Search results for: Hybrid fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2925

Search results for: Hybrid fiber

195 Examination of Porcine Gastric Biomechanics in the Antrum Region

Authors: Sif J. Friis, Mette Poulsen, Torben Strom Hansen, Peter Herskind, Jens V. Nygaard

Abstract:

Gastric biomechanics governs a large range of scientific and engineering fields, from gastric health issues to interaction mechanisms between external devices and the tissue. Determination of mechanical properties of the stomach is, thus, crucial, both for understanding gastric pathologies as well as for the development of medical concepts and device designs. Although the field of gastric biomechanics is emerging, advances within medical devices interacting with the gastric tissue could greatly benefit from an increased understanding of tissue anisotropy and heterogeneity. Thus, in this study, uniaxial tensile tests of gastric tissue were executed in order to study biomechanical properties within the same individual as well as across individuals. With biomechanical tests in the strain domain, tissue from the antrum region of six porcine stomachs was tested using eight samples from each stomach (n = 48). The samples were cut so that they followed dominant fiber orientations. Accordingly, from each stomach, four samples were longitudinally oriented, and four samples were circumferentially oriented. A step-wise stress relaxation test with five incremental steps up to 25 % strain with 200 s rest periods for each step was performed, followed by a 25 % strain ramp test with three different strain rates. Theoretical analysis of the data provided stress-strain/time curves as well as 20 material parameters (e.g., stiffness coefficients, dissipative energy densities, and relaxation time coefficients) used for statistical comparisons between samples from the same stomach as well as in between stomachs. Results showed that, for the 20 material parameters, heterogeneity across individuals, when extracting samples from the same area, was in the same order of variation as the samples within the same stomach. For samples from the same stomach, the mean deviation percentage for all 20 parameters was 21 % and 18 % for longitudinal and circumferential orientations, compared to 25 % and 19 %, respectively, for samples across individuals. This observation was also supported by a nonparametric one-way ANOVA analysis, where results showed that the 20 material parameters from each of the six stomachs came from the same distribution with a level of statistical significance of P > 0.05. Direction-dependency was also examined, and it was found that the maximum stress for longitudinal samples was significantly higher than for circumferential samples. However, there were no significant differences in the 20 material parameters, with the exception of the equilibrium stiffness coefficient (P = 0.0039) and two other stiffness coefficients found from the relaxation tests (P = 0.0065, 0.0374). Nor did the stomach tissue show any significant differences between the three strain-rates used in the ramp test. Heterogeneity within the same region has not been examined earlier, yet, the importance of the sampling area has been demonstrated in this study. All material parameters found are essential to understand the passive mechanics of the stomach and may be used for mathematical and computational modeling. Additionally, an extension of the protocol used may be relevant for compiling a comparative study between the human stomach and the pig stomach.

Keywords: antrum region, gastric biomechanics, loading-unloading, stress relaxation, uniaxial tensile testing

Procedia PDF Downloads 430
194 Energy Usage in Isolated Areas of Honduras

Authors: Bryan Jefry Sabillon, Arlex Molina Cedillo

Abstract:

Currently, the raise in the demand of electrical energy as a consequence of the development of technology and population growth, as well as some projections made by ‘La Agencia Internacional de la Energía’ (AIE) and research institutes, reveal alarming data about the expected raise of it in the next few decades. Because of this, something should be made to raise the awareness of the rational and efficient usage of this resource. Because of the global concern of providing electrical energy to isolated areas, projects consisting of energy generation using renewable resources are commonly carried out. On a socioeconomically and cultural point of view, it can be foreseen a positive impact that would result for the society to have this resource. This article is focused on the great potential that Honduras shows, as a country that is looking forward to produce renewable energy due to the crisis that it’s living nowadays. Because of this, we present a detailed research that exhibits the main necessities that the rural communities are facing today, to allay the negative aspects due to the scarcity of electrical energy. We also discuss which should be the type of electrical generation method to be used, according to the disposition, geography, climate, and of course the accessibility of each area. Honduras is actually in the process of developing new methods for the generation of energy; therefore, it is of our concern to talk about renewable energy, the exploitation of which is a global trend. Right now the countries’ main energetic generation methods are: hydrological, thermic, wind, biomass and photovoltaic (this is one of the main sources of clean electrical generation). The use of these resources was possible partially due to the studies made by the organizations that focus on electrical energy and its demand, such as ‘La Cooperación Alemana’ (GIZ), ‘La Secretaria de Energía y Recursos Naturales’ (SERNA), and ‘El Banco Centroamericano de Integración Económica’ (BCIE), which eased the complete guide that is to be used in the protocol to be followed to carry out the three stages of this type of projects: 1) Licences and Permitions, 2) Fincancial Aspects and 3) The inscription for the Protocol in Kyoto. This article pretends to take the reader through the necessary information (according to the difficult accessibility that each zone might present), about the best option of electrical generation in zones that are totally isolated from the net, pretending to use renewable resources to generate electrical energy. We finally conclude that the usage of hybrid systems of generation of energy for small remote communities brings about a positive impact, not only because of the fact of providing electrical energy but also because of the improvements in education, health, sustainable agriculture and livestock, and of course the advances in the generation of energy which is the main concern of this whole article.

