Search results for: frequency domain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5584

Search results for: frequency domain

2884 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 108
2883 Investigating Seasonal Changes of Urban Land Cover with High Spatio-Temporal Resolution Satellite Data via Image Fusion

Authors: Hantian Wu, Bo Huang, Yuan Zeng

Abstract:

Divisions between wealthy and poor, private and public landscapes are propagated by the increasing economic inequality of cities. While these are the spatial reflections of larger social issues and problems, urban design can at least employ spatial techniques that promote more inclusive rather than exclusive, overlapping rather than segregated, interlinked rather than disconnected landscapes. Indeed, the type of edge or border between urban landscapes plays a critical role in the way the environment is perceived. China experiences rapid urbanization, which poses unpredictable environmental challenges. The urban green cover and water body are under changes, which highly relevant to resident wealth and happiness. However, very limited knowledge and data on their rapid changes are available. In this regard, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understating the driving forces of urban landscape changes can be a significant contribution for urban planning and studying. High-resolution remote sensing data has been widely applied to urban management in China. The map of urban land use map for the entire China of 2018 with 10 meters resolution has been published. However, this research focuses on the large-scale and high-resolution remote sensing land use but does not precisely focus on the seasonal change of urban covers. High-resolution remote sensing data has a long-operation cycle (e.g., Landsat 8 required 16 days for the same location), which is unable to satisfy the requirement of monitoring urban-landscape changes. On the other hand, aerial-remote or unmanned aerial vehicle (UAV) sensing are limited by the aviation-regulation and cost was hardly widely applied in the mega-cities. Moreover, those data are limited by the climate and weather conditions (e.g., cloud, fog), and those problems make capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Particularly, during the rainy season, no data are available even for Sentinel Satellite data with 5 days interval. Many natural events and/or human activities drive the changes of urban covers. In this case, enhancing the monitoring of urban landscape with high-frequency method, evaluating and estimating the impacts of the urban landscape changes, and understanding the mechanism of urban landscape changes can be a significant contribution for urban planning and studying. This project aims to use the high spatiotemporal fusion of remote sensing data to create short-cycle, high-resolution remote sensing data sets for exploring the high-frequently urban cover changes. This research will enhance the long-term monitoring applicability of high spatiotemporal fusion of remote sensing data for the urban landscape for optimizing the urban management of landscape border to promoting the inclusive of the urban landscape to all communities.

Keywords: urban land cover changes, remote sensing, high spatiotemporal fusion, urban management

Procedia PDF Downloads 128
2882 Design of Decimation Filter Using Cascade Structure for Sigma Delta ADC

Authors: Misbahuddin Mahammad, P. Chandra Sekhar, Metuku Shyamsunder

Abstract:

The oversampled output of a sigma-delta modulator is decimated to Nyquist sampling rate by decimation filters. The decimation filters work twofold; they decimate the sampling rate by a factor of OSR (oversampling rate) and they remove the out band quantization noise resulting in an increase in resolution. The speed, area and power consumption of oversampled converter are governed largely by decimation filters in sigma-delta A/D converters. The scope of the work is to design a decimation filter for sigma-delta ADC and simulation using MATLAB. The decimation filter structure is based on cascaded-integrated comb (CIC) filter. A second decimation filter is using CIC for large rate change and cascaded FIR filters, for small rate changes, to improve the frequency response. The proposed structure is even more hardware efficient.

Keywords: sigma delta modulator, CIC filter, decimation filter, compensation filter, noise shaping

Procedia PDF Downloads 462
2881 Pesticides Monitoring in Surface Waters of the São Paulo State, Brazil

Authors: Fabio N. Moreno, Letícia B. Marinho, Beatriz D. Ruiz, Maria Helena R. B. Martins

Abstract:

