Search results for: multi variable decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12451

Search results for: multi variable decision making

9751 Recognizing and Prioritizing Effective Factors on Productivity of Human Resources Through Using Technique for Order of Preference by Similarity to Ideal Solution Method

Authors: Amirmehdi Dokhanchi, Babak Ziyae

Abstract:

Studying and prioritizing effective factors on productivity of human resources through TOPSIS method is the main aim of the present research study. For this reason, while reviewing concepts existing in productivity, effective factors were studied. Managers, supervisors, staff and personnel of Tabriz Tractor Manufacturing Company are considered subject of this study. Of total individuals, 160 of them were selected through the application of random sampling method as 'subject'. Two questionnaires were used for collecting data in this study. The factors, which had the highest effect on productivity, were recognized through the application of software packages. TOPSIS method was used for prioritizing recognized factors. For this reason, the second questionnaire was put available to statistics sample for studying effect of each of factors towards predetermined indicators. Therefore, decision-making matrix was obtained. The result of prioritizing factors shows that existence of accurate organizational strategy, high level of occupational skill, application of partnership and contribution system, on-the-job-training services, high quality of occupational life, dissemination of appropriate organizational culture, encouraging to creativity and innovation, and environmental factors are prioritized respectively.

Keywords: productivity of human resources, productivity indicators, TOPSIS, prioritizing factors

Procedia PDF Downloads 337
9750 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes

Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek

Abstract:

Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.

Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling

Procedia PDF Downloads 147
9749 A Review on Control of a Grid Connected Permanent Magnet Synchronous Generator Based Variable Speed Wind Turbine

Authors: Eman M. Eissa, Hany M. Hasanin, Mahmoud Abd-Elhamid, S. M. Muyeen, T. Fernando, H. H. C. Iu

Abstract:

Among all available wind energy conversion systems (WECS), the direct driven permanent magnet synchronous generator integrated with power electronic interfaces is becoming popular due to its capability of extracting optimal energy capture, reduced mechanical stresses, no need to external excitation current, meaning less losses, and more compact size. Simple structure, low maintenance cost; and its decoupling control performance is much less sensitive to the parameter variations of the generator. This paper attempts to present a review of the control and optimization strategies of WECS based on permanent magnet synchronous generator (PMSG) and overview the most recent research trends in this field. The main aims of this review include; the generalized overall WECS starting from turbines, generators, and control strategies including converters, maximum power point tracking (MPPT), ending with DC-link control. The optimization methods of the controller parameters necessary to guarantee the operation of the system efficiently and safely, especially when connected to the power grid are also presented.

Keywords: control and optimization techniques, permanent magnet synchronous generator, variable speed wind turbines, wind energy conversion system

Procedia PDF Downloads 230
9748 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research

Procedia PDF Downloads 152
9747 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT

Procedia PDF Downloads 468
9746 A Comprehensive Study of Accounting for Growth in China and India

Authors: Yousef Rostami Gharainy

Abstract:

We look at the late financial exhibitions of China and India utilizing a simple growth accounting framework that creates assessments of the commitment of work, capital, training, and aggregate variable profitability for the three parts of agribusiness, industry, and administrations and in addition for the total economy. Our examination consolidates late information updates in both nations and incorporates broad examination of the basic information arrangement. The development records demonstrate a generally square with division in each nation between the commitments of capital gathering and TFP to development in yield every specialist over the period 1980-2007, and an increasing speed of development when the period is separated at 1993. Be that as it may, the size of yield development in China is generally twofold that of India at the total level, and additionally higher in each of the three segments in both sub-periods. In China the post-1993 increasing speed was amassed generally in industry, which contributed about 61 percent of China’s total efficiency development. Interestingly, 48 percent of the development in India in the second sub-period came in administrations. Reallocation of specialists from farming to industry and administrations has contributed 1.3 rate focuses to efficiency development in every nation.