Keywords: energy, isolated, renewable, accessibility

Procedia PDF Downloads 229
193 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose

Authors: Mariamawit T. Belete

Abstract:

Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.

Keywords: sorghum anthracnose, data mining, case based reasoning, integration

Procedia PDF Downloads 81
192 Assessment of Hydrologic Response of a Naturalized Tropical Coastal Mangrove Ecosystem Due to Land Cover Change in an Urban Watershed

Authors: Bryan Clark B. Hernandez, Eugene C. Herrera, Kazuo Nadaoka

Abstract:

Mangrove forests thriving in intertidal zones in tropical and subtropical regions of the world offer a range of ecosystem services including carbon storage and sequestration. They can regulate the detrimental effects of climate change due to carbon releases two to four times greater than that of mature tropical rainforests. Moreover, they are effective natural defenses against storm surges and tsunamis. However, their proliferation depends significantly on the prevailing hydroperiod at the coast. In the Philippines, these coastal ecosystems have been severely threatened with a 50% decline in areal extent observed from 1918 to 2010. The highest decline occurred in 1950 - 1972 when national policies encouraged the development of fisheries and aquaculture. With the intensive land use conversion upstream, changes in the freshwater-saltwater envelope at the coast may considerably impact mangrove growth conditions. This study investigates a developing urban watershed in Kalibo, Aklan province with a 220-hectare mangrove forest replanted for over 30 years from coastal mudflats. Since then, the mangrove forest was sustainably conserved and declared as protected areas. Hybrid land cover classification technique was used to classify Landsat images for years, 1990, 2010, and 2017. Digital elevation model utilized was Interferometric Synthetic Aperture Radar (IFSAR) with a 5-meter resolution to delineate the watersheds. Using numerical modelling techniques, the hydrologic and hydraulic analysis of the influence of land cover change to flow and sediment dynamics was simulated. While significant land cover change occurred upland, thereby increasing runoff and sediment loads, the mangrove forests abundance adjacent to the coasts for the urban watershed, was somehow sustained. However, significant alteration of the coastline was observed in Kalibo through the years, probably due to the massive land-use conversion upstream and significant replanting of mangroves downstream. Understanding the hydrologic-hydraulic response of these watersheds to change land cover is essential to helping local government and stakeholders facilitate better management of these mangrove ecosystems.

Keywords: coastal mangroves, hydrologic model, land cover change, Philippines

Procedia PDF Downloads 121
191 Preparation and Characterization of Poly(L-Lactic Acid)/Oligo(D-Lactic Acid) Grafted Cellulose Composites

Authors: Md. Hafezur Rahaman, Mohd. Maniruzzaman, Md. Shadiqul Islam, Md. Masud Rana

Abstract:

With the growth of environmental awareness, enormous researches are running to develop the next generation materials based on sustainability, eco-competence, and green chemistry to preserve and protect the environment. Due to biodegradability and biocompatibility, poly (L-lactic acid) (PLLA) has a great interest in ecological and medical applications. Also, cellulose is one of the most abundant biodegradable, renewable polymers found in nature. It has several advantages such as low cost, high mechanical strength, biodegradability and so on. Recently, an immense deal of attention has been paid for the scientific and technological development of α-cellulose based composite material. PLLA could be used for grafting of cellulose to improve the compatibility prior to the composite preparation. Here it is quite difficult to form a bond between lower hydrophilic molecules like PLLA and α-cellulose. Dimmers and oligomers can easily be grafted onto the surface of the cellulose by ring opening or polycondensation method due to their low molecular weight. In this research, α-cellulose extracted from jute fiber is grafted with oligo(D-lactic acid) (ODLA) via graft polycondensation reaction in presence of para-toluene sulphonic acid and potassium persulphate in toluene at 130°C for 9 hours under 380 mmHg. Here ODLA is synthesized by ring opening polymerization of D-lactides in the presence of stannous octoate (0.03 wt% of lactide) and D-lactic acids at 140°C for 10 hours. Composites of PLLA with ODLA grafted α-cellulose are prepared by solution mixing and film casting method. Confirmation of grafting was carried out through FTIR spectroscopy and SEM analysis. A strongest carbonyl peak of FTIR spectroscopy at 1728 cm⁻¹ of ODLA grafted α-cellulose confirms the grafting of ODLA onto α-cellulose which is absent in α-cellulose. It is also observed from SEM photographs that there are some white areas (spot) on ODLA grafted α-cellulose as compared to α-cellulose may indicate the grafting of ODLA and consistent with FTIR results. Analysis of the composites is carried out by FTIR, SEM, WAXD and thermal gravimetric analyzer. Most of the FTIR characteristic absorption peak of the composites shifted to higher wave number with increasing peak area may provide a confirmation that PLLA and grafted cellulose have better compatibility in composites via intermolecular hydrogen bonding and this supports previously published results. Grafted α-cellulose distributions in composites are uniform which is observed by SEM analysis. WAXD studied show that only homo-crystalline structures of PLLA present in the composites. Thermal stability of the composites is enhanced with increasing the percentages of ODLA grafted α-cellulose in composites. As a consequence, the resultant composites have a resistance toward the thermal degradation. The effects of length of the grafted chain and biodegradability of the composites will be studied in further research.