Brazil is a top consumer of pesticides worldwide, and the São Paulo State is one of the highest consumers among the Brazilian federative states. However, representative data about the occurrence of pesticides in surface waters of the São Paulo State is scarce. This paper aims to present the results of pesticides monitoring executed within the Water Quality Monitoring Network of CETESB (The Environmental Agency of the São Paulo State) between the 2018-2022 period. Surface water sampling points (21 to 25) were selected within basins of predominantly agricultural land-use (5 to 85% of cultivated areas). The samples were collected throughout the year, including high-flow and low-flow conditions. The frequency of sampling varied between 6 to 4 times per year. Selection of pesticide molecules for monitoring followed a prioritizing process from EMBRAPA (Brazilian Agricultural Research Corporation) databases of pesticide use. Pesticides extractions in aqueous samples were performed according to USEPA 3510C and 3546 methods following quality assurance and quality control procedures. Determination of pesticides in water (ng L-1) extracts were performed by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and by gas chromatography with nitrogen phosphorus (GC-NPD) and electron capture detectors (GC-ECD). The results showed higher frequencies (20- 65%) in surface water samples for Carbendazim (fungicide), Diuron/Tebuthiuron (herbicides) and Fipronil/Imidaclopride (insecticides). The frequency of observations for these pesticides were generally higher in monitoring points located in sugarcane cultivated areas. The following pesticides were most frequently quantified above the Aquatic life benchmarks for freshwater (USEPA Office of Pesticide Programs, 2023) or Brazilian Federal Regulatory Standards (CONAMA Resolution no. 357/2005): Atrazine, Imidaclopride, Carbendazim, 2,4D, Fipronil, and Chlorpiryfos. Higher median concentrations for Diuron and Tebuthiuron in the rainy months (october to march) indicated pesticide transport through surface runoff. However, measurable concentrations in the dry season (april to september) for Fipronil and Imidaclopride also indicates pathways related to subsurface or base flow discharge after pesticide soil infiltration and leaching or dry deposition following pesticide air spraying. With exception to Diuron, no temporal trends related to median concentrations of the most frequently quantified pesticides were observed. These results are important to assist policymakers in the development of strategies aiming at reducing pesticides migration to surface waters from agricultural areas. Further studies will be carried out in selected points to investigate potential risks as a result of pesticides exposure on aquatic biota.

Keywords: pesticides monitoring, são paulo state, water quality, surface waters

Procedia PDF Downloads 60
2880 Surveyed Emotional Responses to Musical Chord Progressions Imbued with Binaural Pulsations

Authors: Jachin Pousson, Valdis Bernhofs

Abstract:

Applications of the binaural sound experience are wide-ranged. This paper focuses on the interaction between binaural tones and human emotion with an aim to apply the resulting knowledge artistically. For the purpose of this study, binaural music is defined as musical arrangements of sound which are made of combinations of binaural difference tones. Here, the term ‘binaural difference tone’ refers to the pulsating tone heard within the brain which results from listening to slightly differing audio frequencies or pure pitches in each ear. The frequency or tempo of the pulsations is the sum of the precise difference between the frequencies two tones and is measured in beats per second. Polyrhythmic pulsations that can be heard within combinations of these differences tones have shown to be able to entrain or tune brainwave patterns to frequencies which have been linked to mental states which can be characterized by different levels of attention and mood.

Keywords: binaural auditory pulsations, brainwave entrainment, emotion, music composition

Procedia PDF Downloads 176
2879 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan

Abstract:

In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling

Procedia PDF Downloads 324
2878 Executive Function in Youth With ADHD and ASD: A Systematic Review and Meta-analysis

Authors: Parker Townes, Prabdeep Panesar, Chunlin Liu, Soo Youn Lee, Dan Devoe, Paul D. Arnold, Jennifer Crosbie, Russell Schachar

Abstract:

Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are impairing childhood neurodevelopmental disorders with problems in executive functions. Executive functions are higher-level mental processes essential for daily functioning and goal attainment. There is genetic and neural overlap between ADHD and ASD. The aim of this meta-analysis was to evaluate if pediatric ASD and ADHD have distinct executive function profiles. This review was completed following Cochrane guidelines. Fifty-eight articles were identified through database searching, followed by a blinded screening in duplicate. A meta-analysis was performed for all task performance metrics evaluated by at least two articles. Forty-five metrics from 24 individual tasks underwent analysis. No differences were found between youth with ASD and ADHD in any domain under direct comparison. However, individuals with ASD and ADHD exhibited deficient attention, flexibility, visuospatial abilities, working memory, processing speed, and response inhibition compared to controls. No deficits in planning were noted in either disorder. Only 11 studies included a group with comorbid ASD+ADHD, making it difficult to determine whether common executive function deficits are a function of comorbidity. Further research is needed to determine if comorbidity accounts for the apparent commonality in executive function between ASD and ADHD.