Keywords: China, India, growth accounting framework, work, capital, training, aggregate variable profitability

Procedia PDF Downloads 299
9745 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 65
9744 Women’s Sport on the Brazilian Governmental Agenda

Authors: Giovanna X. De Moura, Fernando A. Starepravo

Abstract:

In recent years, the discussion of women in sports has been part of the political agenda in several countries. However, in the Brazilian scope, it is possible to say that women's sport has not become a social problem recognized by political actors and, therefore, it has not entered the country's governmental agenda. Thus, this work aimed to analyze why sport for women is not on the Brazilian government's agenda. For this, it was interviewed six women considered to be stakeholders in sports, that is, women who influence or are influenced by sports. The interviews were based on a semi-structured script and carried out in the year 2022. Due to the difficulties of commuting and of the schedule of the interviewees, some interviews were carried out in person, others by video call or telephone and others by WhatsApp. The interviews were transcribed and analyzed using Bardin's Content Analysis. As a result, from the stakeholders' perception, it was ascertained that women's sport is not considered a political problem because both sport and politics are considered masculinized fields, making it difficult for women to be present in both spaces. Besides, not only the sport of women but sport in general, is seen as just a marketing tool and a way of getting financial return for companies, being neglected in government plans. Due to this fact, private institutions, corporative means, federations and confederations have been mobilized in the creation of policies that seek changes in the current scenario. Despite this, two PLs (PL 6263/2019 and PL 5297/2020) have been in the process since 2019 but have not been approved yet due to the failure to submit amendments within the established deadline. In order to change this reality, the ones surveyed suggested that there should be not only different types of women represented on the most varied fronts of sports but also more visibility of the issue of women in this field. Furthermore, they mentioned the importance of the creation of specific plans and policies that guarantee a safe place for women and that are consolidated as State policies. In addition, the need for more women in political decision-making positions was also mentioned. It was concluded that women's sport appears on the agenda at a secondary level since it is included on the legislative, and political agenda but not in the executive branch. In addition, there is not enough movement and mobilization in favor of women's sports for it to become a discussion in the field of politics. Regarding the Multiple Streams Model, women's sport is present only in the ideas stream, as there are solutions and ideas for improvements in this field. Finally, it was pointed that there is still a strong dependence on the State for the creation of policies that seek improvements in the participation of girls and women in sport, hence, being necessary the creation of multicentric policies, including non-governmental agents in the process of elaborating policies.

Keywords: agenda, politics, stakeholders, women’s sport

Procedia PDF Downloads 88
9743 Neural Network Modelling for Turkey Railway Load Carrying Demand

Authors: Humeyra Bolakar Tosun

Abstract:

The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.

Keywords: railway load carrying, neural network, modelling transport, transportation

Procedia PDF Downloads 145
9742 Exploring Cannabis for Cancer Symptom Relief: An Australian Perspective

Authors: Jenny Jin

Abstract:

Background: The therapeutic use of cannabis for cancer symptom control in Australia is gaining momentum, reflecting a broader global acceptance of its medicinal potential. Objective: This overview examines the historical context, current regulations, and clinical applications of cannabis in oncology within Australia. Methods: A historical analysis outlines the ancient and 19th-century medicinal uses of cannabis, followed by its prohibition in the early 20th century and subsequent resurgence in the late 20th century. The current legal framework under the therapeutic gods administration (TGA) is discussed. Results: Research indicates that cannabinoids, particularly THC and CBD, effectively alleviate pain, reduce chemotherapy-induced nausea and vomiting, stimulate appetite, and enhance overall quality of life for cancer patients. Despite these benefits, challenges such as dosing standardization, stigma, and access barriers persist. Conclusion: Continued clinical research, policy development, and educational initiatives are essential to optimize the use of cannabis in cancer care. A patient-centred approach, emphasizing interdisciplinary collaboration and informed decision-making, is crucial for improving therapeutic outcomes in this evolving field.

