Search results for: Gagne’s learning model
19456 A Case Study on English Camp in UNISSA: An Approach towards Interactive Learning Outside the Classroom
Authors: Liza Mariah Hj. Azahari
Abstract:
This paper will look at a case study on English Camp which was an activity coordinated at the Sultan Sharif Ali Islamic University in 2011. English Camp is a fun and motivation filled activity which brings students and teachers together outside of the classroom setting into a more diverse environment. It also enables teacher and students to gain proximate time together for a mutual purpose which is to explore the language in a more dynamic and relaxed way. First of all, the study will look into the background of English Camp, and how it was introduced and implemented from different contexts. Thereafter, it will explain the objectives of the English Camp coordinated at our university, UNISSA, and what types of activities were conducted. It will then evaluate the effectiveness of the camp as to what extent it managed to meet its motto, which was to foster dynamic interactive learning of English Language. To conclude, the paper presents a potential for further research on the topic as well as a guideline for educators who wish to coordinate the activity. Proposal for collaboration in this activity is further highlighted and encouraged within the paper for future implementation and endeavor.Keywords: English camp, UNISSA, interactive learning, outside
Procedia PDF Downloads 57019455 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 15019454 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 34119453 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications
Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani
Abstract:
This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.Keywords: human activity detection, media pipe, machine learning, metaverse applications
Procedia PDF Downloads 18119452 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)
Procedia PDF Downloads 11119451 A New Car-Following Model with Consideration of the Brake Light
Authors: Zhiyuan Tang, Ju Zhang, Wenyuan Wu
Abstract:
In this research, a car-following model with consideration of the status of the brake light is proposed. The numerical results show that the stability of the traffic flow is improved. The ability of the brake light to reduce car accident is also showed.Keywords: brake light, car-following model, traffic flow, regional planning, transportation
Procedia PDF Downloads 57919450 Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model
Authors: Doğan Yıldız, Aydan Müşerref Erkmen
Abstract:
The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances.Keywords: model predictive control, nonlinear octocopter model, collision avoidance, obstacle detection
Procedia PDF Downloads 19219449 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 15019448 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function
Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu
Abstract:
Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model
Procedia PDF Downloads 39619447 Using a Card Game as a Tool for Developing a Design
Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner
Abstract:
Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.Keywords: card game, collective songwriting, community of practice, network, postdigital
Procedia PDF Downloads 6519446 Fair Value Accounting and Evolution of the Ohlson Model
Authors: Mohamed Zaher Bouaziz
Abstract:
Our study examines the Ohlson Model, which links a company's market value to its equity and net earnings, in the context of the evolution of the Canadian accounting model, characterized by more extensive use of fair value and a broader measure of performance after IFRS adoption. Our hypothesis is that if equity is reported at its fair value, this valuation is closely linked to market capitalization, so the weight of earnings weakens or even disappears in the Ohlson Model. Drawing on Canada's adoption of the International Financial Reporting Standards (IFRS), our results support our hypothesis that equity appears to include most of the relevant information for investors, while earnings have become less important. However, the predictive power of earnings does not disappear.Keywords: fair value accounting, Ohlson model, IFRS adoption, value-relevance of equity and earnings
Procedia PDF Downloads 19119445 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction
Authors: Ratchada Sopakayang, Gerhard A. Holzapfel
Abstract:
In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.Keywords: constitutive model, fiber-matrix, hyperelasticity, interaction, ligament, tendon
Procedia PDF Downloads 30219444 Massive Open Online Course about Content Language Integrated Learning: A Methodological Approach for Content Language Integrated Learning Teachers
Authors: M. Zezou
Abstract:
This paper focuses on the design of a Massive Open Online Course (MOOC) about Content Language Integrated Learning (CLIL) and more specifically about how teachers can use CLIL as an educational approach incorporating technology in their teaching as well. All the four weeks of the MOOC will be presented and a step-by-step analysis of each lesson will be offered. Additionally, the paper includes detailed lesson plans about CLIL lessons with proposed CLIL activities and games in which technology plays a central part. The MOOC is structured based on certain criteria, in order to ensure success, as well as a positive experience that the learners need to have after completing this MOOC. It addresses to all language teachers who would like to implement CLIL into their teaching. In other words, it presents the methodology that needs to be followed so as to successfully carry out a CLIL lesson and achieve the learning objectives set at the beginning of the course. Firstly, in this paper, it is very important to give the definitions of MOOCs and LMOOCs, as well as to explore the difference between a structure-based MOOC (xMOOC) and a connectivist MOOC (cMOOC) and present the criteria of a successful MOOC. Moreover, the notion of CLIL will be explored, as it is necessary to fully understand this concept before moving on to the design of the MOOC. Onwards, the four weeks of the MOOC will be introduced as well as lesson plans will be presented: The type of the activities, the aims of each activity and the methodology that teachers have to follow. Emphasis will be placed on the role of technology in foreign language learning and on the ways in which we can involve technology in teaching a foreign language. Final remarks will be made and a summary of the main points will be offered at the end.Keywords: CLIL, cMOOC, lesson plan, LMOOC, MOOC criteria, MOOC, technology, xMOOC
