Search results for: operational reliability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3174

Search results for: operational reliability

444 A Multilingual Model in the Multicultural World

Authors: Marina Petrova

Abstract:

Language policy issues related to the preservation and development of the native languages of the Russian peoples and the state languages of the national republics are increasingly becoming the focus of recent attention of educators and parents, public and national figures. Is it legal to teach the national language or the mother tongue as the state language? Due to that dispute language phobia moods easily evolve into xenophobia among the population. However, a civilized, intelligent multicultural personality can only be formed if the country develops bilingualism and multilingualism, and languages as a political tool help to find ‘keys’ to sufficiently closed national communities both within a poly-ethnic state and in internal relations of multilingual countries. The purpose of this study is to design and theoretically substantiate an efficient model of language education in the innovatively developing Republic of Sakha. 800 participants from different educational institutions of Yakutia worked at developing a multilingual model of education. This investigation is of considerable practical importance because researchers could build a methodical system designed to create conditions for the formation of a cultural language personality and the development of the multilingual communicative competence of Yakut youth, necessary for communication in native, Russian and foreign languages. The selected methodology of humane-personal and competence approaches is reliable and valid. Researchers used a variety of sources of information, including access to related scientific fields (philosophy of education, sociology, humane and social pedagogy, psychology, effective psychotherapy, methods of teaching Russian, psycholinguistics, socio-cultural education, ethnoculturology, ethnopsychology). Of special note is the application of theoretical and empirical research methods, a combination of academic analysis of the problem and experienced training, positive results of experimental work, representative series, correct processing and statistical reliability of the obtained data. It ensures the validity of the investigation’s findings as well as their broad introduction into practice of life-long language education.

Keywords: intercultural communication, language policy, multilingual and multicultural education, the Sakha Republic of Yakutia

Procedia PDF Downloads 215
443 Argos System: Improvements and Future of the Constellation

Authors: Sophie Baudel, Aline Duplaa, Jean Muller, Stephan Lauriol, Yann Bernard

Abstract:

Argos is the main satellite telemetry system used by the wildlife research community, since its creation in 1978, for animal tracking and scientific data collection all around the world, to analyze and understand animal migrations and behavior. The marine mammals' biology is one of the major disciplines which had benefited from Argos telemetry, and conversely, marine mammals biologists’ community has contributed a lot to the growth and development of Argos use cases. The Argos constellation with 6 satellites in orbit in 2017 (Argos 2 payload on NOAA 15, NOAA 18, Argos 3 payload on NOAA 19, SARAL, METOP A and METOP B) is being extended in the following years with Argos 3 payload on METOP C (launch in October 2018), and Argos 4 payloads on Oceansat 3 (launch in 2019), CDARS in December 2021 (to be confirmed), METOP SG B1 in December 2022, and METOP-SG-B2 in 2029. Argos 4 will allow more frequency bands (600 kHz for Argos4NG, instead of 110 kHz for Argos 3), new modulation dedicated to animal (sea turtle) tracking allowing very low transmission power transmitters (50 to 100mW), with very low data rates (124 bps), enhancement of high data rates (1200-4800 bps), and downlink performance, at the whole contribution to enhance the system capacity (50,000 active beacons per month instead of 20,000 today). In parallel of this ‘institutional Argos’ constellation, in the context of a miniaturization trend in the spatial industry in order to reduce the costs and multiply the satellites to serve more and more societal needs, the French Space Agency CNES, which designs the Argos payloads, is innovating and launching the Argos ANGELS project (Argos NEO Generic Economic Light Satellites). ANGELS will lead to a nanosatellite prototype with an Argos NEO instrument (30 cm x 30 cm x 20cm) that will be launched in 2019. In the meantime, the design of the renewal of the Argos constellation, called Argos For Next Generations (Argos4NG), is on track and will be operational in 2022. Based on Argos 4 and benefitting of the feedback from ANGELS project, this constellation will allow revisiting time of fewer than 20 minutes in average between two satellite passes, and will also bring more frequency bands to improve the overall capacity of the system. The presentation will then be an overview of the Argos system, present and future and new capacities coming with it. On top of that, use cases of two Argos hardware modules will be presented: the goniometer pathfinder allowing recovering Argos beacons at sea or on the ground in a 100 km radius horizon-free circle around the beacon location and the new Argos 4 chipset called ‘Artic’, already available and tested by several manufacturers.

Keywords: Argos satellite telemetry, marine protected areas, oceanography, maritime services

Procedia PDF Downloads 162
442 Blood Microbiome in Different Metabolic Types of Obesity

Authors: Irina M. Kolesnikova, Andrey M. Gaponov, Sergey A. Roumiantsev, Tatiana V. Grigoryeva, Dilyara R. Khusnutdinova, Dilyara R. Kamaldinova, Alexander V. Shestopalov

Abstract:

Background. Obese patients have unequal risks of metabolic disorders. It is accepted to distinguish between metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). MUHO patients have a high risk of metabolic disorders, insulin resistance, and diabetes mellitus. Among the other things, the gut microbiota also contributes to the development of metabolic disorders in obesity. Obesity is accompanied by significant changes in the gut microbial community. In turn, bacterial translocation from the intestine is the basis for the blood microbiome formation. The aim was to study the features of the blood microbiome in patients with various metabolic types of obesity. Patients, materials, methods. The study included 116 healthy donors and 101 obese patients. Depending on the metabolic type of obesity, the obese patients were divided into subgroups with MHO (n=36) and MUHO (n=53). Quantitative and qualitative assessment of the blood microbiome was based on metagenomic analysis. Blood samples were used to isolate DNA and perform sequencing of the variable v3-v4 region of the 16S rRNA gene. Alpha diversity indices (Simpson index, Shannon index, Chao1 index, phylogenetic diversity, the number of observed operational taxonomic units) were calculated. Moreover, we compared taxa (phyla, classes, orders, and families) in terms of isolation frequency and the taxon share in the total bacterial DNA pool between different patient groups. Results. In patients with MHO, the characteristics of the alpha-diversity of the blood microbiome were like those of healthy donors. However, MUHO was associated with an increase in all diversity indices. The main phyla of the blood microbiome were Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Cyanobacteria, TM7, Thermi, Verrucomicrobia, Chloroflexi, Acidobacteria, Planctomycetes, Gemmatimonadetes, and Tenericutes were found to be less significant phyla of the blood microbiome. Phyla Acidobacteria, TM7, and Verrucomicrobia were more often isolated in blood samples of patients with MUHO compared with healthy donors. Obese patients had a decrease in some taxonomic ranks (Bacilli, Caulobacteraceae, Barnesiellaceae, Rikenellaceae, Williamsiaceae). These changes appear to be related to the increased diversity of the blood microbiome observed in obesity. An increase of Lachnospiraceae, Succinivibrionaceae, Prevotellaceae, and S24-7 was noted for MUHO patients, which, apparently, is explained by a magnification in intestinal permeability. Conclusion. Blood microbiome differs in obese patients and healthy donors at class, order, and family levels. Moreover, the nature of the changes is determined by the metabolic type of obesity. MUHO linked to increased diversity of the blood microbiome. This appears to be due to increased microbial translocation from the intestine and non-intestinal sources.

Keywords: blood microbiome, blood bacterial DNA, obesity, metabolically healthy obesity, metabolically unhealthy obesity

Procedia PDF Downloads 152
441 Risk Based Inspection and Proactive Maintenance for Civil and Structural Assets in Oil and Gas Plants

Authors: Mohammad Nazri Mustafa, Sh Norliza Sy Salim, Pedram Hatami Abdullah

Abstract:

Civil and structural assets normally have an average of more than 30 years of design life. Adding to this advantage, the assets are normally subjected to slow degradation process. Due to the fact that repair and strengthening work for these assets are normally not dependent on plant shut down, the maintenance and integrity restoration of these assets are mostly done based on “as required” and “run to failure” basis. However unlike other industries, the exposure in oil and gas environment is harsher as the result of corrosive soil and groundwater, chemical spill, frequent wetting and drying, icing and de-icing, steam and heat, etc. Due to this type of exposure and the increasing level of structural defects and rectification in line with the increasing age of plants, assets integrity assessment requires a more defined scope and procedures that needs to be based on risk and assets criticality. This leads to the establishment of risk based inspection and proactive maintenance procedure for civil and structural assets. To date there is hardly any procedure and guideline as far as integrity assessment and systematic inspection and maintenance of civil and structural assets (onshore) are concerned. Group Technical Solutions has developed a procedure and guideline that takes into consideration credible failure scenario, assets risk and criticality from process safety and structural engineering perspective, structural importance, modeling and analysis among others. Detailed inspection that includes destructive and non-destructive tests (DT & NDT) and structural monitoring is also being performed to quantify defects, assess severity and impact on integrity as well as identify the timeline for integrity restoration. Each defect and its credible failure scenario is assessed against the risk on people, environment, reputation and production loss. This technical paper is intended to share on the established procedure and guideline and their execution in oil & gas plants. In line with the overall roadmap, the procedure and guideline will form part of specialized solutions to increase production and to meet the “Operational Excellence” target while extending service life of civil and structural assets. As the result of implementation, the management of civil and structural assets is now more systematically done and the “fire-fighting” mode of maintenance is being gradually phased out and replaced by a proactive and preventive approach. This technical paper will also set the criteria and pose the challenge to the industry for innovative repair and strengthening methods for civil & structural assets in oil & gas environment, in line with safety, constructability and continuous modification and revamp of plant facilities to meet production demand.

Keywords: assets criticality, credible failure scenario, proactive and preventive maintenance, risk based inspection

Procedia PDF Downloads 392
440 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 118
439 Monitoring of Serological Test of Blood Serum in Indicator Groups of the Population of Central Kazakhstan

Authors: Praskovya Britskaya, Fatima Shaizadina, Alua Omarova, Nessipkul Alysheva

Abstract:

Planned preventive vaccination, which is carried out in the Republic of Kazakhstan, promoted permanent decrease in the incidence of measles and viral hepatitis B. In the structure of VHB patients prevail people of young, working age. Monitoring of infectious incidence, monitoring of coverage of immunization of the population, random serological control over the immunity enable well-timed identification of distribution of the activator, effectiveness of the taken measures and forecasting. The serological blood analysis was conducted in indicator groups of the population of Central Kazakhstan for the purpose of identification of antibody titre for vaccine preventable infections (measles, viral hepatitis B). Measles antibodies were defined by method of enzyme-linked assay (ELA) with test-systems "VektoKor" – Ig G ('Vektor-Best' JSC). Antibodies for HBs-antigen of hepatitis B virus in blood serum was identified by method of enzyme-linked assay (ELA) with VektoHBsAg test systems – antibodies ('Vektor-Best' JSC). The result of the analysis is positive, the concentration of IgG to measles virus in the studied sample is equal to 0.18 IU/ml or more. Protective level of concentration of anti-HBsAg makes 10 mIU/ml. The results of the study of postvaccinal measles immunity showed that the share of seropositive people made 87.7% of total number of surveyed. The level of postvaccinal immunity to measles in age groups differs. So, among people older than 56 the percentage of seropositive made 95.2%. Among people aged 15-25 were registered 87.0% seropositive, at the age of 36-45 – 86.6%. In age groups of 25-35 and 36-45 the share of seropositive people was approximately at the same level – 88.5% and 88.8% respectively. The share of people seronegative to a measles virus made 12.3%. The biggest share of seronegative people was found among people aged 36-45 – 13.4% and 15-25 – 13.0%. The analysis of results of the examined people for the existence of postvaccinal immunity to viral hepatitis B showed that from all surveyed only 33.5% have the protective level of concentration of anti-HBsAg of 10 mIU/ml and more. The biggest share of people protected from VHB virus is observed in the age group of 36-45 and makes 60%. In the indicator group – above 56 – seropositive people made 4.8%. The high percentage of seronegative people has been observed in all studied age groups from 40.0% to 95.2%. The group of people which is least protected from getting VHB is people above 56 (95.2%). The probability to get VHB is also high among young people aged 25-35, the percentage of seronegative people made 80%. Thus, the results of the conducted research testify to the need for carrying out serological monitoring of postvaccinal immunity for the purpose of operational assessment of the epidemiological situation, early identification of its changes and prediction of the approaching danger.

Keywords: antibodies, blood serum, immunity, immunoglobulin

Procedia PDF Downloads 244
438 Reliability of Dry Tissues Sampled from Exhumed Bodies in DNA Analysis

Authors: V. Agostini, S. Gino, S. Inturri, A. Piccinini

Abstract:

In cases of corpse identification or parental testing performed on exhumed alleged dead father, usually, we seek and acquire organic samples as bones and/or bone fragments, teeth, nails and muscle’s fragments. The DNA analysis of these cadaveric matrices usually leads to identifying success, but it often happens that the results of the typing are not satisfactory with highly degraded, partial or even non-interpretable genetic profiles. To aggravate the interpretative panorama deriving from the analysis of such 'classical' organic matrices, we must add a long and laborious treatment of the sample that starts from the mechanical fragmentation up to the protracted decalcification phase. These steps greatly increase the chance of sample contamination. In the present work, instead, we want to report the use of 'unusual' cadaveric matrices, demonstrating that their forensic genetics analysis can lead to better results in less time and with lower costs of reagents. We report six case reports, result of on-field experience, in which eyeswabs and cartilage were sampled and analyzed, allowing to obtain clear single genetic profiles, useful for identification purposes. In all cases we used the standard DNA tissue extraction protocols (as reported on the user manuals of the manufacturers such as QIAGEN or Invitrogen- Thermo Fisher Scientific), thus bypassing the long and difficult phases of mechanical fragmentation and decalcification of bones' samples. PCR was carried out using PowerPlex® Fusion System kit (Promega), and capillary electrophoresis was carried out on an ABI PRISM® 310 Genetic Analyzer (Applied Biosystems®), with GeneMapper ID v3.2.1 (Applied Biosystems®) software. The software Familias (version 3.1.3) was employed for kinship analysis. The genetic results achieved have proved to be much better than the analysis of bones or nails, both from the qualitative and quantitative point of view and from the point of view of costs and timing. This way, by using the standard procedure of DNA extraction from tissue, it is possible to obtain, in a shorter time and with maximum efficiency, an excellent genetic profile, which proves to be useful and can be easily decoded for later paternity tests and/or identification of human remains.

Keywords: DNA, eye swabs and cartilage, identification human remains, paternity testing

Procedia PDF Downloads 100
437 Oral Hygiene Behaviors among Pregnant Women with Diabetes Who Attend Primary Health Care Centers at Baghdad City

Authors: Zena F. Mushtaq, Iqbal M. Abbas

Abstract:

Background: Diabetes mellitus during pregnancy is one of the major medical and social problems with increasing prevalence in last decades and may lead to more vulnerable to dental problems and increased risk for periodontal diseases. Objectives: To assess oral hygiene behaviors among pregnant women with diabetes who attended primary health care centers and find out the relationship between oral hygiene behaviors and studied variables. Methodology: A cross sectional design was conducted from 7 July to 30 September 2014 on non probability (convenient sample) of 150 pregnant women with diabetes was selected from twelve Primary Health Care Centers at Baghdad city. Questionnaire format is tool for data collection which had designed and consisted of three main parts including: socio demographic, reproductive characteristics and items of oral hygiene behaviors among pregnant women with diabetes. Reliability of the questionnaire was determined through internal consistency of correlation coefficient (R= 0.940) and validity of content was determined through reviewing it by (12) experts in different specialties and was determined through pilot study. Descriptive and inferential statistics were used to analyze collected data. Result: Result of study revealed that (35.3%) of study sample was (35-39) years old with mean and SD is (X & SD = 33.57 ± 5.54) years, and (34.7%) of the study sample was graduated from primary school and less, half of the study sample was government employment and self employed, (42.7%) of the study sample had moderate socioeconomic status, the highest percentage (70.0%) of the study sample was nonsmokers, The result indicates that oral hygiene behaviors have moderate mean score in all items. There are no statistical significant association between oral hygiene domain and studied variables. Conclusions: All items related to health behavior concerning oral hygiene is in moderate mean of score, which may expose pregnant women with diabetes to high risk of periodontal diseases. Recommendations: Dental care provider should perform a dental examination at least every three months for each pregnant woman with diabetes, explanation of the effect of DM on periodontal health, oral hygiene instruction, oral prophylaxis, professional cleaning and treatment of periodontal diseases(scaling and root planing) when needed.