Keywords: historical context of cannabis, symptom control in oncology patients, therapeutic benefits, outcome and future

Procedia PDF Downloads 17
9741 Creation of a Trust-Wide, Cross-Speciality, Virtual Teaching Programme for Doctors, Nurses and Allied Healthcare Professionals

Authors: Nelomi Anandagoda, Leanne J. Eveson

Abstract:

During the COVID-19 pandemic, the surge in in-patient admissions across the medical directorate of a district general hospital necessitated the implementation of an incident rota. Conscious of the impact on training and professional development, the idea of developing a virtual teaching programme was conceived. The programme initially aimed to provide junior doctors, specialist nurses, pharmacists, and allied healthcare professionals from medical specialties and those re-deployed from other specialties (e.g., ophthalmology, GP, surgery, psychiatry) the knowledge and skills to manage the deteriorating patient with COVID-19. The programme was later developed to incorporate the general internal medicine curriculum. To facilitate continuing medical education whilst maintaining social distancing during this period, a virtual platform was used to deliver teaching to junior doctors across two large district general hospitals and two community hospitals. Teaching sessions were recorded and uploaded to a common platform, providing a resource for participants to catch up on and re-watch teaching sessions, making strides towards reducing discrimination against the professional development of less than full-time trainees. Thus, creating a learning environment, which is inclusive and accessible to adult learners in a self-directed manner. The negative impact of the pandemic on the well-being of healthcare professionals is well documented. To support the multi-disciplinary team, the virtual teaching programme evolved to included sessions on well-being, resilience, and work-life balance. Providing teaching for learners across the multi-disciplinary team (MDT) has been an eye-opening experience. By challenging the concept that learners should only be taught within their own peer groups, the authors have fostered a greater appreciation of the strengths of the MDT and showcased the immense wealth of expertise available within the trust. The inclusive nature of the teaching and the ease of joining a virtual teaching session has facilitated the dissemination of knowledge across the MDT, thus improving patient care on the frontline. The weekly teaching programme has been running for over eight months, with ongoing engagement, interest, and participation. As described above, the teaching programme has evolved to accommodate the needs of its learners. It has received excellent feedback with an appreciation of its inclusive, multi-disciplinary, and holistic nature. The COVID-19 pandemic provided a catalyst to rapidly develop novel methods of working and training and widened access/exposure to the virtual technologies available to large organisations. By merging pedagogical expertise and technology, the authors have created an effective online learning environment. Although the authors do not propose to replace face-to-face teaching altogether, this model of virtual multidisciplinary team, cross-site teaching has proven to be a great leveler. It has made high-quality teaching accessible to learners of different confidence levels, grades, specialties, and working patterns.

Keywords: cross-site, cross-speciality, inter-disciplinary, multidisciplinary, virtual teaching

Procedia PDF Downloads 174
9740 The Rendering of Sex-Related Expressions by Court Interpreters in Hong Kong: A Corpus-Based Approach

Authors: Yee Yan Crystal Kwong

Abstract:

The essence of rape is the absence of consent to sexual intercourse. Yet, the definition of consent is not absolute and allows for subjectivity. In this case, the accuracy of oral interpretation becomes very important as the narratives of events and situation, as well as the register and style of speakers would influence the juror decision making. This paper first adopts a corpus-based approach to investigate how court interpreters in Hong Kong handle expressions that refer to sexual activities. The data of this study will be based on online corpus :From legislation to translation, from translation to interpretation: The narrative of sexual offences. The corpus comprises the transcription of five separate rape trials and all of these trials were heard with the presence of an interpreter. Since there are plenty of sex-related expressions used by witnesses and defendants in the five cases, emphasis will be put on those which have an impact on the definition of rape. With an in-depth analysis of the interpreted utterances, different interpreting approaches will be identified to observe how interpreters retain the intended meanings. Interviews with experienced court interpreters will also be conducted to revisit the validity of the traditional verbatim standard. At the end of this research, various interpreting approaches will be compared and evaluated. A redefinition of interpreters' institutional role, as well as recommendations for interpreting learners will be provided.