Procedia PDF Downloads 19619443 Exploring the Effectiveness and Challenges of Implementing Self-Regulated Learning to Improve Spoken English
Authors: Md. Shaiful Islam, Mahani Bt. Stapa
Abstract:
To help learners overcome their struggle in developing proficiency in spoken English, self-regulated learning strategies seem to be promising. Students in the private universities in Bangladesh are expected to communicate with the teachers, peers, and staff members in English, but most of them suffer from their inadequate oral communicative competence in English. To address this problem, the researchers adopted a qualitative research approach to answer the research questions. They employed the learner diary method to collect data from the first-semester undergraduate students of a reputed private university in Bangladesh who were involved in writing weekly diaries about their use of self-regulated learning strategies to improve speaking in an English speaking course. The learners were provided with prompts for writing the diaries. The thematic analysis method was applied to analyze the entries of the diaries for the identification of themes. Seven strategies related to the effectiveness of SRL for the improvement of spoken English were identified from the data, and they include goal-setting, strategic planning, identifying the sources of self-motivation, help-seeking, environmental restructuring, self-monitoring, and self-evaluation. However, the students reported in their diaries that they faced challenges that impeded their SRL strategy use. Five challenges were identified, and they entail the complex nature of SRL, lack of literacy on SRL, teachers’ preference for controlling the class, learners’ past habit of learning, and students’ addiction to gadgets. The implications the study addresses include revising the syllabus and curriculum, facilitating SRL training for students and teachers, and integrating SRL in the lessons.Keywords: private university in Bangladesh, proficiency, self-regulated learning, spoken English
Procedia PDF Downloads 16319442 Approach to Study the Workability of Concrete with the Fractal Model
Authors: Achouri Fatima, Chouicha Kaddour
Abstract:
The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.Keywords: concrete, fractal method, paste thickness, water thickness, workability
Procedia PDF Downloads 38119441 Perspectives of Saudi Students on Reasons for Seeking Private Tutors in English
Authors: Ghazi Alotaibi
Abstract:
The current study examined and described the views of secondary school students and their parents on their reasons for seeking private tutors in English. These views were obtained through two group interviews with the students and parents separately. Several causes were brought up during the two interviews. These causes included difficulty of the English language, weak teacher performance, the need to pass exams with high marks, lack of parents’ follow-up of student school performance, social pressure, variability in student comprehension levels at school, weak English foundation in previous school years, repeated student absence from school, large classes, as well as English teachers’ heavy teaching loads. The study started with a description of the EFL educational system in Saudi Arabia and concluded with recommendations for the improvement of the school learning environment.Keywords: english, learning difficulty, private tutoring, Saudi, teaching practices, learning environment
Procedia PDF Downloads 45719440 Digital Literacy Landscape of Islamic Boarding Schools in Indonesia
Authors: Zainuddin Abuhamid Muhammad Ghozali, Andrew Whitworth
Abstract:
Islamic boarding school or pesantren is a distinctive education institution in Indonesia focusing on religious teachings. Its stance in restricting access to the internet raises a question about its students’ development of digital literacy. Inspired by Luckin’s ecology of resource model, this study aims to map out the digital literacy situation of the institution based on the availability of learning resources, such as digital facilities, digital accessibility, and digital competence. This study was carried out through a survey method involving 50 teachers from pesantrens across the nation. The result shows that pesantrens have provided students with digital facilities at a moderate level, yet the accessibility to using them is still limited. They also incorporated digital competencies into their curriculum, with an emphasis on digital ethics. The study also identifies different patterns of pesantrens’ behavior based on types and educational levels, where certain school types and educational levels tend to give a stricter policy compared to others or vice versa. The restriction of digital resources in pesantren indicated that they had done a filtration process to design their learning environment. The filtration was mainly motivated by sociocultural factors, where they drew concern for the negative impact of the internet. Notably, this restriction also contributes to students’ poor development of digital literacy.Keywords: digital literacy, ecology of resources, Indonesia, Islamic boarding school
Procedia PDF Downloads 7219439 Transdisciplinary Pedagogy: An Arts-Integrated Approach to Promote Authentic Science, Technology, Engineering, Arts, and Mathematics Education in Initial Teacher Education
Authors: Anne Marie Morrin
Abstract:
