Search results for: elastic stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4530

Search results for: elastic stress

1830 Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 194
1829 Development of a New Method for T-Joint Specimens Testing under Shear Loading

Authors: Radek Doubrava, Roman Ruzek

Abstract:

Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.

Keywords: T-joint, shear, composite, mechanical testing, finite element analysis, methodology

Procedia PDF Downloads 441
1828 Virtual Approach to Simulating Geotechnical Problems under Both Static and Dynamic Conditions

Authors: Varvara Roubtsova, Mohamed Chekired

Abstract:

Recent studies on the numerical simulation of geotechnical problems show the importance of considering the soil micro-structure. At this scale, soil is a discrete particle medium where the particles can interact with each other and with water flow under external forces, structure loads or natural events. This paper presents research conducted in a virtual laboratory named SiGran, developed at IREQ (Institut de recherche d’Hydro-Quebec) for the purpose of investigating a broad range of problems encountered in geotechnics. Using Discrete Element Method (DEM), SiGran simulated granular materials directly by applying Newton’s laws to each particle. The water flow was simulated by using Marker and Cell method (MAC) to solve the full form of Navier-Stokes’s equation for non-compressible viscous liquid. In this paper, examples of numerical simulation and their comparisons with real experiments have been selected to show the complexity of geotechnical research at the micro level. These examples describe transient flows into a porous medium, interaction of particles in a viscous flow, compacting of saturated and unsaturated soils and the phenomenon of liquefaction under seismic load. They also provide an opportunity to present SiGran’s capacity to compute the distribution and evolution of energy by type (particle kinetic energy, particle internal elastic energy, energy dissipated by friction or as a result of viscous interaction into flow, and so on). This work also includes the first attempts to apply micro discrete results on a macro continuum level where the Smoothed Particle Hydrodynamics (SPH) method was used to resolve the system of governing equations. The material behavior equation is based on the results of simulations carried out at a micro level. The possibility of combining three methods (DEM, MAC and SPH) is discussed.

Keywords: discrete element method, marker and cell method, numerical simulation, multi-scale simulations, smoothed particle hydrodynamics

Procedia PDF Downloads 300
1827 DC-to-DC Converters for Low-Voltage High-Power Renewable Energy Systems

Authors: Abdar Ali, Rizwan Ullah, Zahid Ullah

Abstract:

This paper focuses on the study of DC-to-DC converters, which are suitable for low-voltage high-power applications. The output voltages generated by renewable energy sources such as photovoltaic arrays and fuel cell stacks are generally low and required to be increased to high voltage levels. Development of DC-to-DC converters, which provide high step-up voltage conversion ratios with high efficiencies and low voltage stresses is one of the main issues in the development of renewable energy systems. A procedure for three converters-conventional DC-to-DC converter, interleaved boost converter, and isolated flyback based converter, is illustrated for a given set of specifications. The selection among the converters for the given application is based on the voltage conversion ratio, efficiency, and voltage stresses.

Keywords: flyback converter, interleaved boost, photovoltaic array, fuel cell, switch stress, voltage conversion ratio, renewable energy

Procedia PDF Downloads 593
1826 Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites

Authors: Qifei Jing, Vadim V. Silberschmidt, Lin Li, ZhiLi Dong

Abstract:

Graphene oxide (GO) was chemically functionalized to prepare polyurethane (PU) composites with improved mechanical and thermal properties. In order to achieve a well exfoliated and stable GO suspension in an organic solvent (dimethylformamide, DMF), 4, 4′- methylenebis(phenyl isocyanate) and polycaprolactone diol, which were the two monomers for synthesizing PU, were selectively used to functionalize GO. The obtained functionalized GO (FGO) could form homogeneous dispersions in DMF solvent and the PU matrix, as well as provide a good compatibility with the PU matrix. The most efficient improvement of mechanical properties was achieved when 0.4 wt% FGO was added into the PU matrix, showing increases in the tensile stress, elongation at break and toughness by 34.2%, 27.6% and 64.5%, respectively, compared with those of PU. Regarding the thermal stability, PU filled with 1 wt% FGO showed the largest extent of improvement with T2% and T50% (the temperatures at which 2% and 50% weight-loss happened) 16 °C and 21 °C higher than those of PU, respectively. The significant improvement in both mechanical properties and thermal stability of FGO/PU composites should be attributed to the homogeneous dispersion of FGO in the PU matrix and strong interfacial interaction between them.

