Search results for: discrete event simulation (DES)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6525

Search results for: discrete event simulation (DES)

3795 The Impact of Green Building Envelopes on the Urban Microclimate of the Urban Canopy-Case Study: Fawzy Moaz Street, Alexandria, Egypt

Authors: Amany Haridy, Ahmed Elseragy, Fahd Omar

Abstract:

The issue of temperature increase in the urban microclimate has been at the center of attention recently, especially in dense urban areas, such as the City of Alexandria in Egypt, where building surfaces have become the dominant element (more than green areas and streets). Temperatures have been rising during daytime as well as nighttime, however, the research focused on the rise of air temperature at night, a phenomenon known as the urban heat island. This phenomenon has many effects on ecological life, as well as human health. This study provided evidence of the possibility of reducing the urban heat island by using a green building envelope (green wall and green roof) in Alexandria, Egypt. This City has witnessed a boom in growth in its urban fabric and population. A simulation analysis using the Envi-met software to find the ratio of air temperature reduction was performed. The simulation depended on the orientation of the green areas and their density, which was defined through a process of climatic analysis made by the Diva plugin using the Grasshopper software. Results showed that the reduction in air temperature varies from 0.8–2.0 °C, increasing with the increasing density of green areas. Many systems of green wall and green roof can be found in the local market. However, treating an existing building requires a careful choice of system to fit the building construction load and the surrounding nature. Among the systems of choice, there was the ‘geometric system’ of vertical greening that can be fixed on a light aluminum structure for walls and the extensive green system for roofs. Finally, native plants were the best choice in the long term because they fare well in the local climate.

Keywords: envi-met, green building envelope, urban heat island, urban microclimate

Procedia PDF Downloads 199
3794 Design and Simulation a Low Phase Noise CMOS LC VCO for IEEE802.11a WLAN Applications

Authors: Hooman Kaabi, Raziyeh Karkoub

Abstract:

This work proposes a structure of AMOS-varactors. A 5GHz LC-VCO designed in TSMC 0.18μm CMOS to improve phase noise and tuning range performance. The tuning range is from 5.05GHZ to 5.88GHz.The phase noise is -154.9dBc/Hz at 1MHz offset from the carrier. It meets the requirements for IEEE 802.11a WLAN standard.

Keywords: CMOS LC VCO, spiral inductor, varactor, phase noise, tuning range

Procedia PDF Downloads 530
3793 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi

Abstract:

One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)

Procedia PDF Downloads 434
3792 Oxytocin and Sensorimotor Synchronization in Pairs of Strangers

Authors: Yana Gorina, Olga Lopatina, Elina Tsigeman, Larisa Mararitsa

Abstract:

The ability to act in concert with others, the so-called sensorimotor synchronisation, is a fundamental human ability that underlies successful interpersonal coordination. The manifestation of accuracy and plasticity in synchronisation is an adaptive aspect of interaction with the environment, as well as the ability to predict upcoming actions and behaviour of others. The ability to temporarily coordinate one’s actions with a predictable external event is manifested in such types of social behaviour as a synchronised group dance to music played live by an orchestra, group sports (rowing, swimming, etc.), synchronised actions of surgeons during an operation, applause from an admiring audience, walking rhythms, etc. Both our body and mind are involved in achieving the synchronisation during social interactions. However, it has not yet been well described how the brain determine the external rhythm and what neuropeptides coordinate and synchronise actions. Over the past few decades, there has been an increased interest among neuroscientists and neurophysiologists regarding the neuropeptide oxytocin in the context of its complex, diverse and sometimes polar effects manifested in the emotional and social aspects of behaviour (attachment, trust, empathy, emotion recognition, stress response, anxiety and depression, etc.). Presumable, oxytocin might also be involved in social synchronisation processes. The aim of our study is to test the hypothesis that oxytocin is linked to interpersonal synchronisation in a pair of strangers.