Keywords: autism spectrum disorder, ADHD, neurocognition, executive function, youth

Procedia PDF Downloads 79
2877 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 127
2876 Identifying Physiological Markers That Are Sensitive to Cognitive Load in Preschoolers

Authors: Priyashri Kamlesh Sridhar, Suranga Nanayakkara

Abstract:

Current frameworks in assessment follow lesson delivery and rely heavily on test performance or teacher’s observations. This, however, neglects the underlying cognitive load during the learning process. Identifying the pivotal points when the load occurs helps design effective pedagogies and tools that respond to learners’ cognitive state. There has been limited research on quantifying cognitive load in preschoolers, real-time. In this study, we recorded electrodermal activity and heart rate variability (HRV) from 10 kindergarteners performing executive function tasks and Johnson Woodcock test of cognitive abilities. Preliminary findings suggest that there are indeed sensitive task-dependent markers in skin conductance (number of SCRs and average amplitude of SCRs) and HRV (mean heart rate and low frequency component) captured during the learning process.

Keywords: early childhood, learning, methodologies, pedagogies

Procedia PDF Downloads 320
2875 Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles

Authors: Yassine Ait-El-Aoud, Michael Okomoto, Andrew M. Luce, Alkim Akyurtlu, Richard M. Osgood III

Abstract:

Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography.

Keywords: dip coating, light-scattering, metal nanoparticles, nanosphere lithography

Procedia PDF Downloads 330
2874 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems

Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu

Abstract:

In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.

Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP

Procedia PDF Downloads 42
2873 Generalized Limit Equilibrium Solution for the Lateral Pile Capacity Problem

Authors: Tomer Gans-Or, Shmulik Pinkert

Abstract:

The determination of lateral pile capacity per unit length is a key aspect in geotechnical engineering. Traditional approaches for assessing piles lateral capacity in cohesive soils involve the application of upper-bound and lower-bound plasticity theorems. However, a comprehensive solution encompassing the entire spectrum of soil strength parameters, particularly in frictional soils with or without cohesion, is still lacking. This research introduces an innovative implementation of the slice method limit equilibrium solution for lateral capacity assessment. For any given numerical discretization of the soil's domain around the pile, the lateral capacity evaluation is based on mobilized strength concept. The critical failure geometry is then found by a unique optimization procedure which includes both factor of safety minimization and geometrical optimization. The robustness of this suggested methodology is that the solution is independent of any predefined assumptions. Validation of the solution is accomplished through a comparison with established plasticity solutions for cohesive soils. Furthermore, the study demonstrates the applicability of the limit equilibrium method to address unresolved cases related to frictional and cohesive-frictional soils. Beyond providing capacity values, the method enables the utilization of the mobilized strength concept to generate safety-factor distributions for scenarios representing pre-failure states.

Keywords: lateral pile capacity, slice method, limit equilibrium, mobilized strength

Procedia PDF Downloads 62
2872 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories

Authors: Mustafa Arda, Metin Aydogdu

Abstract:

Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.

Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain

Procedia PDF Downloads 392
2871 Academic, Socio-Cultural and Psychological Satisfaction of International Higher Degree Research Students (IRHD) in Australia

Authors: Baohua Yu

Abstract:

In line with wider tends in the expansion of international student mobility, the number of international higher degree research students has grown at a significant rate in recent years. In particular, Australia has become a hub for attracting international higher degree research students from around the world. However, research has identified that international higher degree research students often encounter a wide range of academic and socio-cultural challenges in adapting to their new environment. Moreover, this can have a significant bearing on their levels of satisfaction with their studies. This paper outlines the findings of a mixed method study exploring the experiences and perceptions of international higher degree research students in Australia. Findings revealed that IRHD students’ overall and academic satisfaction in Australia were highly related to each other, and they were strongly influenced by their learning and research, moderately influenced by co-national support and intercultural contact ability. Socio-cultural satisfaction seemed to belong to a different domain from academic satisfaction because it was explained by a different set of variables such as living and adaptation and intercultural contact ability. In addition, the most important issues in terms of satisfaction were not directly related to academic studies. Instead, factors such as integration into the community, interacting with other students, relationships with supervisors, and the provision of adequate desk space were often given the greatest weight. Implications for how university policy can better support international doctoral students are discussed.