Keywords: α-cellulose, composite, graft polycondensation, oligo(D-lactic acid), poly(L-lactic acid)

Procedia PDF Downloads 116
190 Site-based Internship Experiences: From Research to Implementation and Community Collaboration

Authors: Jamie Sundvall, Lisa Jennings

Abstract:

Site based field internship learning (SBL) is an educational approach within a Master’s of Social Work (MSW) university field placement department that promotes a more streamlined approach to the integration of theory and evidence based practices for social work students. The SBL model is founded on research in the field, consideration of current work force needs, United States national trends of MSW graduate skill and knowledge deficits, educational trends in students pursing a master’s degree in social work, and current social problems that require unique problem solving skills. This study explores the use of site-based learning in a hybrid social work program. In this setting, site based learning pairs online education courses and social work field education to create training opportunities for social work students within their own community and cultural context. Students engage in coursework in an online setting with both synchronous and asynchronous features that facilitate development of core competencies for MSW students. Through the SBL model, students are then partnered with faculty in a virtual course room and a university vetted site within their community. The study explores how this model of learning creates community partnerships, through which students engage in a learning loop to develop social work skills, while preparing students to address current community, social, and global issues with the engagement of technology. The goal of SBL is to more effectively equip social work students for practice according to current workforce demands, provide access to education and care to populations who have limited access, and create self-sustainable partnerships. Further, the model helps students learn integration of evidence based practices and helps instructors more effectively teach integration of ethics into practice. The study found that the SBL model increases the influence and professional relevance of the social work profession, and ultimately facilitates stronger approaches to integrating theory into practice. Current implementation of the practice in the United States will be presented in the study. dditionally, future research conceptualization of SBL models will be presented, in order to collaborate on advancing best approaches of translating theory into practice, according to the current needs of the profession and needs of social work students.

Keywords: collaboration, fieldwork, research, site-based learning, technology

Procedia PDF Downloads 125
189 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana

Authors: Gautier Viaud, Paul-Henry Cournède

Abstract:

Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.

Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models

Procedia PDF Downloads 303
188 The Life Skills Project: Client-Centered Approaches to Life Skills Acquisition for Homeless and At-Risk Populations

Authors: Leah Burton, Sara Cumming, Julianne DiSanto

Abstract:

Homelessness is a widespread and complex problem in Canada and around the globe. Many Canadians will face homelessness at least once in their lifetime, with several experiencing subsequent bouts or cyclical patterns of housing precarity. While a Housing First approach to homelessness is a long-standing and widely accepted best practice, it is also recognized that the acquisition of life skills is an effective way to reduce cycles of homelessness. Indeed, when individuals are provided with a range of life skills—such as (but not limited to) financial literacy, household management, interpersonal skills, critical thinking, and resource management—they are given the tools required to maintain long-term Housing for a lifetime; thus reducing a repetitive need for services. However, there is limited research regarding the best ways to teach life skills, a problem that has been further complicated in a post-pandemic world, where services are being delivered online or in a hybrid model of care. More than this, it is difficult to provide life skills on a large scale without losing a client-centered approach to services. This lack of client-centeredness is also seen in the lack of attention to culturally sensitive life skills, which consider the diverse needs of individuals and imbed equity, diversity, and inclusion (EDI) within the skills being taught. This study aims to fill these identified gaps in the literature by employing a community-engaged (CER) approach. Academic, government, funders, front-line staff, and clients at 15 not-for-profits from across the Greater Toronto Area in Ontario, Canada, collaborated to co-create a virtual, client-centric, EDI-informed life skill learning management system. A triangulation methodology was utilized for this research. An environmental scan was conducted for current best practices, and over 100 front-line staff (including workers, managers, and executive directors who work with homeless populations) participated in two separate Creative Problem Solving Sessions. Over 200 individuals with experience in homelessness completed quantitative and open-ended surveys. All sections of this research aimed to discover the areas of skills that individuals need to maintain Housing and to ascertain what a more client-driven EDI approach to life skills training should include. This presentation will showcase the findings on which life skills are deemed essential for homeless and precariously housed individuals.