Keywords: behavior, movement, oxytocin, synchronization

Procedia PDF Downloads 58
3791 In-situ Performance of Pre-applied Bonded Waterproofing Membranes at Contaminated Test Slabs

Authors: Ulli Heinlein, Thomas Freimann

Abstract:

Pre-applied bonded membranes are used as positive-side waterproofing on concrete basements, are installed before the concrete work, and achieve a tear-resistant and waterproof bond with the subsequently placed fresh concrete. This bond increases redundancy compared to lose waterproofing membranes by preventing lateral water migrations in the event of damage. So far, the membranes have been tested in the laboratory, but it is not yet known how they behave on construction sites in the presence of dirt, soil, cement paste or moisture. This article, therefore, conducts investigations on six construction sites using 18 test slabs where the pre-applied bonded membranes are selectively contaminated or wetted. Subsequently, cores are taken, and the influence of the contaminations on the adhesive tensile strength and waterproof bond is tested. Pre-applied bonded membranes with smooth or granular but closed surfaces show no sensitivity to wetness, whereas open-pored membranes with nonwovens do not tolerate standing water. Contaminations decline the performance of all pre-applied bonded membranes since a separating layer is formed between the bonding layer and the concrete. The influence depends on the thickness of the contamination and its mechanical properties.

Keywords: waterproofing, positive-side waterproofing, basement, pre-applied bonded waterproofing membrane, In-situ testing, lateral water migrations

Procedia PDF Downloads 183
3790 Geodynamics Behaviour of Greater Cairo as Deduced from 4D Gravity and Seismic Activities

Authors: Elsayed A. Issawy, Anwar H. Radwan

Abstract:

Recent crustal deformations studies in Egypt are applied on the most active areas with relation to seismic activity. Temporal gravity variations in parallel with the geodetic technique (GPS) were used to monitor recent crustal movements in Egypt since 1997. The non-tidal gravity changes were constrained by the vertical component of surface movements derived from the GPS observations. The gravity changes were used to understand the surface tectonics and geodynamic modelling of the Greater Cairo region after the occurrence of an earthquake of 1992. It was found that there is a certain relation showed by increasing of gravity values before the main seismic activity. As example, relative considerable increase of gravity values was noticed for the network between the epochs of 2000 and 2004. Otherwise, the temporal gravity variations were reported a considerable decrease in gravity values between the two campaigns of 2004 and 2007 for the same stations. This behaviour could explain by compressive deformation and strain build-up stage before the South western Cairo earthquake (July 31, 2005 with magnitude of 4.3) and the stress release stage occurred after the main event. The geodetic measurements showed that, the estimated horizontal velocities for almost of points are 5.5 mm/year in approximately NW direction.

Keywords: temporal gravity variations, geodynamics, greater Cairo, recent crustal movements, earthquakes

Procedia PDF Downloads 362
3789 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems

Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen

Abstract:

Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.

Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis

Procedia PDF Downloads 558
3788 Mitigation Strategies in the Urban Context of Sydney, Australia

Authors: Hamed Reza Heshmat Mohajer, Lan Ding, Mattheos Santamouris

Abstract:

One of the worst environmental dangers for people who live in cities is the Urban Heat Island (UHI) impact which is anticipated to become stronger in the coming years as a result of climate change. Accordingly, the key aim of this paper is to study the interaction between the urban configuration and mitigation strategies including increasing albedo of the urban environment (reflective material), implementation of Urban Green Infrastructure (UGI) and/or a combination thereof. To analyse the microclimate models of different urban categories in the metropolis of Sydney, this study will assess meteorological parameters using a 3D model simulation tool of computational fluid dynamics (CFD) named ENVI-met. In this study, four main parameters are taken into consideration while assessing the effectiveness of UHI mitigation strategies: ambient air temperature, wind speed/direction, and outdoor thermal comfort. Layouts with present condition simulation studies from the basic model (scenario one) are taken as the benchmark. A base model is used to calculate the relative percentage variations between each scenario. The findings showed that maximum cooling potential across different urban layouts can be decreased by 2.15 °C degrees by combining high-albedo material with flora; besides layouts with open arrangements(OT1) present a highly remarkable improvement in ambient air temperature and outdoor thermal comfort when mitigation technologies applied compare to compact counterparts. Besides all layouts present a higher intensity on the maximum ambient air temperature reduction rather than the minimum ambient air temperature. On the other hand, Scenarios associated with an increase in greeneries are anticipated to have a slight cooling effect, especially on high-rise layouts.