Keywords: diabetes, health behavior, pregnant women, oral hygiene

Procedia PDF Downloads 275
436 Flexible Current Collectors for Printed Primary Batteries

Authors: Vikas Kumar

Abstract:

Portable batteries are reliable source of mobile energy to power smart wearable electronics, medical devices, communications, and others internet of thing (IoT) devices. There is a continuous increase in demand for thinner, more flexible battery with high energy density and reliability to meet the requirement. For a flexible battery, factors that affect these properties are the stability of current collectors, electrode materials and their interfaces with the corrosive electrolytes. State-of-the-art conventional and flexible batteries utilise carbon as an electrode and current collectors which cause high internal resistance (~100 ohms) and limit the peak current to ~1mA. This makes them unsuitable for a wide range of applications. Replacing the carbon parts with metallic components would reduce the internal resistance (and hence reduce parasitic loss), but significantly increases the risk of corrosion due to galvanic interactions within the battery. To overcome these challenges, low cost electroplated nickel (Ni) on copper (Cu) was studied as a potential anode current collector for a zinc-manganese oxide primary battery with different concentration of NH4Cl/ZnCl2 electrolyte. Using electrical impedance spectroscopy (EIS), we monitored the open circuit potential (OCP) of electroplated nickel (different thicknesses) in different concentration of electrolytes to optimise the thickness of Ni coating. Our results show that electroless Ni coating suffer excessive corrosion in these electrolytes. Corrosion rates of Ni coatings for different concentrations of electrolytes have been calculated with Tafel analysis. These results suggest that for electroplated Ni, channelling and/or open porosity is a major issue, which was confirmed by morphological analysis. These channels are an easy pathway for electrolyte to penetrate thorough Ni to corrode the Ni/Cu interface completely. We further investigated the incorporation of a special printed graphene layer on Ni to provide corrosion protection in this corrosive electrolyte medium. We find that the incorporation of printed graphene layer provides the corrosion protection to the Ni and enhances the chemical bonding between the active materials and current collector and also decreases the overall internal resistance of the battery system.

Keywords: corrosion, electrical impedance spectroscopy, flexible battery, graphene, metal current collector

Procedia PDF Downloads 119
435 Emigration Improves Life Standard of Families Left Behind: An Evidence from Rural Area of Gujrat-Pakistan

Authors: Shoaib Rasool

Abstract:

Migration trends in rural areas of Gujrat are increasing day by day among illiterate people as they consider it as a source of attraction and charm of destination. It affects the life standard both positive and negative way to their families left behind in the context of poverty, socio-economic status and life standards. It also promotes material items and as well as social indicators of living, housing conditions, schooling of their children’s, health seeking behavior and to some extent their family environment. The nature of the present study is to analyze socio-economic conditions regarding life standard of emigrant families left behind in rural areas of Gujrat district, Pakistan. A survey design was used on 150 families selected from rural areas of Gujrat districts through purposive sampling technique. A well-structured questionnaire was administered by the researcher to explore the nature of the study and for further data collection process. The measurement tool was pretested on 20 families to check the workability and reliability before the actual data collection. Statistical tests were applied to draw results and conclusion. The preliminary findings of the study show that emigration has left deep social-economic impacts on life standards of rural families left behind in Gujrat. They improved their life status and living standard through remittances. Emigration is one of the major sources of development of economy of household and it also alleviate poverty at house household level as well as community and country level. The rationale behind migration varies individually and geographically. There are popular considered attractions in Pakistan includes securing high status, improvement in health condition, coping other, getting married then to acquire nationality, using the unfair means, opting educational visas etc. Emigrants are not only sending remittances but also returning with newly acquired skills and valuable knowledge to their country of origin because emigrants learn new methods of living and working. There are also women migrants who experience social downward mobility by engaging in jobs that are beneath their educational qualifications.

Keywords: emigration, life standard, families, left behind, rural area, Gujrat

Procedia PDF Downloads 435
434 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 224
433 Inverterless Grid Compatible Micro Turbine Generator

Authors: S. Ozeri, D. Shmilovitz

Abstract:

Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.