Keywords: court interpreting, interpreters, legal translation, slangs

Procedia PDF Downloads 265
9739 Exploring the Challenges to Usage of Building Construction Cost Indices in Ghana

Authors: Jerry Gyimah, Ernest Kissi, Safowaa Osei-Tutu, Charles Dela Adobor, Theophilus Adjei-Kumi, Ernest Osei-Tutu

Abstract:

Price fluctuation contract is imperative and of paramount essence, in the construction industry as it provides adequate relief and cushioning for changes in the prices of input resources during construction. As a result, several methods have been devised to better help in arriving at fair recompense in the event of price changes. However, stakeholders often appear not to be satisfied with the existing methods of fluctuation evaluation, ostensibly because of the challenges associated with them. The aim of this study was to identify the challenges to the usage of building construction cost indices in Ghana. Data was gathered from contractors and quantity surveying firms. The study utilized a survey questionnaire approach to elicit responses from the contractors and the consultants. Data gathered was analyzed scientifically, using the relative importance index (RII) to rank the problems associated with the existing methods. The findings revealed the following, among others, late release of data, inadequate recovery of costs, and work items of interest not included in the published indices as the main challenges of the existing methods. Findings provide useful lessons for policymakers and practitioners in decision making towards the usage and improvement of available indices.

Keywords: building construction cost indices, challenges, usage, Ghana

Procedia PDF Downloads 157
9738 Affinity between Sociology and Islamic Economy: An Inquiry into the Possibilities of Social Constructivism

Authors: Hideki Kitamura

Abstract:

Since Islamic banking has broadly started in the late 1970s, Islamic economy has been paid much attention by both academia and the business world. However, despite abundant studies, descriptive exploration of practices of Islamic economy from a sociological/anthropological perspective is underrepresented, and most are basically designed for evaluating current practice or proposing ideal types of Islamic economy in accordance with their religious conviction. Overall, their interest is not paid to actors of Islamic economy such as practitioner’s decision-making and thought, while sociological/anthropological studies on Muslim’s religious life can be observed well. Herein, the paper aims to look into the possibilities of sociology/anthropology for exploration of the role of actors of Islamic economy, by revisiting the benefit of sociological/anthropological studies on the religion of Islam and its adaptability to the research on Islamic economy. The paper suggests that practices of Islamic economy can be assumed as results of practitioner’s dilemma between Islamic ideals and market realities in each society, by applying the perspective of social constructivism. The paper then proposes focusing on the human agency of practitioners in translating Islamic principles into economic behavior, thereby enabling a more descriptive inquiry into how Islamic economy is produced and operated.

Keywords: Islamic economy, economic sociology/anthropology, human agency, social constructivism

Procedia PDF Downloads 162
9737 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology

Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong

Abstract:

The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.

Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology

Procedia PDF Downloads 390
9736 Study and Calibration of Autonomous UAV Systems With Thermal Sensing With Multi-purpose Roles

Authors: Raahil Sheikh, Prathamesh Minde, Priya Gujjar, Himanshu Dwivedi, Abhishek Maurya

Abstract:

UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided

Keywords: UAV, autonomous systems, drones, geo thermal imaging

Procedia PDF Downloads 90
9735 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya

Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia

Abstract:

Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.

Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service

Procedia PDF Downloads 164
9734 Multi-Modality Imaging of Aggressive Hoof Wall Neoplasia in Two Horses

Authors: Hannah Nagel, Hayley Lang, Albert Sole Guitart, Natasha Lean, Rachel Allavena, Cleide Sprohnie-Barrera, Alex Young

Abstract:

Aggressive neoplasia of the hoof is a rare occurrence in horses and has been only sporadically described in the literature. In the few cases reported intra-hoof wall, aggressive neoplasia has been documented radiographically and has been described with variable imaging characteristics. These include a well-defined osteolytic area, a smoothly outlined semi-circular defect, an extensive draining tract beneath the hoof wall, as well as an additional large area of osteolysis or an extensive central lytic region. A 20-year-old Quarterhorse gelding and a 10-year-old Thoroughbred gelding were both presented for chronic reoccurring lameness in the left forelimb and left hindlimb, respectively. Both of the cases displayed radiographic lesions that have been previously described but also displayed osteoproliferative expansile regions of additional bone formation. Changes associated with hoof neoplasia are often non-specific due to the nature and capacity of bone to react to pathological insult, which is either to proliferate or be absorbed. Both cases depict and describe imaging findings seen on radiography, contrast radiography, computed tomography, and magnetic resonance imaging before reaching a histological diagnosis of malignant melanoma and squamous cell carcinoma. Although aggressive hoof wall neoplasia is rare, there are some imaging features which may raise our index of suspicion for an aggressive hoof wall lesion. This case report documents two horses with similar imaging findings who underwent multiple assessments, surgical interventions, and imaging modalities with a final diagnosis of malignant neoplasia.