Keywords: sustainable urban development, urban green infrastructure, high-albedo materials, heat island effect

Procedia PDF Downloads 88
3787 A Study on the Safety Evaluation of Pier According to the Water Level Change by the Monte-Carlo Method

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Donghoon Shin, Kiyoung Kim

Abstract:

Recently, global warming phenomenon has led to natural disasters caused by global environmental changes, and due to abnormal weather events, the frequency and intensity of heavy rain storm typhoons are increasing. Therefore, it is imperative to prepare for future heavy rain storms and typhoons. This study selects arbitrary target bridges and performs numerical analysis to evaluate the safety of bridge piers in the event that the water level changes. The numerical model is based on two-dimensional surface elements. Actual reinforced concrete was simulated by modeling concrete to include reinforcements, and a contact boundary model was applied between the ground and the concrete. The water level applied to the piers was considered at 18 levels between 7.5 m and 16.1 m. The elastic modulus, compressive strength, tensile strength, and yield strength of the reinforced concrete were calculated using 250 random combinations and numerical analysis was carried out for each water level. In the results of analysis, the bridge exceeded the stated limit at 15.0 m. At the maximum water level of 16.1m, the concrete’s failure rate was 35.2%, but the probability that the reinforcement would fail was 61.2%.

Keywords: Monte-Carlo method, pier, water level change, limit state

Procedia PDF Downloads 283
3786 A Single Loop Repetitive Controller for a Four Legs Matrix Converter Unit

Authors: Wesam Rohouma

Abstract:

The aim of this paper is to investigate the use of repetitive controller to regulate the output voltage of three phase four leg matric converter for an Aircraft Ground Power Supply Unit. The proposed controller improve the steady state error and provide good regulation during different loading. Simulation results of 7.5 KW converter are presented to verify the operation of the proposed controller.

Keywords: matrix converter, Power electronics, controller, regulation

Procedia PDF Downloads 1501
3785 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 84
3784 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study

Authors: Amit Kumar

Abstract:

Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.

Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality

Procedia PDF Downloads 273
3783 Optimizing Fire Suppression Time in Buildings by Forming a Fire Feedback Loop

Authors: Zhdanova A. O., Volkov R. S., Kuznetsov G. V., Strizhak P. A.

Abstract:

Fires in different types of facilities are a serious problem worldwide.It is still an unaccomplished science and technology objective to establish the minimum number and type of sensors in automatic systems of compartment fire suppression which would turn the fire-extinguishing agent spraying on and off in real time depending on the state of the fire, minimize the amount of agent applied, delay time in fire suppression and system response, as well as the time of combustion suppression. Based on the results of experimental studies, the conclusion was made that it is reasonable to use a gas analysis system and heat sensors (in the event of their prior activation) to determine the effectiveness of fire suppression (fire-extinguishing composition interacts with the fire). Thus, the concentration of CO in the interaction of the firefighting liquid with the fire increases to 0.7–1.2%, which indicates a slowdown in the flame combustion, and heat sensors stop responding at a gas medium temperature below 80 ºC, which shows a gradual decrease in the heat release from the fire. The evidence from this study suggests that the information received from the video recording equipment (video camera) should be used in real time as an additional parameter confirming fire suppression. Research was supported by Russian Science Foundation (project No 21-19-00009, https://rscf.ru/en/project/21-19-00009/).

