several essential enzymes and is needed for amino acid, pyrimidine, and DNA biosynthesis. In our recent study, we showed that 2% of Pasteurella multocida serotype A strain PMTB2.1 encode for iron regulating genes (Accession number CP007205.1). Genome sequencing of other Pasteurella multocida serotypes namely PM70 and HB01 also indicated up to 2.5% of the respective genome encode for iron regulating genes, suggesting that Pasteurella multocida genome comprises of multiple systems for iron uptake. Since P. multocida PMTB2.1 has more than 40 CDs out of 2097 CDs (approximately 2%), encode for iron-regulated. The gene expression profiling of four iron-regulating genes namely fbpb, yfea, fece and fur were characterized under iron-restricted environment. The P. multocida strain PMTB2.1 was grown in broth with and without iron chelating agent and samples were collected at different time points. Relative mRNA expression profile of these genes was determined using Taqman probe based real-time PCR assay. The data analysis, normalization with two house-keeping genes and the quantification of fold changes were carried out using Bio-Rad CFX manager software version 3.1. Results of this study reflect that iron reduced environment has significant effect on expression profile of iron regulating genes (p < 0.05) when compared to control (normal broth) and all evaluated genes act differently with response to iron reduction in media. The highest relative fold change of fece gene was observed at early stage of treatment indicating that PMTB2.1 may utilize its periplasmic protein at early stage to acquire iron. Furthermore, down-regulation expression of fece with the elevated expression of other genes at later time points suggests that PMTB2.1 control their iron requirements in response to iron availability by down-regulating the expression of iron proteins. Moreover, significantly high relative fold change (p ≤ 0.05) of fbpb gene is probably associated with the ability of P. multocida to directly use host iron complex such as hem, hemoglobin. In addition, the significant increase (p ≤ 0.05) in fbpb and yfea expressions also reflects the utilization of multiple iron systems in P. multocida strain PMTB2.1. The findings of this study are very much important as relative scarcity of free iron within hosts creates a major barrier to microbial growth inside host and utilization of outer-membrane proteins system in iron acquisition probably occurred at early stage of infection with P. multocida. In conclusion, the presence and utilization of multiple iron system in P. multocida strain PMTB2.1 revealed the importance of iron in the survival of P. multocida.

Keywords: iron-related genes, real-time PCR, gene expression profiling, fold changes

Procedia PDF Downloads 466
4257 Using Lean Six-Sigma in the Improvement of Service Quality at Aviation Industry: Case Study at the Departure Area in KKIA

Authors: Tareq Al Muhareb, Jasper Graham-Jones

Abstract:

The service quality is a significant element in aviation industry especially in the international airports. Through this paper, the researchers built a model based on Lean six sigma methodologies and applied it in the departure area at KKIA (King Khalid International Airport) in order to assess it. This model characterized with many special features that can become over the cultural differences in aviation industry since it is considered the most critical circumstance in this field. Applying the model of this study is depending on following the DMAIC procedure systemized in lean thinking aspects. This model of Lean-six-sigma as a managerial procedure is mostly focused on the change management culture that requires high level of planning, organizing, modifying, and controlling in order to benefit from strengths as well as revoke weaknesses.

Keywords: lean-six-sigma, service quality, aviation industry, KKIA (King Khalid International Airport), SERVQUAL

Procedia PDF Downloads 438
4256 Adjustable Counter-Weight for Full Turn Rotary Systems

Authors: G. Karakaya, C. Türker, M. Anaklı

Abstract:

It is necessary to test to see if optical devices such as camera, night vision devices are working properly. Therefore, a precision biaxial rotary system (gimbal) is required for mounting Unit Under Test, UUT. The Gimbal systems can be utilized for precise positioning of the UUT; hence, optical test can be performed with high accuracy. The weight of UUT, which is placed outside the axis of rotation, causes an off-axis moment to the mounting armature. The off-axis moment can act against the direction of movement for some orientation, thus the electrical motor, which rotates the gimbal axis, has to apply higher level of torque to guide and stabilize the system. Moreover, UUT and its mounting fixture to the gimbal can be changed, which causes change in applied resistance moment to the gimbals electrical motor. In this study, a preloaded spring is added to the gimbal system for minimizing applied off axis moment with the help of four bar mechanism. Two different possible methods for preloading spring are introduced and system optimization is performed to eliminate all moment which is created by off axis weight.