Keywords: international higher degree research students, academic adaptation, socio-cultural adaptation, student satisfaction

Procedia PDF Downloads 306
2870 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 129
2869 Effects of IPPC Permits on Ambient Air Quality

Authors: C. Cafaro, P. Ceci, L. De Giorgi

Abstract:

The aim of this paper is to give an assessment of environmental effects of IPPC permit conditions of installations that are in the specific territory with a high concentration of industrial activities. The IPPC permit is the permit that each operator should hold to operate the installation as stated by the directive 2010/75/UE on industrial emissions (integrated pollution prevention and control), known as IED (Industrial Emissions Directive). The IPPC permit includes all the measures necessary to achieve a high level of protection of the environment as a whole, also defining the monitoring requirements as measurement methodology, frequency, and evaluation procedure. The emissions monitoring of a specific plant may also give indications of the contribution of these emissions on the air quality of a definite area. So, it is clear that the IPPC permits are important tools both to improve the environmental framework and to achieve the air quality standards, assisting in assessing the possible industrial sources contributions to air pollution.

Keywords: IPPC, IED, emissions, permits, air quality, large combustion plants

Procedia PDF Downloads 454
2868 OMTHD Strategy in Asymmetrical Seven-Level Inverter for High Power Induction Motor

Authors: Rachid Taleb, M’hamed Helaimi, Djilali Benyoucef, Ahmed Derrouazin

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the Optimal Minimization of the Total Harmonic Distortion (OMTHD) strategy of a uniform step asymmetrical seven-level inverter (USA7LI). The OMTHD approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the OMTHD controller in feeding a High Power Induction Motor (HPIM).

Keywords: uniform step asymmetrical seven-level inverter (USA7LI), optimal minimization of the THD (OMTHD), sinusoidal PWM (SPWM), high power induction motor (HPIM)

Procedia PDF Downloads 590
2867 An Investigation of Thai Passengers’ Level of Understanding and Awareness: Cabin Crew Safety Briefing

Authors: Chantarat Manvichien, Kevin Wongleedee

Abstract:

The purpose of this research was to study Thai passengers’ level of understanding and awareness of the cabin crew safety briefing in the airplane during the preparation to take off and landing. It is important to know if Thai passengers pay attention to cabin crew safety briefing and to suggest a better way to draw their attention. The independent variables included gender, age, income, levels of education, travelling purpose, and travelling frequency while the dependent variables was level of awareness. A simple random sampling method was utilized to get 400 respondents. The findings revealed the ranking the first three levels of importance by highest mean to lowest mean as follows: (1) It is important to listen to cabin crew safety briefing; (2) Cabin crew briefing is interesting; (3) Information from cabin crew safety briefing is easy to understand. In addition, the overall means was 3.27 with 0.800 SD.

Keywords: cabin crew, safety briefing, Thai passengers, awareness

Procedia PDF Downloads 403
2866 Nosocomial Infections and Prevention in in Intensive Care Units and Intensive Care

Authors: Kaous Samira

Abstract:

The lack of hand hygiene can contribute to nosocomial infections, including Central-venous-catheter-related bloodstream infections (CRBSI). An investigation from severally hospitals examined the frequency of hand hygiene in an OR among perioperative staff members who did not perform a surgical scrub. Among 50 operations (120 hours) that were observed, only 2% of staff members performed hand hygiene practices upon entering the OR, and 8.4% of staff performed hand hygiene upon leaving the OR. In addition, when performing radial arterial catheter placement, 0% of staff members wore gloves. Another study (A1170) surveyed healthcare providers regarding hand hygiene compliance. All of the 107 providers surveyed agreed that they should maintain hand hygiene, and most respondents believed that their own compliance was high. The author suggests that the low compliance problem associated with hand hygiene worldwide is a behavioral one among healthcare providers that requires acknowledgment and change.

Keywords: aneshesia, investigation, IOP, SBP

Procedia PDF Downloads 46
2865 Overview of Wireless Body Area Networks

Authors: Rashi Jain

Abstract:

The Wireless Body Area Networks (WBANs) is an emerging interdisciplinary area where small sensors are placed on/within the human body. These sensors monitor the physiological activities and vital statistics of the body. The data from these sensors is aggregated and communicated to a remote doctor for immediate attention or to a database for records. On 6 Feb 2012, the IEEE 802.15.6 task group approved the standard for Body Area Network (BAN) technologies. The standard proposes the physical and MAC layer for the WBANs. The work provides an introduction to WBANs and overview of the physical and MAC layers of the standard. The physical layer specifications have been covered. A comparison of different protocols used at MAC layer is drawn. An introduction to the network layer and security aspects of the WBANs is made. The WBANs suffer certain limitations such as regulation of frequency bands, minimizing the effect of transmission and reception of electromagnetic signals on the human body, maintaining the energy efficiency among others. This has slowed down their implementation.