Keywords: horse, hoof, imaging, radiography, neoplasia

Procedia PDF Downloads 135
9733 The Effectiveness of Orthogonal Frequency Division Multiplexing as Modulation Technique

Authors: Mohamed O. Babana

Abstract:

In wireless channel multipath is the propagation phenomena where the transmitted signal arrive at the receiver side with many of paths, the signal at these paths arrive with different time delay the results is random signal fading due to intersymbols interference(ISI). This paper deals with identification of orthogonal frequency division multiplexing (OFDM) technology, and how it is used to overcome intersymbol interference due to multipath. Also investigates the effect of Additive White Gaussian Noise Channel (AWGN) on OFDM using multi-level modulation of Phase Shift Keying (PSK), computer simulation to calculate the bit error rate (BER) under AWGN channel is applied. A comparison study is carried out to obtain the Bit Error Rate performance for OFDM to identify the best multi-level modulation of PSK.

Keywords: intersymbol interference(ISI), bit error rate(BER), modulation, multiplexing, simulation

Procedia PDF Downloads 430
9732 Governance and Public Policy: The Perception of Civil Society Participation in Brazil and South Africa

Authors: Paulino V. Tavares, Ana L. Romao

Abstract:

Public governance, in general, is essential to qualify and educate, pedagogically, the decision-making process of the government in relation to the management of resources and the provision of public services, with transparency and active participation of individuals and citizens for the development of a more democratic environment, besides stimulating control and social empowerment, aiming at the development of the collectivity. In this context, the participation of society in the elaboration, execution, and control of public policies is prominent to strengthen public governance itself. With this, using a multidimensional approach with the application of two questionnaires to a universe of twenty Counselors of the Courts of Auditors (Brazil), twenty professionals of public administration (Brazil), twenty Government/Provincial Counselors (South Africa), and twenty South African professionals of public administration, the preliminary results indicate that the participation of civil society, for both countries, is very low in the elaboration, execution, and control of public policies. At the same time, about 70% of the answers obtained indicate, on average, three possible paths to increase the participation of civil society. With this, it is delineated that developing new horizons to strengthen both public policies how social participation is necessary, but, for both, it is important that governments and civil society, in their respective countries, have an awareness of the effective importance of this interaction.

Keywords: Brazil, civil society, participation, South Africa

Procedia PDF Downloads 149
9731 Layouting for Phase II of New Priok Project Using Adaptive Port Planning Frameworks

Authors: Mustarakh Gelfi, Poonam Taneja, Tiedo Vellinga, Delon Hamonangan

Abstract:

The initial masterplan of New Priok in the Port of Tanjung Priok was developed in 2012 is being updated to cater to new developments and new demands. In the new masterplan (2017), Phase II of development will start from 2035-onwards, depending on the future conditions. This study is about creating a robust masterplan for Phase II, which will remain functional under future uncertainties. The methodology applied in this study is scenario-based planning in the framework of Adaptive Port Planning (APP). Scenario-based planning helps to open up the perspective of the future as a horizon of possibilities. The scenarios are built around two major uncertainties in a 2x2 matrix approach. The two major uncertainties for New Priok port are economics and sustainability awareness. The outcome is four plausible scenarios: Green Port, Business As Usual, Moderate Expansion, and No Expansion. Terminal needs in each scenario are analyzed through traffic analysis and identifying the key cargos and commodities. In conclusion, this study gives the wide perspective for Port of Tanjung Priok for the planning Phase II of the development. The port has to realize that uncertainties persevere and are very likely to influence the decision making as to the future layouts. Instead of ignoring uncertainty, the port needs to make the action plans to deal with these uncertainties.