Keywords: gas turbine, inverter, power multiplier, distributed generation

Procedia PDF Downloads 231
432 Investigation of Mass Transfer for RPB Distillation at High Pressure

Authors: Amiza Surmi, Azmi Shariff, Sow Mun Serene Lock

Abstract:

In recent decades, there has been a significant emphasis on the pivotal role of Rotating Packed Beds (RPBs) in absorption processes, encompassing the removal of Volatile Organic Compounds (VOCs) from groundwater, deaeration, CO2 absorption, desulfurization, and similar critical applications. The primary focus is elevating mass transfer rates, enhancing separation efficiency, curbing power consumption, and mitigating pressure drops. Additionally, substantial efforts have been invested in exploring the adaptation of RPB technology for offshore deployment. This comprehensive study delves into the intricacies of nitrogen removal under low temperature and high-pressure conditions, employing the high gravity principle via innovative RPB distillation concept with a specific emphasis on optimizing mass transfer. Based on the author's knowledge and comprehensive research, no cryogenic experimental testing was conducted to remove nitrogen via RPB. The research identifies pivotal process control factors through meticulous experimental testing, with pressure, reflux ratio, and reboil ratio emerging as critical determinants in achieving the desired separation performance. The results are remarkable, with nitrogen removal reaching less than one mole% in the Liquefied Natural Gas (LNG) product and less than three moles% methane in the nitrogen-rich gas stream. The study further unveils the mass transfer coefficient, revealing a noteworthy trend of decreasing Number of Transfer Units (NTU) and Area of Transfer Units (ATU) as the rotational speed escalates. Notably, the condenser and reboiler impose varying demands based on the operating pressure, with lower pressures at 12 bar requiring a more substantial duty than the 15-bar operation of the RPB. In pursuit of optimal energy efficiency, a meticulous sensitivity analysis is conducted, pinpointing the ideal combination of pressure and rotating speed that minimizes overall energy consumption. These findings underscore the efficiency of the RPB distillation approach in effecting efficient separation, even when operating under the challenging conditions of low temperature and high pressure. This achievement is attributed to a rigorous process control framework that diligently manages the operational pressure and temperature profile of the RPB. Nonetheless, the study's conclusions point towards the need for further research to address potential scaling challenges and associated risks, paving the way for the industrial implementation of this transformative technology.

Keywords: mass transfer coefficient, nitrogen removal, liquefaction, rotating packed bed

Procedia PDF Downloads 39
431 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 61
430 Results of Three-Year Operation of 220kV Pilot Superconducting Fault Current Limiter in Moscow Power Grid

Authors: M. Moyzykh, I. Klichuk, L. Sabirov, D. Kolomentseva, E. Magommedov

Abstract:

Modern city electrical grids are forced to increase their density due to the increasing number of customers and requirements for reliability and resiliency. However, progress in this direction is often limited by the capabilities of existing network equipment. New energy sources or grid connections increase the level of short-circuit currents in the adjacent network, which can exceed the maximum rating of equipment–breaking capacity of circuit breakers, thermal and dynamic current withstand qualities of disconnectors, cables, and transformers. Superconducting fault current limiter (SFCL) is a modern solution designed to deal with the increasing fault current levels in power grids. The key feature of this device is its instant (less than 2 ms) limitation of the current level due to the nature of the superconductor. In 2019 Moscow utilities installed SuperOx SFCL in the city power grid to test the capabilities of this novel technology. The SFCL became the first SFCL in the Russian energy system and is currently the most powerful SFCL in the world. Modern SFCL uses second-generation high-temperature superconductor (2G HTS). Despite its name, HTS still requires low temperatures of liquid nitrogen for operation. As a result, Moscow SFCL is built with a cryogenic system to provide cooling to the superconductor. The cryogenic system consists of three cryostats that contain a superconductor part and are filled with liquid nitrogen (three phases), three cryocoolers, one water chiller, three cryopumps, and pressure builders. All these components are controlled by an automatic control system. SFCL has been continuously operating on the city grid for over three years. During that period of operation, numerous faults occurred, including cryocooler failure, chiller failure, pump failure, and others (like a cryogenic system power outage). All these faults were eliminated without an SFCL shut down due to the specially designed cryogenic system backups and quick responses of grid operator utilities and the SuperOx crew. The paper will describe in detail the results of SFCL operation and cryogenic system maintenance and what measures were taken to solve and prevent similar faults in the future.

Keywords: superconductivity, current limiter, SFCL, HTS, utilities, cryogenics

Procedia PDF Downloads 75
429 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.

Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)

Procedia PDF Downloads 124
428 A Comparative Study on the Positive and Negative of Electronic Word-of-Mouth on the SERVQUAL Scale-Take A Certain Armed Forces General Hospital in Taiwan As An Example

Authors: Po-Chun Lee, Li-Lin Liang, Ching-Yuan Huang

Abstract:

Purpose: Research on electronic word-of-mouth (eWOM)& online review has been widely used in service industry management research in recent years. The SERVQUAL scale is the most commonly used method to measure service quality. Therefore, the purpose of this research is to combine electronic word of mouth & online review with the SERVQUAL scale. To explore the comparative study of positive and negative electronic word-of-mouth reviews of a certain armed force general hospital in Taiwan. Data sources: This research obtained online word-of-mouth comment data on google maps from a military hospital in Taiwan in the past ten years through Internet data mining technology. Research methods: This study uses the semantic content analysis method to classify word-of-mouth reviews according to the revised PZB SERVQUAL scale. Then carry out statistical analysis. Results of data synthesis: The results of this study disclosed that the negative reviews of this military hospital in Taiwan have been increasing year by year. Under the COVID-19 epidemic, positive word-of-mouth has a downward trend. Among the five determiners of SERVQUAL of PZB, positive word-of-mouth reviews performed best in “Assurance,” with a positive review rate of 58.89%, Followed by 43.33% of “Responsiveness.” In negative word-of-mouth reviews, “Assurance” performed the worst, with a positive rate of 70.99%, followed by responsive 29.01%. Conclusions: The important conclusions of this study disclosed that the total number of electronic word-of-mouth reviews of the military hospital has revealed positive growth in recent years, and the positive word-of-mouth growth has revealed negative growth after the epidemic of COVID-19, while the negative word-of-mouth has grown substantially. Regardless of the positive and negative comments, what patients care most about is “Assurance” of the professional attitude and skills of the medical staff, which needs to be strengthened most urgently. In addition, good “Reliability” will help build positive word-of-mouth. However, poor “Responsiveness” can easily lead to the spread of negative word-of-mouth. This study suggests that the hospital should focus on these few service-oriented quality management and audits.