Keywords: homelessness, housing first, life skills, community engaged research, client- centered

Procedia PDF Downloads 101
187 Rheological Study of Chitosan/Montmorillonite Nanocomposites: The Effect of Chemical Crosslinking

Authors: K. Khouzami, J. Brassinne, C. Branca, E. Van Ruymbeke, B. Nysten, G. D’Angelo

Abstract:

The development of hybrid organic-inorganic nanocomposites has recently attracted great interest. Typically, polymer silicates represent an emerging class of polymeric nanocomposites that offer superior material properties compared to each compound alone. Among these materials, complexes based on silicate clay and polysaccharides are one of the most promising nanocomposites. The strong electrostatic interaction between chitosan and montmorillonite can induce what is called physical hydrogel, where the coordination bonds or physical crosslinks may associate and dissociate reversibly and in a short time. These mechanisms could be the main origin of the uniqueness of their rheological behavior. However, owing to their structure intrinsically heterogeneous and/or the lack of dissipated energy, they are usually brittle, possess a poor toughness and may not have sufficient mechanical strength. Consequently, the properties of these nanocomposites cannot respond to some requirements of many applications in several fields. To address the issue of weak mechanical properties, covalent chemical crosslink bonds can be introduced to the physical hydrogel. In this way, quite homogeneous dually crosslinked microstructures with high dissipated energy and enhanced mechanical strength can be engineered. In this work, we have prepared a series of chitosan-montmorillonite nanocomposites chemically crosslinked by addition of poly (ethylene glycol) diglycidyl ether. This study aims to provide a better understanding of the mechanical behavior of dually crosslinked chitosan-based nanocomposites by relating it to their microstructures. In these systems, the variety of microstructures is obtained by modifying the number of cross-links. Subsequently, a superior uniqueness of the rheological properties of chemically crosslinked chitosan-montmorillonite nanocomposites is achieved, especially at the highest percentage of clay. Their rheological behaviors depend on the clay/chitosan ratio and the crosslinking. All specimens exhibit a viscous rheological behavior over the frequency range investigated. The flow curves of the nanocomposites show a Newtonian plateau at very low shear rates accompanied by a quite complicated nonlinear decrease with increasing the shear rate. Crosslinking induces a shear thinning behavior revealing the formation of network-like structures. Fitting shear viscosity curves via Ostward-De Waele equation disclosed that crosslinking and clay addition strongly affect the pseudoplasticity of the nanocomposites for shear rates γ ̇>20.

Keywords: chitosan, crossliking, nanocomposites, rheological properties

Procedia PDF Downloads 147
186 Interface Fracture of Sandwich Composite Influenced by Multiwalled Carbon Nanotube

Authors: Alak Kumar Patra, Nilanjan Mitra

Abstract:

Higher strength to weight ratio is the main advantage of sandwich composite structures. Interfacial delamination between the face sheet and core is a major problem in these structures. Many research works are devoted to improve the interfacial fracture toughness of composites majorities of which are on nano and laminated composites. Work on influence of multiwalled carbon nano-tubes (MWCNT) dispersed resin system on interface fracture of glass-epoxy PVC core sandwich composite is extremely limited. Finite element study is followed by experimental investigation on interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT. Results demonstrate an improvement in interface fracture toughness values (Gc) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum resin infusion (VRI) technology used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results agree with finite element study, high-resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation. Interface fracture toughness (GC) of the DCB sandwich samples is calculated using the compliance calibration (CC) method considering the modification due to shear. Compliance (C) vs. crack length (a) data of modified sandwich DCB specimen is fitted to a power function of crack length. The calculated mean value of the exponent n from the plots of experimental results is 2.22 and is different from the value (n=3) prescribed in ASTM D5528-01for mode 1 fracture toughness of laminate composites (which is the basis for modified compliance calibration method). Differentiating C with respect to crack length (a) and substituting it in the expression GC provides its value. The research demonstrates improvement of 14.4% in peak load carrying capacity and 34.34% in interface fracture toughness GC for samples with 1.5 wt% MWCNT (weight % being taken with respect to weight of resin) in comparison to samples without MWCNT. The paper focuses on significant improvement in experimentally determined interface fracture toughness of sandwich samples with MWCNT over the samples without MWCNT using much simpler method of sonication. Good dispersion of MWCNT was observed in HRTEM with 1.5 wt% MWCNT addition in comparison to other percentages of MWCNT. FESEM studies have also demonstrated good dispersion and fiber bridging of MWCNT in resin system. Ductility is also observed to be higher for samples with MWCNT in comparison to samples without.