Keywords: Indonesia Port, port's layout, port planning, scenario-based planning

Procedia PDF Downloads 541
9730 Role of Geomatics in Architectural and Cultural Conservation

Authors: Shweta Lall

Abstract:

The intent of this paper is to demonstrate the role of computerized auxiliary science in advancing the desired and necessary alliance of historians, surveyors, topographers, and analysts of architectural conservation and management. The digital era practice of recording architectural and cultural heritage in view of its preservation, dissemination, and planning developments are discussed in this paper. Geomatics include practices like remote sensing, photogrammetry, surveying, Geographic Information System (GIS), laser scanning technology, etc. These all resources help in architectural and conservation applications which will be identified through various case studies analysed in this paper. The standardised outcomes and the methodologies using relevant case studies are listed and described. The main component of geomatics methodology adapted in conservation is data acquisition, processing, and presentation. Geomatics is used in a wide range of activities involved in architectural and cultural heritage – damage and risk assessment analysis, documentation, 3-D model construction, virtual reconstruction, spatial and structural decision – making analysis and monitoring. This paper will project the summary answers of the capabilities and limitations of the geomatics field in architectural and cultural conservation. Policy-makers, urban planners, architects, and conservationist not only need answers to these questions but also need to practice them in a predictable, transparent, spatially explicit and inexpensive manner.

Keywords: architectural and cultural conservation, geomatics, GIS, remote sensing

Procedia PDF Downloads 156
9729 Room Level Indoor Localization Using Relevant Channel Impulse Response Parameters

Authors: Raida Zouari, Iness Ahriz, Rafik Zayani, Ali Dziri, Ridha Bouallegue

Abstract:

This paper proposes a room level indoor localization algorithm based on the use Multi-Layer Neural Network (MLNN) classifiers and one versus one strategy. Seven parameters of the Channel Impulse Response (CIR) were used and Gram-Shmidt Orthogonalization was performed to study the relevance of the extracted parameters. Simulation results show that when relevant CIR parameters are used as position fingerprint and when optimal MLNN architecture is selected good room level localization score can be achieved. The current study showed also that some of the CIR parameters are not correlated to the location and can decrease the localization performance of the system.

Keywords: mobile indoor localization, multi-layer neural network (MLNN), channel impulse response (CIR), Gram-Shmidt orthogonalization

Procedia PDF Downloads 364
9728 The Effect of a Multidisciplinary Spine Clinic on Treatment Rates and Lead Times to Care

Authors: Ishan Naidu, Jessica Ryvlin, Devin Videlefsky

Abstract:

Introduction: Back pain is a leading cause of years lived with disability and economic burden, exceeding over $20 billion in healthcare costs not including indirect costs such as absence from work and caregiving. The multifactorial nature of back pain leads to treatment modalities administered by a variety of specialists, which are often disjointed. Multiple studies have found that patients receiving delayed physical therapy for lower back pain had higher medical-related costs from increased health service utilization as well as a reduced improvement in pain severity compared to early management. Uncoordinated health care delivery can exacerbate the physical and economic toll of the chronic condition, thus improvements in interdisciplinary, shared decision-making may improve outcomes. Objective: To assess whether a multidisciplinary spine clinic (MSC), consisting of orthopedic surgery, neurosurgery, pain medicine, and physiatry, alters interventional and non-interventional planning and treatment compared to a traditional unidisciplinary spine clinic (USC) including only orthopedic surgery. Methods: We conducted a retrospective cohort study with patients initially presenting for spine care to orthopedic surgeons between July 1, 2018 to June 30, 2019. Time to treatment recommendation, time to treatment and rates of treatment recommendations were assessed, including physical therapy, injections and surgery. Treatment rates were compared between MSC and USC using Pearson’s chi-square test logistic regression. Time to treatment recommendation and time to treatment were compared using log-rank test and Cox proportional hazard regression. All analyses were repeated for the propensity score (PS) matched subsample. Results: This study included 1,764 patients, with 692 at MSC and 1,072 at USC. Patients in MSC were more likely to be recommended injection when compared to USC (8.5% vs. 5.4%, p=0.01). When adjusted for confounders, the likelihood of injection recommendation remained greater in MSC than USC (Odds ratio [OR]=2.22, 95% CI: (1.39, 3.53), p=0.001). MSC was also associated with a shorter time to receiving injection recommendation versus USC (median: 21 vs. 32 days, log-rank: p<0.001; hazard ratio [HR]=1.90, 95% CI: (1.25, 2.90), p=0.003). MSC was associated with a higher likelihood of injection treatment (OR=2.27, 95% CI: (1.39, 3.73), p=0.001) and shorter lead time (HR=1.98, 95% CI: (1.27, 3.09), p=0.003). PS-matched analyses yielded similar conclusions. Conclusions: Care delivered at a multidisciplinary spine clinic was associated with a higher likelihood of recommending injection and a shorter lead time to injection administration when compared to a traditional unidisciplinary spine surgery clinic. Multidisciplinary clinics may facilitate coordinated care amongst different specialties resulting in increased utilization of less invasive treatment modalities while also improving care efficiency. The multidisciplinary clinic model is an important advancement in care delivery and communication, which can be used as a powerful method of improving patient outcomes as treatment guidelines evolve.

Keywords: coordinated care, epidural steroid injection, multi-disciplinary, non-invasive

Procedia PDF Downloads 144
9727 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 397
9726 Sensitivity and Specificity of Clinical Testing for Digital Nerve Injury

Authors: Guy Rubin, Ravit Shay, Nimrod Rozen

Abstract:

The accuracy of a diagnostic test used to classify a patient as having disease or being disease-free is a valuable piece of information to be used by the physician when making treatment decisions. Finger laceration, suspected to have nerve injury is a challenging decision for the treating surgeon. The purpose of this study was to evaluate the sensitivity, specificity and predictive values of six clinical tests in the diagnosis of digital nerve injury. The six clinical tests included light touch, pin prick, static and dynamic 2-point discrimination, Semmes Weinstein monofilament and wrinkle test. Data comparing pre-surgery examination with post-surgery results of 42 patients with 52 digital nerve injury was evaluated. The subjective examinations, light touch, pin prick, static and dynamic 2-point discrimination and Semmes-Weinstein monofilament were not sensitive (57.6, 69.7, 42.4, 40 and 66.8% respectively) and specific (36.8, 36.8, 47.4, 42.1 and 31.6% respectively). Wrinkle test, the only objective examination, was the most sensitive (78.1%) and specific (55.6%). This result gives no pre-operative examination the ability to predict the result of explorative surgery.

Keywords: digital nerve, injury, nerve examination, Semmes-Weinstein monofilamen, sensitivity, specificity, two point discrimination, wrinkle test

Procedia PDF Downloads 349
9725 Consensus Problem of High-Order Multi-Agent Systems under Predictor-Based Algorithm

Authors: Cheng-Lin Liu, Fei Liu

Abstract:

For the multi-agent systems with agent's dynamics described by high-order integrator, and usual consensus algorithm composed of the state coordination control parts is proposed. Under communication delay, consensus algorithm in asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. To recover the original consensus state of the high-order agents without communication delay, besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part, and sufficient consensus condition is also obtained. Simulation illustrates the correctness of the results.

Keywords: high-order dynamic agents, communication delay, consensus, predictor-based algorithm

Procedia PDF Downloads 574
9724 IoT and Advanced Analytics Integration in Biogas Modelling

Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma

Abstract:

The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.

Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization

Procedia PDF Downloads 25
9723 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization

Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi

Abstract:

This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.

Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities

Procedia PDF Downloads 508
9722 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran

Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard

Abstract:

Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.

Keywords: data mining, ischemic stroke, decision tree, Bayesian network

Procedia PDF Downloads 178