Keywords: vehicular networks, sensors, MicroController 8085, LTE

Procedia PDF Downloads 261
2864 Towards a Smart Irrigation System Based on Wireless Sensor Networks

Authors: Loubna Hamami, Bouchaib Nassereddine

Abstract:

Due to the evolution of technologies, the need to observe and manage hostile environments, and reduction in size, wireless sensor networks (WSNs) are becoming essential and implicated in the most fields of life. WSNs enable us to change the style of living, working and interacting with the physical environment. The agricultural sector is one of such sectors where WSNs are successfully used to get various benefits. For successful agricultural production, the irrigation system is one of the most important factors, and it plays a tactical role in the process of agriculture domain. However, it is considered as the largest consumer of freshwater. Besides, the scarcity of water, the drought, the waste of the limited available water resources are among the critical issues that touch the almost sectors, notably agricultural services. These facts are leading all governments around the world to rethink about saving water and reducing the volume of water used; this requires the development of irrigation practices in order to have a complete and independent system that is more efficient in the management of irrigation. Consequently, the selection of WSNs in irrigation system has been a benefit for developing the agriculture sector. In this work, we propose a prototype for a complete and intelligent irrigation system based on wireless sensor networks and we present and discuss the design of this prototype. This latter aims at saving water, energy and time. The proposed prototype controls water system for irrigation by monitoring the soil temperature, soil moisture and weather conditions for estimation of water requirements of each plant.

Keywords: precision irrigation, sensor, wireless sensor networks, water resources

Procedia PDF Downloads 155
2863 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis

Authors: Toktam Khatibi

Abstract:

Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.

Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers

Procedia PDF Downloads 82
2862 MHC Class II DRB1 Gene Polymorphism in Lori Sheep Breed

Authors: Shahram Nanekarani, Majid Goodarzi, Majid Khosravi

Abstract:

The present study aimed at analyzing of ovine major histocompatibility complex class II (Ovar II) DRB1 gene second exon in Lori Sheep breed. The MHC plays a central role in the control of disease resistance and immunological response. Genomic DNA from blood samples of 124 sheep was extracted and a 296 bp MHC exon 2 fragment was amplified using polymerase chain reaction. PCR products were characterized by the restriction fragment length polymorphism technique using Hin1I restriction enzyme. The PCRRFLP patterns showed three genotypes, AA, AB and BB with frequency of 0.282, 0.573 and 0.145, respectively. There was no significant (P > 0.05) deviation from Hardy–Weinberg equilibrium for this locus in this population. The results of the present study indicate that exon 2 of the Ovar-DRB1 gene is highly polymorphic in Lori sheep and could be considered as an important marker assisted selection, for improvement of immunity in sheep.

Keywords: MHC-DRB1 gene, polymorphism, PCR-RFLP, lori sheep

Procedia PDF Downloads 424
2861 Competitive Strategy that Affect to the Competitive Advantage for Hotel and Resort in Samut Songkram Province

Authors: Phatthanan Chaiyabut

Abstract:

This research paper investigates whether the development of environmentally friendly practices by luxury hotel resorts can be used as a strategy for gaining competitive advantage through differentiation, and suggests ways to do it. The focus is on luxury hotel resorts in Samut Songkram Province, Thailand. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Findings indicate that environmentally friendly development of hotel resorts in Samut Songkram Province has a very limited use as a corporate strategy. Only two luxury hotel resorts had it incorporated in their strategy, it is not much used in marketing indicating environmental issues are not seen as important. This was confirmed through the interviews with the managers that it is not seen as important issue to promote.