Keywords: carbon nanotube, epoxy resin, foam, glass fibers, interfacial fracture, sandwich composite

Procedia PDF Downloads 303
185 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 29
184 Aerosol Chemical Composition in Urban Sites: A Comparative Study of Lima and Medellin

Authors: Guilherme M. Pereira, Kimmo Teinïla, Danilo Custódio, Risto Hillamo, Célia Alves, Pérola de C. Vasconcellos

Abstract:

South American large cities often present serious air pollution problems and their atmosphere composition is influenced by a variety of emissions sources. The South American Emissions Megacities, and Climate project (SAEMC) has focused on the study of emissions and its influence on climate in the South American largest cities and it also included Lima (Peru) and Medellin (Colombia), sites where few studies of the genre were done. Lima is a coastal city with more than 8 million inhabitants and the second largest city in South America. Medellin is a 2.5 million inhabitants city and second largest city in Colombia; it is situated in a valley. The samples were collected in quartz fiber filters in high volume samplers (Hi-Vol), in 24 hours of sampling. The samples were collected in intensive campaigns in both sites, in July, 2010. Several species were determined in the aerosol samples of Lima and Medellin. Organic and elemental carbon (OC and EC) in thermal-optical analysis; biomass burning tracers (levoglucosan - Lev, mannosan - Man and galactosan - Gal) in high-performance anion exchange ion chromatography with mass spectrometer detection; water soluble ions in ion chromatography. The average particulate matter was similar for both campaigns, the PM10 concentrations were above the recommended by World Health Organization (50 µg m⁻³ – daily limit) in 40% of the samples in Medellin, while in Lima it was above that value in 15% of the samples. The average total ions concentration was higher in Lima (17450 ng m⁻³ in Lima and 3816 ng m⁻³ in Medellin) and the average concentrations of sodium and chloride were higher in this site, these species also had better correlations (Pearson’s coefficient = 0,63); suggesting a higher influence of marine aerosol in the site due its location in the coast. Sulphate concentrations were also much higher at Lima site; which may be explained by a higher influence of marine originated sulphate. However, the OC, EC and monosaccharides average concentrations were higher at Medellin site; this may be due to the lower dispersion of pollutants due to the site’s location and a larger influence of biomass burning sources. The levoglucosan average concentration was 95 ng m⁻³ for Medellin and 16 ng m⁻³ and OC was well correlated with levoglucosan (Pearson’s coefficient = 0,86) in Medellin; suggesting a higher influence of biomass burning over the organic aerosol in this site. The Lev/Man ratio is often related to the type of biomass burned and was close to 18, similar to the observed in previous studies done at biomass burning impacted sites in the Amazon region; backward trajectories also suggested the transport of aerosol from that region. Biomass burning appears to have a larger influence on the air quality in Medellin, in addition the vehicular emissions; while Lima showed a larger influence of marine aerosol during the study period.

Keywords: aerosol transport, atmospheric particulate matter, biomass burning, SAEMC project

Procedia PDF Downloads 263
183 Analysis and Modeling of Graphene-Based Percolative Strain Sensor

Authors: Heming Yao

Abstract:

Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.

Keywords: graphene, gauge factor, percolative transport, strain sensor

Procedia PDF Downloads 416
182 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models

Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach

Abstract:

In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.

Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model

Procedia PDF Downloads 185
181 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 134
180 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 173
179 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast

Authors: David Ofosu-Hamilton, John K. E. Edumadze

Abstract:

Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.

Keywords: assessment, blended, cloud, paperless

Procedia PDF Downloads 248
178 Assessment of Environmental Risk Factors of Railway Using Integrated ANP-DEMATEL Approach in Fuzzy Conditions

Authors: Mehrdad Abkenari, Mehmet Kunt, Mahdi Nourollahi

Abstract:

Evaluating the environmental risk factors is a combination of analysis of transportation effects. Various definitions for risk can be found in different scientific sources. Each definition depends on a specific and particular perspective or dimension. The effects of potential risks present along the new proposed routes and existing infrastructures of large transportation projects like railways should be studied under comprehensive engineering frameworks. Despite various definitions provided for ‘risk’, all include a uniform concept. Two obvious aspects, loss and unreliability, have always been pointed in all definitions of this term. But, selection as the third aspect is usually implied and means how one notices it. Currently, conducting engineering studies on the environmental effects of railway projects have become obligatory according to the Environmental Assessment Act in developing countries. Considering the longitudinal nature of these projects and probable passage of railways through various ecosystems, scientific research on the environmental risk of these projects have become of great interest. Although many areas of expertise such as road construction in developing countries have not seriously committed to these studies yet, attention to these subjects in establishment or implementation of different systems have become an inseparable part of this wave of research. The present study used environmental risks identified and existing in previous studies and stations to use in next step. The second step proposes a new hybrid approach of analytical network process (ANP) and DEMATEL in fuzzy conditions for assessment of determined risks. Since evaluation of identified risks was not an easy touch, mesh structure was an appropriate approach for analyzing complex systems which were accordingly employed for problem description and modeling. Researchers faced the shortage of real space data and also due to the ambiguity of experts’ opinions and judgments, they were declared in language variables instead of numerical ones. Since fuzzy logic is appropriate for ambiguity and uncertainty, formulation of experts’ opinions in the form of fuzzy numbers seemed an appropriate approach. Fuzzy DEMATEL method was used to extract the relations between major and minor risk factors. Considering the internal relations of risk major factors and its sub-factors in the analysis of fuzzy network, the weight of risk’s main factors and sub-factors were determined. In general, findings of the present study, in which effective railway environmental risk indicators were theoretically identified and rated through the first usage of combined model of DEMATEL and fuzzy network analysis, indicate that environmental risks can be evaluated more accurately and also employed in railway projects.