This paper will focus on the design, delivery and assessment of a transdisciplinary STEAM (Science, Technology, Engineering, Arts, and Mathematics) education initiative in a college of education in Ireland. The project explores a transdisciplinary approach to supporting STEAM education where the concepts, methodologies and assessments employed derive from visual art sessions within initial teacher education. The research will demonstrate that the STEAM Education approach is effective when visual art concepts and methods are placed at the core of the teaching and learning experience. Within this study, emphasis is placed on authentic collaboration and transdisciplinary pedagogical approaches with the STEAM subjects. The partners included a combination of teaching expertise in STEM and Visual Arts education, artists, in-service and pre-service teachers and children. The inclusion of all stakeholders mentioned moves towards a more authentic approach where transdisciplinary practice is at the core of the teaching and learning. Qualitative data was collected using a combination of questionnaires (focused and open-ended questions) and focus groups. In addition, the data was collected through video diaries where students reflected on their visual journals and transdisciplinary practice, which gave rich insight into participants' experiences and opinions on their learning. It was found that an effective program of STEAM education integration was informed by co-teaching (continuous professional development), which involved a commitment to adaptable and flexible approaches to teaching, learning, and assessment, as well as the importance of continuous reflection-in-action by all participants. The delivery of a transdisciplinary model of STEAM education was devised to reconceptualizatise how individual subject areas can develop essential skills and tackle critical issues (such as self-care and climate change) through data visualisation and technology. The success of the project can be attributed to the collaboration, which was inclusive, flexible and a willingness between various stakeholders to be involved in the design and implementation of the project from conception to completion. The case study approach taken is particularistic (focusing on the STEAM-ED project), descriptive (providing in-depth descriptions from varied and multiple perspectives), and heuristic (interpreting the participants’ experiences and what meaning they attributed to their experiences).Keywords: collaboration, transdisciplinary, STEAM, visual arts education
Procedia PDF Downloads 5019438 Facilitating the Learning Environment as a Servant Leader: Empowering Self-Directed Student Learning
Authors: Thomas James Bell III
Abstract:
Pedagogy is thought of as one's philosophy, theory, or teaching method. This study examines the science of learning, considering the forced reconsideration of effective pedagogy brought on by the aftermath of the 2020 coronavirus pandemic. With the aid of various technologies, online education holds challenges and promises to enhance the learning environment if implemented to facilitate student learning. Behaviorism centers around the belief that the instructor is the sage on the classroom stage using repetition techniques as the primary learning instrument. This approach to pedagogy ascribes complete control of the learning environment and works best for students to learn by allowing students to answer questions with immediate feedback. Such structured learning reinforcement tends to guide students' learning without considering learners' independence and individual reasoning. And such activities may inadvertently stifle the student's ability to develop critical thinking and self-expression skills. Fundamentally liberationism pedagogy dismisses the concept that education is merely about students learning things and more about the way students learn. Alternatively, the liberationist approach democratizes the classroom by redefining the role of the teacher and student. The teacher is no longer viewed as the sage on the stage but as a guide on the side. Instead, this approach views students as creators of knowledge and not empty vessels to be filled with knowledge. Moreover, students are well suited to decide how best to learn and which areas improvements are needed. This study will explore the classroom instructor as a servant leader in the twenty-first century, which allows students to integrate technology that encapsulates more individual learning styles. The researcher will examine the Professional Scrum Master (PSM I) exam pass rate results of 124 students in six sections of an Agile scrum course. The students will be separated into two groups; the first group will follow a structured instructor-led course outlined by a course syllabus. The second group will consist of several small teams (ten or fewer) of self-led and self-empowered students. The teams will conduct several event meetings that include sprint planning meetings, daily scrums, sprint reviews, and retrospective meetings throughout the semester will the instructor facilitating the teams' activities as needed. The methodology for this study will use the compare means t-test to compare the mean of an exam pass rate in one group to the mean of the second group. A one-tailed test (i.e., less than or greater than) will be used with the null hypothesis, for the difference between the groups in the population will be set to zero. The major findings will expand the pedagogical approach that suggests pedagogy primarily exist in support of teacher-led learning, which has formed the pillars of traditional classroom teaching. But in light of the fourth industrial revolution, there is a fusion of learning platforms across the digital, physical, and biological worlds with disruptive technological advancements in areas such as the Internet of Things (IoT), artificial intelligence (AI), 3D printing, robotics, and others.Keywords: pedagogy, behaviorism, liberationism, flipping the classroom, servant leader instructor, agile scrum in education