Keywords: compartment fires, fire suppression, continuous control of fire behavior, feedback systems

Procedia PDF Downloads 125
3782 Dynamic Comovements between Exchange Rates, Stock Prices and Oil Prices: Evidence from Developed and Emerging Latin American Markets

Authors: Nini Johana Marin Rodriguez

Abstract:

This paper applies DCC, EWMA and OGARCH models to compare the dynamic correlations between exchange rates, oil prices, exchange rates and stock markets to examine the time-varying conditional correlations to the daily oil prices and index returns in relation to the US dollar/local currency for developed (Canada and Mexico) and emerging Latin American markets (Brazil, Chile, Colombia and Peru). Changes in correlation interactions are indicative of structural changes in market linkages with implications to contagion and interdependence. For each pair of stock price-exchange rate and oil price-US dollar/local currency, empirical evidence confirms of a strengthening negative correlation in the last decade. Methodologies suggest only two events have significatively impact in the countries analyzed: global financial crisis and Europe crisis, both events are associated with shifts of correlations to stronger negative level for most of the pairs analyzed. While, the first event has a shifting effect on mainly emerging members, the latter affects developed members. The identification of these relationships provides benefits in risk diversification and inflation targeting.

Keywords: crude oil, dynamic conditional correlation, exchange rates, interdependence, stock prices

Procedia PDF Downloads 303
3781 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sub lfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of fi lters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-fi lter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying fi lter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The signi ficance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II fi lters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the fi lter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic fi lter, aspect ratios (AR) ranging from 1 to 16 in LES fi lters are evaluated. The findings highlight the DDM's pro ficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as fi lter anisotropy intensify , the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all fi lter-anisotropy scenarios. The fi ndings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 68
3780 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers

Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier

Abstract:

The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.

Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law

Procedia PDF Downloads 20
3779 Drone On-Time Obstacle Avoidance for Static and Dynamic Obstacles

Authors: Herath M. P. C. Jayaweera, Samer Hanoun

Abstract:

Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GME′s velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use, and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks, including their tendency to generate longer routes when the obstacles are sideways of the drone′s route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilized on most types of drones that have basic distance measurement sensors and autopilot-supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS-supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.

Keywords: drones, force field methods, obstacle avoidance, path planning

Procedia PDF Downloads 83
3778 Sunspot Cycles: Illuminating Humanity's Mysteries

Authors: Aghamusa Azizov

Abstract:

This study investigates the correlation between solar activity and sentiment in news media coverage, using a large-scale dataset of solar activity since 1750 and over 15 million articles from "The New York Times" dating from 1851 onwards. Employing Pearson's correlation coefficient and multiple Natural Language Processing (NLP) tools—TextBlob, Vader, and DistillBERT—the research examines the extent to which fluctuations in solar phenomena are reflected in the sentiment of historical news narratives. The findings reveal that the correlation between solar activity and media sentiment is generally negligible, suggesting a weak influence of solar patterns on the portrayal of events in news media. Notably, a moderate positive correlation was observed between the sentiments derived from TextBlob and Vader, indicating consistency across NLP tools. The analysis provides insights into the historical impact of solar activity on human affairs and highlights the importance of using multiple analytical methods to understand complex relationships in large datasets. The study contributes to the broader understanding of how extraterrestrial factors may intersect with media-reported events and underlines the intricate nature of interdisciplinary research in the data science and historical domains.

Keywords: solar activity correlation, media sentiment analysis, natural language processing, historical event patterns

Procedia PDF Downloads 70
3777 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction

Authors: Rajendra Kumar

Abstract:

We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.

Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model

Procedia PDF Downloads 367
3776 Covalently Conjugated Gold–Porphyrin Nanostructures

Authors: L. Spitaleri, C. M. A. Gangemi, R. Purrello, G. Nicotra, G. Trusso Sfrazzetto, G. Casella, M. Casarin, A. Gulino

Abstract:

Hybrid molecular–nanoparticle materials, obtained with a bottom-up approach, are suitable for the fabrication of functional nanostructures showing structural control and well-defined properties, i.e., optical, electronic or catalytic properties, in the perspective of applications in different fields of nanotechnology. Gold nanoparticles (Au NPs) exhibit important chemical, electronic and optical properties due to their size, shape and electronic structures. In fact, Au NPs containing no more than 30-40 atoms are only luminescent because they can be considered as large molecules with discrete energy levels, while nano-sized Au NPs only show the surface plasmon resonance. Hence, it appears that gold nanoparticles can alternatively be luminescent or plasmonic, and this represents a severe constraint for their use as an optical material. The aim of this work was the fabrication of nanoscale assembly of Au NPs covalently anchored to each other by means of novel bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture shows a strong surface plasmon due to the Au nanoparticles and a strong luminescence signal coming from porphyrin molecules, thus, behaving like an artificial organized plasmonic and fluorescent network. The self-assembly geometry of this porphyrin on the Au NPs was studied by investigation of the conformational properties of the porphyrin derivative at the DFT level. The morphology, electronic structure and optical properties of the conjugated Au NPs – porphyrin system were investigated by TEM, XPS, UV–vis and Luminescence. The present nanostructures can be used for plasmon-enhanced fluorescence, photocatalysis, nonlinear optics, etc., under atmospheric conditions since our system is not reactive to air nor water and does not need to be stored in a vacuum or inert gas.

Keywords: gold nanoparticle, porphyrin, surface plasmon resonance, luminescence, nanostructures

Procedia PDF Downloads 148
3775 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability

Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard

Abstract:

The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.

Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty

Procedia PDF Downloads 180
3774 Metagenomics Composition During and After Wet Deposition and the Presence of Airborne Microplastics

Authors: Yee Hui Lim, Elena Gusareva, Irvan Luhung, Yulia Frank, Stephan Christoph Schuster

Abstract:

Environmental pollution from microplastics (MPs) is an emerging concern worldwide. While the presence of microplastics has been well established in the marine and terrestrial environments, the prevalence of microplastics in the atmosphere is still poorly understood. Wet depositions such as rain or snow scavenge impurities from the atmosphere as it falls to the ground. These wet depositions serve as a useful tool in the removal of airborne particles that are suspended in the air. Therefore, the aim of this study is to investigate the presence of atmospheric microplastics and fibres through the analysis of air, rainwater and snow samples. Air samples were collected with filter-based air samplers from outdoor locations in Singapore. The sampling campaigns were conducted during and after each rain event. Rainwater samples from Singapore and Siberia were collected as well. Snow samples were also collected from Siberia as part of the ongoing study. Genomic DNA was then extracted from the samples and sequenced with shotgun metagenomics approach. qPCR analysis was conducted to quantify the total bacteria and fungi in the air, rainwater and snow samples. The results compared the bioaerosol profiles of all the samples. To observe the presence of microplastics, scanning electron microscope (SEM) was used. From the preliminary results, microplastics were detected. It can be concluded that there is a significant amount of atmospheric microplastics present, and its occurrence should be investigated in greater detail.

Keywords: atmospheric microplastics, metagenomics, scanning electron microscope, wet deposition

Procedia PDF Downloads 82
3773 Children and Parents Left behind in Transnational Families: The Problem of Care Deficit

Authors: Joanna Bielecka-Prus

Abstract:

In the view of increasing number of labour migrations associated with broadly understood economic crisis, many families experience migration separation. Currently, in the era of globalization, migration movements include an increasing number of families, more and more frequently a new type of family, a transnational family. Accordingly, the functions of the family, family practice of care, and the relationships between members of the group change especially in the case of female migration. Sociologists highlight the emotional aspects of migrants’ family lives: managing emotions, coping with guilt, loneliness and rejection. Not without significance is the fact that today's public discourse often represents migrant women in a negative light. On the one hand, consumption and expanding material resources are assessed positively, on the other hand, deficits emotional and devastation of family life in the transnational families appear. Opinions expressed by different environments: the media, the political environment, etc. do not always take into account the context of mobility and their different effects on family life. The paper will present the analysis of qualitative studies of Polish female migrants’ families left-behind (children, parents, caregivers N = 100) and their coping strategies in different situations in the event of migration separation. The main area of care deficit will be defined and it will be showed who and how help to solve the problems.