Keywords: adaptive, balancing, gimbal, mechanics, spring

Procedia PDF Downloads 125
4255 Investigation of the Evolutionary Equations of the Two-Planetary Problem of Three Bodies with Variable Masses

Authors: Zhanar Imanova

Abstract:

Masses of real celestial bodies change anisotropically and reactive forces appear, and they need to be taken into account in the study of these bodies' dynamics. We studied the two-planet problem of three bodies with variable masses in the presence of reactive forces and obtained the equations of perturbed motion in Newton’s form equations. The motion equations in the orbital coordinate system, unlike the Lagrange equation, are convenient for taking into account the reactive forces. The perturbing force is expanded in terms of osculating elements. The expansion of perturbing functions is a time-consuming analytical calculation and results in very cumber some analytical expressions. In the considered problem, we obtained expansions of perturbing functions by small parameters up to and including the second degree. In the non resonant case, we obtained evolution equations in the Newton equation form. All symbolic calculations were done in Wolfram Mathematica.

Keywords: two-planet, three-body problem, variable mass, evolutionary equations

Procedia PDF Downloads 69
4254 Long-term Care Facility for the Elderly and Its Relationship with Energy Efficiency

Authors: Gabriela Sardinha Pacheco

Abstract:

In a context of elderly population growth, the need to provide high quality infrastructure and services to these people becomes even more evident. The act of designing a space dedicated to elderly people goes beyond the concept of well-being and reaches to a point of evaluating and changing the way which society sees this part of the population as well as how it can build a relationship with energy efficiency. In this context, the care facilities for elderly have an extremely important role to provide this infrastructure to the population. A common issue is that, for many times, these facilities face financial issues, and the full operation of the establishment can be impacted. The intention of this work is to develop a project in which the energy efficiency measures can be lived daily and that the residents of the institution can participate actively, directly, or indirectly in the construction of this relationship. The use of energy efficiency strategies should become a natural process when thinking about buildings as it is an essential step to provide increased well-being, climate change mitigation, and cost reduction.

Keywords: energy efficiency, environmental comfort, long-term care facility, well-being

Procedia PDF Downloads 64
4253 The Performance of Typical Kinds of Coating of Printed Circuit Board under Accelerated Degradation Test

Authors: Xiaohui Wang, Liwei Sun, Guilin Zhang

Abstract:

Printed circuit board (PCB) is the carrier of electronic components. Its coating is the first barrier for protecting itself. If the coating is damaged, the performance of printed circuit board will decrease rapidly until failure. Therefore, the coating plays an important role in the entire printed circuit board. There are common four kinds of coating of printed circuit board that the material of the coatings are paryleneC, acrylic, polyurethane, silicone. In this paper, we designed an accelerated degradation test of humid and heat for these four kinds of coating. And chose insulation resistance, moisture absorption and surface morphology as its test indexes. By comparing the change of insulation resistance of the coating before and after the test, we estimate failure time of these coatings based on the degradation of insulation resistance. Based on the above, we estimate the service life of the four kinds of PCB.

Keywords: printed circuit board, life assessment, insulation resistance, coating material

Procedia PDF Downloads 538
4252 Energy System for Algerian Green Building in Tlemcen, North Africa

Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair

Abstract:

This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.