Procedia PDF Downloads 14619437 Structural Reliability Analysis Using Extreme Learning Machine
Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra
Abstract:
In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.Keywords: reliability, reliability index, statistically independent, extreme learning machine
Procedia PDF Downloads 68619436 Drawings Reveal Beliefs of Japanese University Students
Authors: Sakae Suzuki
Abstract:
Although Japanese students study English for six years in secondary schools, they demonstrate little success with it when they enter higher education. Learners’ beliefs can predict the future behavior of students, so it may be effective to investigate how learners’ beliefs limit their success and how beliefs might be nudged in a positive direction. While many researchers still depend on a questionnaire called BALLI to reveal explicit beliefs, alternative approaches, especially those designed to reveal implicit beliefs, might be helpful for promoting learning. The present study seeks to identify beliefs with a discursive approach using visual metaphors and narratives. Employing a sociocultural framework, this study investigates how students’ beliefs are revealed by drawings of themselves and their surrounding environments and artifacts while they are engaged in language learning. Research questions are: (1) Can we identify beliefs through an analysis of students’ visual narratives? (2) What environments and artifacts can be found in students’ drawings, and what do they mean? (3) To what extent do students see language learning as a solitary, rather than a social, activity? Participants are university students majoring in science and technology in Japan. The questionnaire was administered to 70 entering students in April, 2014. Data included students drawings of themselves as learners of English as well as written descriptions of students’ backgrounds, English-learning experiences, and analogies and metaphors that they used in written descriptions of themselves as learners. Data will be analyzed qualitatively and quantitatively. Anticipated results include students’ perceptions of themselves as language learners, including their sense of agency, awareness of artifacts, and social contexts of language learning. Comments will be made on implications for teaching, as well as the use of visual narratives as research tools, and recommended further research.Keywords: drawings, learners' beliefs, metaphors, BALLI
Procedia PDF Downloads 49219435 Learning Predictive Models for Efficient Energy Management of Exhibition Hall
Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu
Abstract:
This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.Keywords: predictive control, energy management, machine learning, optimization
Procedia PDF Downloads 27519434 The Experiences of Agency in the Utilization of Twitter for English Language Learning in a Saudi EFL Context
Authors: Fahd Hamad Alqasham
Abstract:
This longitudinal study investigates Saudi students’ use trajectory and experiences of Twitter as an innovative tool for in-class learning of the English language in a Saudi tertiary English as a foreign language (EFL) context for a 12-week semester. The study adopted van Lier’s agency theory (2008, 2010) as the analytical framework to obtain an in-depth analysis of how the learners’ could utilize Twitter to create innovative ways for them to engage in English learning inside the language classroom. The study implemented a mixed methods approach, including six data collection instruments consisting of a research log, observations, focus group participation, initial and post-project interviews, and a post-project questionnaire. The study was conducted at Qassim University, specifically at Preparatory Year Program (PYP) on the main campus. The sample included 25 male students studying in the first level of PYP. The findings results revealed that although Twitter’s affordances initially paled a crucial role in motivating the learners to initiate their agency inside the classroom to learn English, the contextual constraints, mainly anxiety, the university infrastructure, and the teacher’s role negatively influenced the sustainability of Twitter’s use past week nine of its implementation.Keywords: CALL, agency, innovation, EFL, language learning
Procedia PDF Downloads 7319433 The Academic Experience of Vocational Training Teachers
Authors: Andréanne Gagné, Jo Anni Joncas, Éric Tendon
Abstract:
Teaching in vocational training requires an excellent mastery of the trade being taught, but also solid professional skills in pedagogy. Teachers are typically recruited on the basis of their trade expertise, and they do not necessarily have training or experience in pedagogy. In order to counter this lack, the Ministry of Education (Québec, Canada) requires them to complete a 120-credit university program to obtain their teaching certificate. They must complete this training in addition to their teaching duties. This training was rarely planned in the teacher’s life course, and each teacher approaches it differently: some are enthusiastic, but many feel reluctant discouragement and even frustration at the idea of committing to a training program lasting an average of 10 years to completion. However, Quebec is experiencing an unprecedented shortage of teachers, and the perseverance of vocational teachers in their careers requires special attention because of the conditions of their specific integration conditions. Our research examines the perceptions that vocational teachers in training have of their academic experience in pre-service teaching. It differs from previous research in that it focuses on the influence of the academic experience on the teaching employment experience. The goal is that by better understanding the university experience of teachers in vocational education, we can identify support strategies to support their school experience and their teaching. To do this, the research is based on the theoretical framework of the sociology of experience, which allows us to study the way in which