Keywords: composite, dispersion, graphene oxide, polyurethane

Procedia PDF Downloads 261
1825 Segmentation along the Strike-slip Fault System of the Chotts Belt, Southern Tunisia

Authors: Abdelkader Soumaya, Aymen Arfaoui, Noureddine Ben Ayed, Ali Kadri

Abstract:

The Chotts belt represents the southernmost folded structure in the Tunisian Atlas domain. It is dominated by inherited deep extensional E-W trending fault zones, which are reactivated as strike-slip faults during the Cenozoic compression. By examining the geological maps at different scales and based on the fieldwork data, we propose new structural interpretations for the geometries and fault kinematics in the Chotts chain. A set of ENE-WSW right-lateral en echelon folds, with curved shapes and steeply inclined southern limbs, is visible in the map view of this belt. These asymmetric tight anticlines are affected by E-W trending fault segments linked by local bends and stepovers. The revealed kinematic indicators along one of these E-W striated faults (Tafferna segment), such as breccias and gently inclined slickenlines (N094, 80N, 15°W pitch angles), show direct evidence of dextral strike-slip movement. The calculated stress tensors from corresponding faults slip data reveal an overall strike-slip tectonic regime with reverse component and NW-trending sub-horizontal σ1 axis ranking between N130 to N150. From west to east, we distinguished several types of structures along the segmented dextral fault system of the Chotts Range. The NE-SW striking fold-thrust belt (~25 km-long) between two continuously linked E-W fault segments (NW of Tozeur town) has been suggested as a local restraining bend. The central part of the Chotts chain is occupied by the ENE-striking Ksar Asker anticlines (Taferna, Torrich, and Sif Laham), which are truncated by a set of E-W strike-slip fault segments. Further east, the fault segments of Hachichina and Sif Laham connected across the NW-verging asymmetric fold-thrust system of Bir Oum Ali, which can be interpreted as a left-stepping contractional bend (~20 km-long). The oriental part of the Chotts belt corresponds to an array of subparallel E-W oriented fault segments (i.e., Beidha, Bouloufa, El Haidoudi-Zemlet El Beidha) with similar lengths (around 10 km). Each of these individual separated segments is associated with curved ENE-trending en echelon right-stepping anticlines. These folds are affected by a set of conjugate R and R′ shear-type faults indicating a dextral strike-lip motion. In addition, the relay zones between these E-W overstepping fault segments define local releasing stepovers dominated by NW-SE subsidiary faults. Finally, the Chotts chain provides well-exposed examples of strike-slip tectonics along E-W distributed fault segments. Each fault zone shows a typical strike-slip architecture, including parallel fault segments connecting via local stepovers or bends. Our new structural interpretations for this region reveal a great influence of the E-W deep fault segments on regional tectonic deformations and stress field during the Cenozoic shortening.

Keywords: chotts belt, tunisian atlas, strike-slip fault, stepovers, fault segments

Procedia PDF Downloads 68
1824 Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network

Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian

Abstract:

The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎

Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network

Procedia PDF Downloads 127
1823 Long-Term Psychosocial Issues Among COVID-19 Survivors in Kathmandu Valley

Authors: Nabin Prasad Joshi, Samiksha Neupane

Abstract:

Since its emergence in December 2019, Corona Virus disease has impacted several countries, affecting many people. The first cases were recorded in Wuhan, China, between December 2019 and January 2020. Italy is one of the affected countries in Europe. The relations between India and Nepal have reverted to the pre-pandemic period as both countries have open borders. The study focused on the overall psychosocial impact among covid-19 survivors in their life what are the changes they are facing after covid also how are their relations with friends and relatives after they have covid in different municipalities of Kathmandu valley, where people from different regions are living in rent and have their own houses. Support from friends and family during a pandemic can prevent it if it is strong enough. Nonetheless, there were risk factors for psychosocial damage, including a lack of or insufficient family and social support, psychiatric assistance, and inadequate insurance or compensation. Poorer mental health outcomes were inversely correlated with social rejection or isolation.

Keywords: stress, anxiety, depression, Kathmandu

Procedia PDF Downloads 100
1822 Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels

Authors: Virginia Martin Torrejon, Binjie Wu

Abstract:

Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures.

Keywords: gelatine gelation kinetics, gelatine-SDS interactions, gelatine-surfactant hydrogels, melting and gelling temperature of gelatine gels, rheology of gelatine hydrogels

Procedia PDF Downloads 99
1821 High Temperature Creep Analysis for Lower Head of Reactor Pressure Vessel

Authors: Dongchuan Su, Hai Xie, Naibin Jiang

Abstract:

Under severe accident cases, the nuclear reactor core may meltdown inside the lower head of the reactor pressure vessel (RPV). Retaining the melt pool inside the RPV is an important strategy of severe accident management. During this process, the inner wall of the lower head will be heated to high temperature of a thousand centigrade, and the outer wall is immersed in a large amount of cooling water. The material of the lower head will have serious creep damage under the high temperature and the temperature difference, and this produces a great threat to the integrity of the RPV. In this paper, the ANSYS program is employed to build the finite element method (FEM) model of the lower head, the creep phenomena is simulated under the severe accident case, the time dependent strain and stress distribution is obtained, the creep damage of the lower head is investigated, the integrity of the RPV is evaluated and the theoretical basis is provided for the optimized design and safety assessment of the RPV.