Keywords: quality of medical service, electronic word-of-mouth, armed forces general hospital

Procedia PDF Downloads 172
427 An Evaluation and Guidance for mHealth Apps

Authors: Tareq Aljaber

Abstract:

The number of mobile health apps is growing at a fast frequency as it's nearly doubled in a year between 2015 and 2016. Though, there is a lack of an effective evaluation framework to verify the usability and reliability of mobile phone health education applications which would help saving time and effort for the numerous user groups. This abstract describing a framework for evaluating mobile applications in specifically mobile health education applications, along with a guidance select tool to assist different users to select the most suitable mobile health education apps. The effective framework outcome is intended to meet the requirements and needs of the different stakeholder groups additionally to enhancing the development of mobile health education applications with software engineering approaches, by producing new and more effective techniques to evaluate such software. This abstract highlights the significance and consequences of mobile health education apps, before focusing the light on the required to create an effective evaluation framework for these apps. An explanation of the effective evaluation framework is going to be delivered in the abstract, beside with some specific evaluation metrics: an efficient hybrid of selected heuristic evaluation (HE) and usability evaluation (UE) metrics to enable the determination of the usefulness and usability of health education mobile apps. Moreover, an explanation of the qualitative and quantitative outcomes for the effective evaluation framework was accomplished using Epocrates mobile phone app in addition to some other mobile phone apps. This proposed framework-An Evaluation Framework for Mobile Health Education Apps-consists of a hybrid of 5 metrics designated from a larger set in usability evaluation and heuristic evaluation, illuminated grounded on 15 unstructured interviews from software developers (SD), health professionals (HP) and patients (P). These five metrics corresponding to explicit facets of usability recognised through a requirements analysis of typical stakeholders of mobile health apps. These five hybrid selected metrics were scattered across 24 specific questionnaire questions, which are available on request from first author. This questionnaire has been sent to 81 participants distributed in three sets of stakeholders from software developers (SD), health professionals (HP) and patients/general users (P/GU) on the purpose of ranking three sets of mobile health education applications. Finally, the outcomes from the questionnaire data helped us to approach our aims which are finding the profile for different stakeholders, finding the profile for different mobile health educations application packages, ranking different mobile health education application and guide us to build the select guidance too which is apart from the Evaluation Framework for Mobile Health Education Apps.

Keywords: evaluation framework, heuristic evaluation, usability evaluation, metrics

Procedia PDF Downloads 393
426 Solar Photovoltaic Foundation Design

Authors: Daniel John Avutia

Abstract:

Solar Photovoltaic (PV) development is reliant on the sunlight hours available in a particular region to generate electricity. A potential area is assessed through its inherent solar radiation intensity measured in watts per square meter. Solar energy development involves the feasibility, design, construction, operation and maintenance of the relevant infrastructure, but this paper will focus on the design and construction aspects. Africa and Australasia have the longest sunlight hours per day and the highest solar radiation per square meter, 7 sunlight hours/day and 5 kWh/day respectively. Solar PV support configurations consist of fixed-tilt support and tracker system structures, the differentiation being that the latter was introduced to improve the power generation efficiency of the former due to the sun tracking movement capabilities. The installation of Solar PV foundations involves rammed piles, drilling/grout piles and shallow raft reinforced concrete structures. This paper presents a case study of 2 solar PV projects in Africa and Australia, discussing the foundation design consideration and associated construction cost implications of the selected foundations systems. Solar PV foundations represent up to one fifth of the civil works costs in a project. Therefore, the selection of the most structurally sound and feasible foundation for the prevailing ground conditions is critical towards solar PV development. The design wind speed measured by anemometers govern the pile embedment depth for rammed and drill/grout foundation systems. The lateral pile deflection and vertical pull out resistance of piles increase proportionally with the embedment depth for uniform pile geometry and geology. The pile driving rate may also be used to anticipate the lateral resistance and skin friction restraining the pile. Rammed pile foundations are the most structurally suitable due to the pile skin friction and ease of installation in various geological conditions. The competitiveness of solar PV projects within the renewable energy mix is governed by lowering capital expenditure, improving power generation efficiency and power storage technological advances. The power generation reliability and efficiency are areas for further research within the renewable energy niche.