Keywords: DEMATEL, ANP, fuzzy, risk

Procedia PDF Downloads 413
177 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 90
176 The Essential but Uncertain Role of the Vietnamese Association of Cities of Vietnam in Promoting Community-Based Housing Upgrading

Authors: T. Nguyen, H. Rennie, S. Vallance, M. Mackay

Abstract:

Municipal Associations, also called Unions, Leagues or Federations of municipalities have been established worldwide to represent the interests and needs of urban governments in the face of increasing urban issues. In 2008, the Association of Cities of Vietnam (ACVN) joined the Asian Coalition of Community Action Program (ACCA program) and introduced the community-based upgrading approach to help Vietnamese cities to address urban upgrading issues. While this community-based upgrading approach has only been implemented in a small number of Vietnamese cities and its replication has faced certain challenges, it is worthy to explore insights on how the Association of cities of Vietnam played its role in implementing some reportedly successful projects. This paper responds to this inquiry and presents results extracted from the author’s PhD study that sets out with a general objective to critically examine how social capital dimensions (i.e., bonding, bridging and linking) were formed, mobilized and maintained in a local collective and community-based upgrading process. Methodologically, the study utilized the given general categorization of bonding, bridging and linking capitals to explore and confirm how social capital operated in the real context of a community-based upgrading process, particularly in the context of Vietnam. To do this, the study conducted two exploratory and qualitative case studies of housing projects in Friendship neighbourhood (Vinh city) and Binh Dong neighbourhood (Tan An city). This paper presents the findings of the Friendship neighbourhood case study, focusing on the role of the Vietnamese municipal association in forming, mobilizing and maintaining bonding, bridging and linking capital for a community-based upgrading process. The findings highlight the essential but uncertain role of ACVN - the organization that has a hybrid legitimacy status - in such a process. The results improve our understanding both practically and theoretically. Practically, the results offer insights into the performance of a municipal association operating in a transitioning socio-political context of Vietnam. Theoretically, the paper questions the necessity of categorizing social capital dimensions (i.e., bonding, bridging and linking) by suggesting a holistic approach of looking at social capital for urban governance issues within the Vietnamese context and perhaps elsewhere.

Keywords: bonding capital, bridging capital, municipal association, linking capital, social capital, housing upgrading

Procedia PDF Downloads 148
175 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 388
174 Biotechnological Interventions for Crop Improvement in Nutricereal Pearl Millet

Authors: Supriya Ambawat, Subaran Singh, C. Tara Satyavathi, B. S. Rajpurohit, Ummed Singh, Balraj Singh

Abstract:

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important staple food of the arid and semiarid tropical regions of Asia, Africa, and Latin America. It is rightly termed as nutricereal as it has high nutrition value and a good source of carbohydrate, protein, fat, ash, dietary fiber, potassium, magnesium, iron, zinc, etc. Pearl millet has low prolamine fraction and is gluten free which is useful for people having a gluten allergy. It has several health benefits like reduction in blood pressure, thyroid, diabe¬tes, cardiovascular and celiac diseases but its direct consumption as food has significantly declined due to several reasons. Keeping this in view, it is important to reorient the ef¬forts to generate demand through value-addition and quality improvement and create awareness on the nutritional merits of pearl millet. In India, through Indian Council of Agricultural Research-All India Coordinated Research Project on Pearl millet, multilocational coordinated trials for developed hybrids were conducted at various centers. The gene banks of pearl millet contain varieties with high levels of iron and zinc which were used to produce new pearl millet varieties with elevated iron levels bred with the high‐yielding varieties. Thus, using breeding approaches and biochemical analysis, a total of 167 hybrids and 61 varieties were identified and released for cultivation in different agro-ecological zones of the country which also includes some biofortified hybrids rich in Fe and Zn. Further, using several biotechnological interventions such as molecular markers, next-generation sequencing (NGS), association mapping, nested association mapping (NAM), MAGIC populations, genome editing, genotyping by sequencing (GBS), genome wide association studies (GWAS) advancement in millet improvement has become possible by identifying and tagging of genes underlying a trait in the genome. Using DArT markers very high density linkage maps were constructed for pearl millet. Improved HHB67 has been released using marker assisted selection (MAS) strategies, and genomic tools were used to identify Fe-Zn Quantitative Trait Loci (QTL). The draft genome sequence of millet has also opened various ways to explore pearl millet. Further, genomic positions of significantly associated simple sequence repeat (SSR) markers with iron and zinc content in the consensus map is being identified and research is in progress towards mapping QTLs for flour rancidity. The sequence information is being used to explore genes and enzymatic pathways responsible for rancidity of flour. Thus, development and application of several biotechnological approaches along with biofortification can accelerate the genetic gain targets for pearl millet improvement and help improve its quality.