Keywords: green building, heat pump, insulation, climate change

Procedia PDF Downloads 223
4251 Research of Street Aspect Ratio on a Wind Environmental Perspective

Authors: Qi Kan, Xiaoyu Ying

Abstract:

With a rapid urbanization in China, the high-density new urban-center districts have already changed the microclimate in the city. Because of the using characters of building the commercial pedestrian streets which have emerged massively making a large number of pedestrians appear in there, pedestrian comfort in the commercial streets of the new urban-center districts requires more attention. The different street spatial layout will change the wind environment in the street and then influence the pedestrian comfort. Computational fluid dynamics (CFD) models are used to study the correlation between the street aspect ratio and wind environment, under the simulation with relevant weather conditions. The results show that the wind speed in the city streets is inversely proportional to the street aspect ratio. The conclusion will provide an evaluation basis for urban planners and architects at the beginning stage of the design to effectively avoid the potential poor physical environment.

Keywords: street spatial layout, wind environment, street aspect ratio, pedestrian comfort

Procedia PDF Downloads 200
4250 Assessment of Tidal Influence in Spatial and Temporal Variations of Water Quality in Masan Bay, Korea

Authors: S. J. Kim, Y. J. Yoo

Abstract:

Slack-tide sampling was carried out at seven stations at high and low tides for a tidal cycle, in summer (7, 8, 9) and fall (10), 2016 to determine the differences of water quality according to tides in Masan Bay. The data were analyzed by Pearson correlation and factor analysis. The mixing state of all the water quality components investigated is well explained by the correlation with salinity (SAL). Turbidity (TURB), dissolved silica (DSi), nitrite and nitrate nitrogen (NNN) and total nitrogen (TN), which find their way into the bay from the streams and have no internal source and sink reaction, showed a strong negative correlation with SAL at low tide, indicating the property of conservative mixing. On the contrary, in summer and fall, dissolved oxygen (DO), hydrogen sulfide (H2S) and chemical oxygen demand with KMnO4 (CODMn) of the surface and bottom water, which were sensitive to an internal source and sink reaction, showed no significant correlation with SAL at high and low tides. The remaining water quality parameters showed a conservative or a non-conservative mixing pattern depending on the mixing characteristics at high and low tides, determined by the functional relationship between the changes of the flushing time and the changes of the characteristics of water quality components of the end-members in the bay. Factor analysis performed on the concentration difference data sets between high and low tides helped in identifying the principal latent variables for them. The concentration differences varied spatially and temporally. Principal factors (PFs) scores plots for each monitoring situation showed high associations of the variations to the monitoring sites. At sampling station 1 (ST1), temperature (TEMP), SAL, DSi, TURB, NNN and TN of the surface water in summer, TEMP, SAL, DSi, DO, TURB, NNN, TN, reactive soluble phosphorus (RSP) and total phosphorus (TP) of the bottom water in summer, TEMP, pH, SAL, DSi, DO, TURB, CODMn, particulate organic carbon (POC), ammonia nitrogen (AMN), NNN, TN and fecal coliform (FC) of the surface water in fall, TEMP, pH, SAL, DSi, H2S, TURB, CODMn, AMN, NNN and TN of the bottom water in fall commonly showed up as the most significant parameters and the large concentration differences between high and low tides. At other stations, the significant parameters showed differently according to the spatial and temporal variations of mixing pattern in the bay. In fact, there is no estuary that always maintains steady-state flow conditions. The mixing regime of an estuary might be changed at any time from linear to non-linear, due to the change of flushing time according to the combination of hydrogeometric properties, inflow of freshwater and tidal action, And furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.

Keywords: conservative mixing, end-member, factor analysis, flushing time, high and low tide, latent variables, non-conservative mixing, slack-tide sampling, spatial and temporal variations, surface and bottom water

Procedia PDF Downloads 133
4249 Determining Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin

Authors: Naci Büyükkaracığan

Abstract:

Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.

Keywords: Gediz Basin, goodness-of-fit tests, minimum flows, probability distribution

Procedia PDF Downloads 274