Keywords: design, foundations, piles, solar

Procedia PDF Downloads 179
425 Accreditation and Quality Assurance of Nigerian Universities: The Management Imperative

Authors: F. O Anugom

Abstract:

The general functions of the university amongst other things include teaching, research and community service. Universities are recognized as the apex of learning, accumulating and imparting knowledge and skills of all kinds to students to enable them to be productive, earn their living and to make optimum contributions to national development. This is equivalent to the production of human capital in the form of high level manpower needed to administer the educational society, be useful to the society and manage the economy. Quality has become a matter of major importance for university education in Nigeria. Accreditation is the systematic review of educational programs to ensure that acceptable standards of education, scholarship and infrastructure are being maintained. Accreditation ensures that institution maintain quality. The process is designed to determine whether or not an institution has met or exceeded the published standards for accreditation, and whether it is achieving its mission and stated purposes. Ensuring quality assurance in accreditation process falls in the hands of university management which justified the need for this study. This study examined accreditation and quality assurance: the management imperative. Three research questions and three hypotheses guided the study. The design was a correlation survey with a population of 2,893 university administrators out of which 578 Heads of department and Dean of faculties were sampled. The instrument for data collection was titled Programme Accreditation Exercise scale with high levels of reliability. The research questions were answered with Pearson ‘r’ statistics. T-test statistics was used to test the hypotheses. It was found among others that the quality of accredited programme depends on the level of funding of universities in Nigeria. It was also indicated that quality of programme accreditation and physical facilities of universities in Nigeria have high relationship. But it was also revealed that programme accreditation is positively related to staffing in Nigerian universities. Based on the findings of the study, the researcher recommend that academic administrators should be included in the team of those who ensure quality programs in the universities. Private sector partnership should be encouraged to fund programs to ensure quality of programme in the universities. Independent agencies should be engaged to monitor the activities of accreditation teams to avoid bias.

Keywords: accreditation, quality assurance, national universities commission , physical facilities, staffing

Procedia PDF Downloads 189
424 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 208
423 Psychological Wellbeing, Lifestyle, and Negative and Positive Effects among Adults

Authors: Rahat Zaman

Abstract:

The present study was conducted to investigate psychological well-being and positive and negative affect among adults. The sample comprised 221 adults; the sample was collected from all over Pakistan. Psychological well-being was measured with the help of the psychological well-being scale developed by Ryff and Keyes (1995). Lifestyle was measured with the help of the Health Promoting Lifestyle Profile Scale developed by Walker et al. (1995). Positive and negative effects were measured by PANAS, developed by Watson, Clark, and Tellegen (1998). To check the properties of scale, the alpha reliability coefficient was calculated. To test the hypotheses of the research, correlation, independent sample t-rest, and ANOVA were computed. It was hypothesized that there would be a positive relationship between psychological well-being and lifestyles and positive affect. The results show that psychological well-being, lifestyle, and positive affect are positively related. This also supports our hypothesis. The research also searched for relationships in the study variables according to the demographics of the sample. The respondents varied according to their dominant affect levels with respect to their psychological well-being and lifestyles. The research found significant differences for the genders in life appreciation, nutrition, and negative affect. Single and married individuals differed significantly on autonomy, environmental mastery, life appreciation, nutrition, and stress management. Individuals showed significant differences with respect to their living situation, joint and nuclear family members showed significant differences in personal growth, autonomy, health responsibilities, social support, physical activities, and stress management. The sample showed significant differences in environmental mastery, personal growth, purpose in life, life appreciation, health responsibilities, physical activities, stress management, and negative affect when divided in socioeconomic status. Age-wise analysis showed significant differences in autonomy, personal growth, purpose in life, life appreciation, nutrition, and stress management. Provincially significant differences were found in life appreciation, nutrition, social support, physical activities, and stress management, and both positive and negative effects were experienced. Implications of the results are discussed.

Keywords: wellbeing, healthy lifestyle, self acceptance, positive

Procedia PDF Downloads 62
422 Deasphalting of Crude Oil by Extraction Method

Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov

Abstract:

The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.

Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy

Procedia PDF Downloads 231
421 Adversarial Attacks and Defenses on Deep Neural Networks

Authors: Jonathan Sohn

Abstract:

Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.

Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning

Procedia PDF Downloads 186
420 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 147
419 Ocean Planner: A Web-Based Decision Aid to Design Measures to Best Mitigate Underwater Noise

Authors: Thomas Folegot, Arnaud Levaufre, Léna Bourven, Nicolas Kermagoret, Alexis Caillard, Roger Gallou

Abstract:

Concern for negative impacts of anthropogenic noise on the ocean’s ecosystems has increased over the recent decades. This concern leads to a similar increased willingness to regulate noise-generating activities, of which shipping is one of the most significant. Dealing with ship noise requires not only knowledge about the noise from individual ships, but also how the ship noise is distributed in time and space within the habitats of concern. Marine mammals, but also fish, sea turtles, larvae and invertebrates are mostly dependent on the sounds they use to hunt, feed, avoid predators, during reproduction to socialize and communicate, or to defend a territory. In the marine environment, sight is only useful up to a few tens of meters, whereas sound can propagate over hundreds or even thousands of kilometers. Directive 2008/56/EC of the European Parliament and of the Council of June 17, 2008 called the Marine Strategy Framework Directive (MSFD) require the Member States of the European Union to take the necessary measures to reduce the impacts of maritime activities to achieve and maintain a good environmental status of the marine environment. The Ocean-Planner is a web-based platform that provides to regulators, managers of protected or sensitive areas, etc. with a decision support tool that enable to anticipate and quantify the effectiveness of management measures in terms of reduction or modification the distribution of underwater noise, in response to Descriptor 11 of the MSFD and to the Marine Spatial Planning Directive. Based on the operational sound modelling tool Quonops Online Service, Ocean-Planner allows the user via an intuitive geographical interface to define management measures at local (Marine Protected Area, Natura 2000 sites, Harbors, etc.) or global (Particularly Sensitive Sea Area) scales, seasonal (regulation over a period of time) or permanent, partial (focused to some maritime activities) or complete (all maritime activities), etc. Speed limit, exclusion area, traffic separation scheme (TSS), and vessel sound level limitation are among the measures supported be the tool. Ocean Planner help to decide on the most effective measure to apply to maintain or restore the biodiversity and the functioning of the ecosystems of the coastal seabed, maintain a good state of conservation of sensitive areas and maintain or restore the populations of marine species.