Keywords: Biotechnological approaches, genomic tools, malnutrition, MAS, nutricereal, pearl millet, sequencing.

Procedia PDF Downloads 185
173 The Impact of Monetary Policy on Aggregate Market Liquidity: Evidence from Indian Stock Market

Authors: Byomakesh Debata, Jitendra Mahakud

Abstract:

The recent financial crisis has been characterized by massive monetary policy interventions by the Central bank, and it has amplified the importance of liquidity for the stability of the stock market. This paper empirically elucidates the actual impact of monetary policy interventions on stock market liquidity covering all National Stock Exchange (NSE) Stocks, which have been traded continuously from 2002 to 2015. The present study employs a multivariate VAR model along with VAR-granger causality test, impulse response functions, block exogeneity test, and variance decomposition to analyze the direction as well as the magnitude of the relationship between monetary policy and market liquidity. Our analysis posits a unidirectional relationship between monetary policy (call money rate, base money growth rate) and aggregate market liquidity (traded value, turnover ratio, Amihud illiquidity ratio, turnover price impact, high-low spread). The impulse response function analysis clearly depicts the influence of monetary policy on stock liquidity for every unit innovation in monetary policy variables. Our results suggest that an expansionary monetary policy increases aggregate stock market liquidity and the reverse is documented during the tightening of monetary policy. To ascertain whether our findings are consistent across all periods, we divided the period of study as pre-crisis (2002 to 2007) and post-crisis period (2007-2015) and ran the same set of models. Interestingly, all liquidity variables are highly significant in the post-crisis period. However, the pre-crisis period has witnessed a moderate predictability of monetary policy. To check the robustness of our results we ran the same set of VAR models with different monetary policy variables and found the similar results. Unlike previous studies, we found most of the liquidity variables are significant throughout the sample period. This reveals the predictability of monetary policy on aggregate market liquidity. This study contributes to the existing body of literature by documenting a strong predictability of monetary policy on stock liquidity in an emerging economy with an order driven market making system like India. Most of the previous studies have been carried out in developing economies with quote driven or hybrid market making system and their results are ambiguous across different periods. From an eclectic sense, this study may be considered as a baseline study to further find out the macroeconomic determinants of liquidity of stocks at individual as well as aggregate level.

Keywords: market liquidity, monetary policy, order driven market, VAR, vector autoregressive model

Procedia PDF Downloads 374
172 Visual Representation and the De-Racialization of Public Spaces

Authors: Donna Banks

Abstract:

In 1998 Winston James called for more research on the Caribbean diaspora and this ethnographic study, incorporating participant observation, interviews, and archival research, adds to the scholarship in this area. The research is grounded in the discipline of cultural studies but is cross-disciplinary in nature, engaging anthropology, psychology, and urban planning. This paper centers on community murals and their contribution to a more culturally diverse and representative community. While many museums are in the process of reassessing their collection, acquiring works, and developing programming to be more inclusive, and public art programs are investing millions of dollars in trying to fashion an identity in which all residents can feel included, local artists in neighborhoods in many countries have been using community murals to tell their stories. Community murals serve a historical, political, and social purpose and are an instrumental strategy in creative placemaking projects. Community murals add to the livability of an area. Even though official measurements of livability do not include race, ethnicity, and gender - which are egregious omissions - murals are a way to integrate historically underrepresented people into the wider history of a country. This paper draws attention to a creative placemaking project in the port city of Bristol, England. A city, like many others, with a history of spacializing race and racializing space. For this reason, Bristol’s Seven Saints of St. Pauls® Art & Heritage Trail, which memorializes seven Caribbean-born social and political change agents, is examined. The Seven Saints of St. Pauls® Art & Heritage Trail is crucial to the city, as well as the country, in its contribution to the de-racialization of public spaces. Within British art history, with few exceptions, portraits of non-White people who are not depicted in a subordinate role have been absent. The artist of the mural project, Michelle Curtis, has changed this long-lasting racist and hegemonic narrative. By creating seven large-scale portraits of individuals not typically represented visually, the artist has added them into Britain’s story. In these murals, however, we see more than just the likeness of a person; we are presented with a visual commentary that reflects each Saint’s hybrid identity of being both Black Caribbean and British, as well as their social and political involvement. Additionally, because the mural project is part of a heritage trail, the murals' are therapeutic and contribute to improving the well-being of residents and strengthening their sense of belonging.

Keywords: belonging, murals, placemaking, representation

Procedia PDF Downloads 90
171 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane

Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu

Abstract:

In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).

Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy

Procedia PDF Downloads 227
170 Analytical Validity Of A Tech Transfer Solution To Internalize Genetic Testing

Authors: Lesley Northrop, Justin DeGrazia, Jessica Greenwood

Abstract:

ASPIRA Labs now offers an en-suit and ready-to-implement technology transfer solution to enable labs and hospitals that lack the resources to build it themselves to offer in-house genetic testing. This unique platform employs a patented Molecular Inversion Probe (MIP) technology that combines the specificity of a hybrid capture protocol with the ease of an amplicon-based protocol and utilizes an advanced bioinformatics analysis pipeline based on machine learning. To demonstrate its efficacy, two independent genetic tests were validated on this technology transfer platform: expanded carrier screening (ECS) and hereditary cancer testing (HC). The analytical performance of ECS and HC was validated separately in a blinded manner for calling three different types of variants: SNVs, short indels (typically, <50 bp), and large indels/CNVs defined as multi-exonic del/dup events. The reference set was constructed using samples from Coriell Institute, an external clinical genetic testing laboratory, Maine Molecular Quality Controls Inc. (MMQCI), SeraCare and GIAB Consortium. Overall, the analytical performance showed a sensitivity and specificity of >99.4% for both ECS and HC in detecting SNVs. For indels, both tests reported specificity of 100%, and ECS demonstrated a sensitivity of 100%, whereas HC exhibited a sensitivity of 96.5%. The bioinformatics pipeline also correctly called all reference CNV events resulting in a sensitivity of 100% for both tests. No additional calls were made in the HC panel, leading to a perfect performance (specificity and F-measure of 100%). In the carrier panel, however, three additional positive calls were made outside the reference set. Two of these calls were confirmed using an orthogonal method and were re-classified as true positives leaving only one false positive. The pipeline also correctly identified all challenging carrier statuses, such as positive cases for spinal muscular atrophy and alpha-thalassemia, resulting in 100% sensitivity. After confirmation of additional positive calls via long-range PCR and MLPA, specificity for such cases was estimated at 99%. These performance metrics demonstrate that this tech-transfer solution can be confidently internalized by clinical labs and hospitals to offer mainstream ECS and HC as part of their test catalog, substantially increasing access to quality germline genetic testing for labs of all sizes and resources levels.

Keywords: clinical genetics, genetic testing, molecular genetics, technology transfer

Procedia PDF Downloads 178
169 Unravelling Green Entrepreneurial: Insights From a Hybrid Systematic Review

Authors: Shivani, Seema Sharma, Shveta Singh, Akriti Chandra

Abstract:

Business activities contribute to various environmental issues such as deforestation, waste generation, and pollution. Therefore, integration of environmental concerns within manufacturing operations is vital for the long-term survival of businesses. In this context, green entrepreneurial orientation (GEO) is recognized as a firm-level internal strategy to mitigate ecological damage through initiating green business practices. However, despite the surge in research on GEO in recent years, ambiguity remains on the genesis of GEO and the mechanism through which GEO impacts various organizational outcomes. This prompts an examination of the ongoing scholarly discourse about GEO and its domain knowledge structure within the entrepreneurship literature using bibliometric analysis and the Theories, Contexts, Characteristics, and Methodologies (TCCM) framework. The authors analyzed a dataset comprising 73 scientific documents sourced from the Scopus and Web of Science database from 2005 to 2024 to provide insights into the publication trends, prominent journals, authors, articles, countries' collaboration, and keyword analysis in GEO research. The findings indicate that the number of relevant papers and citations has increased consistently, with authors from China being the main contributors. The articles are mainly published in Business Strategy and the Environment and Sustainability. Dynamic capability view is the dominant framework applied in the GEO domain, with large manufacturing firms and SMEs constituting the majority of the sample. Further, various antecedents of GEO have been identified at an organizational level to which managers can focus their attention. The studies have used various contextual factors to explain when GEO translates into superior organizational outcomes. The Method analysis reveals that PLS-SEM is the commonly used approach for analyzing the primary data collected through surveys. Moreover, the content analysis indicates four emerging research frontiers identified as unidimensional vs. multidimensional perspectives of GEO, typologies of green innovation, environmental management in the hospitality industry, and tech-savvy sustainability in the agriculture sector. This study is one of the earliest to apply quantitative methods to synthesize the extant literature on GEO. This research holds relevance for management practice due to the escalating levels of carbon emissions, energy consumption, and waste discharges observed in recent years, resulting in increased apprehension about climate change.

Keywords: green entrepreneurship, sustainability, SLR, TCCM

Procedia PDF Downloads 6
168 Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications

Authors: Katherine Dropiewski, Michael Yakimov, Vadim Tokranov, Allan Minns, Pavel Murat, Serge Oktyabrsky

Abstract:

InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator.

Keywords: GaAs, InAs, molecular beam epitaxy, quantum dots, III-V semiconductor

Procedia PDF Downloads 255
167 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
166 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 66