Keywords: care, children left behind, female migration, parents left behind

Procedia PDF Downloads 389
3772 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 544
3771 Ignition Interlock Device for Motorcycles

Authors: Luisito L. Lacatan, Zacha Valerie G. Ancheta, Michelangelo A. Dorado, Lester Joseph M. Ochoa, Anthony Mark G. Tayabas

Abstract:

Ignition Interlock Device or IID is a mechanism installed inside a vehicle which requires the driver to breathe into the device before starting the vehicle. If the IID detects that the alcohol level or blood alcohol content (BAC) is higher than the accepted value, the engine will not start. If the driver is not able to provide a clean breath sample, the IID will log the event, warn the driver, and then start up an alarm. The purpose of the IID is to prevent accidents due to driving under the influence (DUI). With the rise of the two-wheeled vehicle in the Philippines due to its mobility and purchasing power, IIDs are still mainly installed on four-wheeled vehicles. Even though riding the motorcycle when drunk is more dangerous, there are only a small number of installed devices on motorcycles and scooters. The general objective of this study was to develop a system with hardware and software components that would implement IID on motorcycles. The study employed a descriptive method of research. The study also concluded the following: the infrared must have a point-to-point communication, the breathalyzer on the helmet should react to ethanol, the microcontroller on the motorcycle should accept all IR signals from the helmet and interpret it and the GPS shield should have an unobstructed line-of-sight communication with the GPS satellites.

Keywords: blood alcohol content, breathalyser, driving under the influence, global positioning system, global system for mobile communication

Procedia PDF Downloads 317
3770 The Mitigation Strategy Analysis of Kuosheng Nuclear Power Plant Spent Fuel Pool Using MELCOR2.1/SNAP

Authors: Y. Chiang, J. R. Wang, J. H. Yang, Y. S. Tseng, C. Shih, S. W. Chen

Abstract:

Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of Spent Fuel Pools (SFPs) in Taiwan after Fukushima event. In order to estimate the safety of Kuosheng NPP SFP, by using MELCOR2.1 and SNAP, the safety analysis of Kuosheng NPP SFP was performed combined with the mitigation strategy of NEI 06-12 report. There were several steps in this research. First, the Kuosheng NPP SFP models were established by MELCOR2.1/SNAP. Second, the Station Blackout (SBO) analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition. The results showed that the calculations of MELCOR and TRACE were very similar in this case. Second, the mitigation strategy analysis was done with the MELCOR model by following the NEI 06-12 report. The results showed the effectiveness of NEI 06-12 strategy in Kuosheng NPP SFP. Finally, a sensitivity study of SFP quenching was done to check the differences of different water injection time and the phenomena during the quenching. The results showed that if the cladding temperature was over 1600 K, the water injection may have chance to cause the accident more severe with more hydrogen generation. It was because of the oxidation heat and the “Breakaway” effect of the zirconium-water reaction. An animation model built by SNAP was also shown in this study.

Keywords: MELCOR, SNAP, spent fuel pool, quenching

Procedia PDF Downloads 354
3769 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: false negative rate, intrusion detection system, machine learning methods, performance

Procedia PDF Downloads 115
3768 A Holistic Conceptual Measurement Framework for Assessing the Effectiveness and Viability of an Academic Program

Authors: Munir Majdalawieh, Adam Marks

Abstract:

In today’s very competitive higher education industry (HEI), HEIs are faced with the primary concern of developing, deploying, and sustaining high quality academic programs. Today, the HEI has well-established accreditation systems endorsed by a country’s legislation and institutions. The accreditation system is an educational pathway focused on the criteria and processes for evaluating educational programs. Although many aspects of the accreditation process highlight both the past and the present (prove), the “program review” assessment is "forward-looking assessment" (improve) and thus transforms the process into a continuing assessment activity rather than a periodic event. The purpose of this study is to propose a conceptual measurement framework for program review to be used by HEIs to undertake a robust and targeted approach to proactively and continuously review their academic programs to evaluate its practicality and effectiveness as well as to improve the education of the students. The proposed framework consists of two main components: program review principles and the program review measurement matrix.