these “teachers-students” give meaning to their university program in articulation with their jobs according to three logics of action. The logic of integration is based on the process of socialization, where the action is preceded by the internalization of values, norms, and cultural models associated with the training context. The logic of strategy refers to the usefulness of this experience where the individual constructs a form of rationality according to his objectives, resources, social position, and situational constraints. The logic of subjectivation refers to reflexivity activities aimed at solving problems and making choices. These logics served as a framework for the development of an online questionnaire. Three hundred respondents, newly enrolled in an undergraduate teaching program (bachelor's degree in vocational education), expressed themselves about their academic experience. This paper relates qualitative data (open-ended questions) subjected to an interpretive repertory analysis approach to descriptive data (closed-ended questions) that emerged. The results shed light on how the respondents perceive themselves as teachers and students, their perceptions of university training and the support offered, and the place that training occupies in their professional path. Indeed, their professional and academic paths are inextricably linked, and it seems essential to take them into account simultaneously to better meet their needs and foster the development of their expertise in pedagogy. The discussion focuses on the strengths and limitations of university training from the perspective of the logic of action. The results also suggest support strategies that can be implemented to better support the integration and retention of student teachers in professional education.Keywords: teacher, vocational training, pre-service training, academic experience
Procedia PDF Downloads 11619432 Kalman Filter for Bilinear Systems with Application
Authors: Abdullah E. Al-Mazrooei
Abstract:
In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.Keywords: bilinear systems, state space model, Kalman filter, application, models
Procedia PDF Downloads 44319431 Removing Barriers in Assessment and Feedback for Blind Students in Open Distance Learning
Authors: Sindile Ngubane-Mokiwa
Abstract:
This paper addresses two questions: (1) what barriers do the blind students face with assessment and feedback in open distance learning contexts? And (2) How can these barriers be removed? The paper focuses on the distance education through which most students with disabilities elevate their chances of accessing higher education. Lack of genuine inclusion is also evident in the challenges the blind students face during the assessment. These barriers are experienced at both formative and summative stages. The insights in this paper emanate from a case study that was carried out through qualitative approaches. The data was collected through in-depth interview, life stories, and telephonic interviews. The paper provides a review of local, continental and international views on how best assessment barriers can be removed. A group of five blind students, comprising of two honours students, two master's students and one doctoral student participated in this study. The data analysis was done through thematic analysis. The findings revealed that (a) feedback to the assignment is often inaccessible; (b) the software used is incompatible; (c) learning and assessment are designed in exclusionary approaches; (d) assessment facilities are not conducive; and (e) lack of proactive innovative assessment strategies. The article concludes by recommending ways in which barriers to assessment can be removed. These include addressing inclusive assessment and feedback strategies in professional development initiatives.Keywords: assessment design, barriers, disabilities, blind students, feedback, universal design for learning
Procedia PDF Downloads 36419430 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.Keywords: UPFC, decoupled model, load flow, control parameters
Procedia PDF Downloads 55619429 Making ‘Space’ For Work-integrated Learning In Singapore: Recognising The Next Wave Of Talents Through Skillsfuture Movement
Authors: Catherine Chua, Kashif Raza
Abstract:
Work-integrated learning (WIL) has been heightened in the last few years across countries. With a specific attention on working adults, the key objective is to integrate work experiences with academic studies so that they will be given more opportunities to advance, gather relevant skills and credentials to enable them to contribute more positively to the labour market. In Singapore, developing talent through WIL aims to develop specialist and enduring skills for the industries. Collaborating with the institutes of higher education in Singapore, the Integrated Work Study Programs (IWSP) seek to harmonize classroom learning with practical work experiences so that adult students can develop skills and knowledge that are needed in the existing and future workplaces. Local higher education institutions will also work closely with industry partners, and design courses that support these students to deepen their skills. Using Critical Discourse Analysis, this paper examines the Singapore government policies in WIL and argues that despite the various supports and interventions provided by the government, it is equally important to create a ‘space’ in the society whereby there is a greater recognition for WIL as a valuable education approach, i.e., “continuous meritocracy”. This is especially so in Singapore where academic excellence and conventional front-loaded approach to education are valued.Keywords: work-integrated learning, adult learners, continuous meritocracy, skillsfuture singapore
Procedia PDF Downloads 6719428 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 12519427 Loan Supply and Asset Price Volatility: An Experimental Study
Authors: Gabriele Iannotta
Abstract:
This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment
Procedia PDF Downloads 126