Keywords: underwater noise, marine biodiversity, marine spatial planning, mitigation measures, prediction

Procedia PDF Downloads 115
418 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability

Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks

Abstract:

Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.

Keywords: open-cut, mining, erosion, rainfall simulator

Procedia PDF Downloads 96
417 Realistic Modeling of the Preclinical Small Animal Using Commercial Software

Authors: Su Chul Han, Seungwoo Park

Abstract:

As the increasing incidence of cancer, the technology and modality of radiotherapy have advanced and the importance of preclinical model is increasing in the cancer research. Furthermore, the small animal dosimetry is an essential part of the evaluation of the relationship between the absorbed dose in preclinical small animal and biological effect in preclinical study. In this study, we carried out realistic modeling of the preclinical small animal phantom possible to verify irradiated dose using commercial software. The small animal phantom was modeling from 4D Digital Mouse whole body phantom. To manipulate Moby phantom in commercial software (Mimics, Materialise, Leuven, Belgium), we converted Moby phantom to DICOM image file of CT by Matlab and two- dimensional of CT images were converted to the three-dimensional image and it is possible to segment and crop CT image in Sagittal, Coronal and axial view). The CT images of small animals were modeling following process. Based on the profile line value, the thresholding was carried out to make a mask that was connection of all the regions of the equal threshold range. Using thresholding method, we segmented into three part (bone, body (tissue). lung), to separate neighboring pixels between lung and body (tissue), we used region growing function of Mimics software. We acquired 3D object by 3D calculation in the segmented images. The generated 3D object was smoothing by remeshing operation and smoothing operation factor was 0.4, iteration value was 5. The edge mode was selected to perform triangle reduction. The parameters were that tolerance (0.1mm), edge angle (15 degrees) and the number of iteration (5). The image processing 3D object file was converted to an STL file to output with 3D printer. We modified 3D small animal file using 3- Matic research (Materialise, Leuven, Belgium) to make space for radiation dosimetry chips. We acquired 3D object of realistic small animal phantom. The width of small animal phantom was 2.631 cm, thickness was 2.361 cm, and length was 10.817. Mimics software supported efficiency about 3D object generation and usability of conversion to STL file for user. The development of small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

Keywords: mimics, preclinical small animal, segmentation, 3D printer

Procedia PDF Downloads 359
416 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 416
415 Hand Movements and the Effect of Using Smart Teaching Aids: Quality of Writing Styles Outcomes of Pupils with Dysgraphia

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Sajedah Al Yaari, Adham Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Ayah Al Yaari, Fatehi Eissa

Abstract:

Dysgraphia is a neurological disorder of written expression that impairs writing ability and fine motor skills, resulting primarily in problems relating not only to handwriting but also to writing coherence and cohesion. We investigate the properties of smart writing technology to highlight some unique features of the effects they cause on the academic performance of pupils with dysgraphia. In Amis, dysgraphics undergo writing problems to express their ideas due to ordinary writing aids, as the default strategy. The Amis data suggests a possible connection between available writing aids and pupils’ writing improvement; therefore, texts’ expression and comprehension. A group of thirteen dysgraphic pupils were placed in a regular classroom of primary school, with twenty-one pupils being recruited in the study as a control group. To ensure validity, reliability and accountability to the research, both groups studied writing courses for two semesters, of which the first was equipped with smart writing aids while the second took place in an ordinary classroom. Two pre-tests were undertaken at the beginning of the first two semesters, and two post-tests were administered at the end of both semesters. Tests examined pupils’ ability to write coherent, cohesive and expressive texts. The dysgraphic group received the treatment of a writing course in the first semester in classes with smart technology and produced significantly greater increases in writing expression than in an ordinary classroom, and their performance was better than that of the control group in the second semester. The current study concludes that using smart teaching aids is a ‘MUST’, both for teaching and learning dysgraphia. Furthermore, it is demonstrated that for young dysgraphia, expressive tasks are more challenging than coherent and cohesive tasks. The study, therefore, supports the literature suggesting a role for smart educational aids in writing and that smart writing techniques may be an efficient addition to regular educational practices, notably in special educational institutions and speech-language therapeutic facilities. However, further research is needed to prompt the adults with dysgraphia more often than is done to the older adults without dysgraphia in order to get them to finish the other productive and/or written skills tasks.

Keywords: smart technology, writing aids, pupils with dysgraphia, hands’ movement

Procedia PDF Downloads 31