Keywords: competitive advantage, competitive strategy, Samut Songkram Province, hotel and resort

Procedia PDF Downloads 279
2860 Relationships between Motivation Factors and English Language Proficiency of the Faculty of Management Sciences Students

Authors: Kawinphat Lertpongmanee

Abstract:

The purposes of this study were (1) investigate the English language learning motivation and the attainment of their English proficiency, (2) to find out how motivation and motivational variables of the high and low proficiency subjects are related to their English proficiency. The respondents were 80 fourth-year from Faculty of Management Sciences students in Rajabhat Suansunadha University. The instruments used for data collection were questionnaires. The statistically analyzed by using the SPSS program for frequency, percentage, arithmetic mean, standard deviation (SD), t-test, one-way analysis of variance (ANOVA), and Pearson correlation coefficient. The findings of this study are summarized as there was a significant difference in overall motivation between high and low proficiency groups of subjects at .05 (p < .05), but not in overall motivational variables. Additionally, the high proficiency group had a significantly higher level of intrinsic motivation than did the low proficiency group at .05 (p < .05).

Keywords: English language proficiency, faculty of management sciences, motivation factors, proficiency subjects

Procedia PDF Downloads 262
2859 Institutional Effectiveness in Fostering Student Retention and Success in First Year

Authors: Naziema B. Jappie

Abstract:

The objective of this study is to examine the relationship between college readiness characteristics and learning outcome assessment scores. About this, it is important to examine the first-year retention and success rate. In order to undertake this study, it will be necessary to look at proficiency levels on general and domain-specific knowledge and skills reflected on national benchmark test scores (NBT), in-college interventions and course-taking patterns. Preliminary results based on data from more than 1000 students suggest that there is a positive association between NBT scores and students’ 1st-year college GPA and their retention status. For example, 63% of students with a proficient level of math skills in the NBT had the highest level of GPA at the end of 1st-year of college in comparison to 56% of those who started with a primary or intermediate level, respectively. The retention rates among those with proficiency levels were also higher than those with basic or intermediate levels (98% vs. 93% and 88%, respectively). By the end of 3rd year in college, students with intermediate or proficient entering NBT math skills had 7% and 8% of dropout rate, compared to 14% for those started at primary level; a greater percentage of students qualified by the end of 3rd-year qualified among proficient students than that among intermediate or basic level students (50% vs. 44% and 27% respectively). The findings of this study added knowledge to the field in South Africa and are expected to help stakeholders and policymakers to better understand college learning and challenges for students with disadvantaged backgrounds and provide empirical evidence in support of related practices and policies.

Keywords: assessment, data analysis, performance, proficiency, policy, student success

Procedia PDF Downloads 134
2858 Socio-Economic Status and Quality of Life of Construction Workers in Bengaluru Sub-Urban Area in Pre and Post COVID-19

Authors: Priyanka R. Sagar

Abstract:

Social economic status (SES) is a variable that denotes the social standing of a person in society, and quality of life is a measure of health, happiness, and comfort of an individual. During early 2020, the world was stuck by the blow of the COVID-19 pandemic resulting in minimal or no economic activities to takes place. The present research paper is an attempt to analyze the socioeconomic status and quality of life of construction workers dwelling in the sub-urban areas of Hoskote located in the Bengaluru rural district pre and post-COVID-19. It also tries to analyze the difference in these variables pre and post-COVID-19. The study uses a retrospective design and data collected through a questionnaire survey from the respondents of Hoskote. A total of 100 samples were collected, out of which 73% were men and 27% were women. The mean age group of the participants is 41.04 ± 6.97 years. The overall analysis of the study shows that there is a significant difference in the socioeconomic status of construction workers pre and post-COVID-19. The study shows SES of the workers pre-pandemic is higher than post-pandemic. The other variable is quality of life which consists of physical health, psychological health, social relationships, and environmental domains. The study depicts that the psychological domain alone has been impacted by the pandemic; workers had better mental health pre-COVID-19. The other domains, i.e., physical health, social relationship, and environment, remain unaffected.

Keywords: socio-economic status, quality of life, construction workers, COVID-19

Procedia PDF Downloads 118
2857 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet

Authors: Jan Schmidt, Pierre Köhring

Abstract:

Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.

Keywords: analytical model, eddy current, losses, lattice network, permanent magnet

Procedia PDF Downloads 423
2856 Business Intelligence for Profiling of Telecommunication Customer

Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro

Abstract:

Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.

Keywords: business intelligence, customer segmentation, data warehouse, data mining

Procedia PDF Downloads 486
2855 Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements

Authors: Igor Bilenko, Artem Shitikov, Michael Gorodetsky

Abstract:

Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed.

Keywords: optical quality factor, silicon optical losses, silicon optical resonator, whispering gallery modes

Procedia PDF Downloads 494