Keywords: academic program, program review principles, curriculum development, accreditation, evaluation, assessment, review measurement matrix, program review process, information technologies supporting learning, learning/teaching methodologies and assessment

Procedia PDF Downloads 233
3767 Generative Design Method for Cooled Additively Manufactured Gas Turbine Parts

Authors: Thomas Wimmer, Bernhard Weigand

Abstract:

The improvement of gas turbine efficiency is one of the main drivers of research and development in the gas turbine market. This has led to elevated gas turbine inlet temperatures beyond the melting point of the utilized materials. The turbine parts need to be actively cooled in order to withstand these harsh environments. However, the usage of compressor air as coolant decreases the overall gas turbine efficiency. Thus, coolant consumption needs to be minimized in order to gain the maximum advantage from higher turbine inlet temperatures. Therefore, sophisticated cooling designs for gas turbine parts aim to minimize coolant mass flow. New design space is accessible as additive manufacturing is maturing to industrial usage for the creation of hot gas flow path parts. By making use of this technology more efficient cooling schemes can be manufacture. In order to find such cooling schemes a generative design method is being developed. It generates cooling schemes randomly which adhere to a set of rules. These assure the sanity of the design. A huge amount of different cooling schemes are generated and implemented in a simulation environment where it is validated. Criteria for the fitness of the cooling schemes are coolant mass flow, maximum temperature and temperature gradients. This way the whole design space is sampled and a Pareto optimum front can be identified. This approach is applied to a flat plate, which resembles a simplified section of a hot gas flow path part. Realistic boundary conditions are applied and thermal barrier coating is accounted for in the simulation environment. The resulting cooling schemes are presented and compared to representative conventional cooling schemes. Further development of this method can give access to cooling schemes with an even better performance having higher complexity, which makes use of the available design space.

Keywords: additive manufacturing, cooling, gas turbine, heat transfer, heat transfer design, optimization

Procedia PDF Downloads 346
3766 Interaction of Metals with Non-Conventional Solvents

Authors: Evgeny E. Tereshatov, C. M. Folden

Abstract:

Ionic liquids and deep eutectic mixtures represent so-called non-conventional solvents. The former, composed of discrete ions, is a salt with a melting temperature below 100°С. The latter, consisting of hydrogen bond donors and acceptors, is a mixture of at least two compounds, resulting in a melting temperature depression in comparison with that of the individual moiety. These systems also can be water-immiscible, which makes them applicable for metal extraction. This work will cover interactions of In, Tl, Ir, and Rh in hydrochloric acid media with eutectic mixtures and Er, Ir, and At in a gas phase with chemically modified α-detectors. The purpose is to study chemical systems based on non-conventional solvents in terms of their interaction with metals. Once promising systems are found, the next step is to modify the surface of α-detectors used in the online element production at cyclotrons to get the detector chemical selectivity. Initially, the metal interactions are studied by means of the liquid-liquid extraction technique. Then appropriate molecules are chemisorbed on the surrogate surface first to understand the coating quality. Finally, a detector is covered with the same molecule, and the metal sorption on such detectors is studied in the online regime. It was found that chemical treatment of the surface can result in 99% coverage with a monolayer formation. This surface is chemically active and can adsorb metals from hydrochloric acid solutions. Similarly, a detector surface was modified and tested during cyclotron-based experiments. Thus, a procedure of detectors functionalization has been developed, and this opens an interesting opportunity of studying chemisorption of elements which do not have stable isotopes.

Keywords: mechanism, radioisotopes, solvent extraction, gas phase sorption

Procedia PDF Downloads 99