Keywords: severe accident, lower head of RPV, creep, FEM

Procedia PDF Downloads 232
1820 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser

Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay

Abstract:

The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.

Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction

Procedia PDF Downloads 294
1819 Effectiveness of Prehabilitation on Improving Emotional and Clinical Recovery of Patients Undergoing Open Heart Surgeries

Authors: Fatma Ahmed, Heba Mostafa, Bassem Ramdan, Azza El-Soussi

Abstract:

Background: World Health Organization stated that by 2020 cardiac disease will be the number one cause of death worldwide and estimates that 25 million people per year will suffer from heart disease. Cardiac surgery is considered an effective treatment for severe forms of cardiovascular diseases that cannot be treated by medical treatment or cardiac interventions. In spite of the benefits of cardiac surgery, it is considered a major stressful experience for patients who are candidate for surgery. Prehabilitation can decrease incidences of postoperative complications as it prepares patients for surgical stress through enhancing their defenses to meet the demands of surgery. When patients anticipate the postoperative sequence of events, they will prepare themselves to act certain behaviors, identify their roles and actively participate in their own recovery, therefore, anxiety levels are decreased and functional capacity is enhanced. Prehabilitation programs can comprise interventions that include physical exercise, psychological prehabilitation, nutritional optimization and risk factor modification. Physical exercises are associated with improvements in the functioning of the various physiological systems, reflected in increased functional capacity, improved cardiac and respiratory functions and make patients fit for surgical intervention. Prehabilitation programs should also prepare patients psychologically in order to cope with stress, anxiety and depression associated with postoperative pain, fatigue, limited ability to perform the usual activities of daily living through acting in a healthy manner. Notwithstanding the benefits of psychological preparations, there are limited studies which investigated the effect of psychological prehabilitation to confirm its effect on psychological, quality of life and physiological outcomes of patients who had undergone cardiac surgery. Aim of the study: The study aims to determine the effect of prehabilitation interventions on outcomes of patients undergoing cardiac surgeries. Methods: Quasi experimental study design was used to conduct this study. Sixty eligible and consenting patients were recruited and divided into two groups: control and intervention group (30 participants in each). One tool namely emotional, physiological, clinical, cognitive and functional capacity outcomes of prehabilitation intervention assessment tool was utilized to collect the data of this study. Results: Data analysis showed significant improvement in patients' emotional state, physiological and clinical outcomes (P < 0.000) with the use of prehabilitation interventions. Conclusions: Cardiac prehabilitation in the form of providing information about surgery, circulation exercise, deep breathing exercise, incentive spirometer training and nutritional education implemented daily by patients scheduled for elective open heart surgery one week before surgery have been shown to improve patients' emotional state, physiological and clinical outcomes.

Keywords: emotional recovery, clinical recovery, coronary artery bypass grafting patients, prehabilitation

Procedia PDF Downloads 201
1818 An Analytical Formulation of Pure Shear Boundary Condition for Assessing the Response of Some Typical Sites in Mumbai

Authors: Raj Banerjee, Aniruddha Sengupta

Abstract:

An earthquake event, associated with a typical fault rupture, initiates at the source, propagates through a rock or soil medium and finally daylights at a surface which might be a populous city. The detrimental effects of an earthquake are often quantified in terms of the responses of superstructures resting on the soil. Hence, there is a need for the estimation of amplification of the bedrock motions due to the influence of local site conditions. In the present study, field borehole log data of Mangalwadi and Walkeswar sites in Mumbai city are considered. The data consists of variation of SPT N-value with the depth of soil. A correlation between shear wave velocity (Vₛ) and SPT N value for various soil profiles of Mumbai city has been developed using various existing correlations which is used further for site response analysis. MATLAB program is developed for studying the ground response analysis by performing two dimensional linear and equivalent linear analysis for some of the typical Mumbai soil sites using pure shear (Multi Point Constraint) boundary condition. The model is validated in linear elastic and equivalent linear domain using the popular commercial program, DEEPSOIL. Three actual earthquake motions are selected based on their frequency contents and durations and scaled to a PGA of 0.16g for the present ground response analyses. The results are presented in terms of peak acceleration time history with depth, peak shear strain time history with depth, Fourier amplitude versus frequency, response spectrum at the surface etc. The peak ground acceleration amplification factors are found to be about 2.374, 3.239 and 2.4245 for Mangalwadi site and 3.42, 3.39, 3.83 for Walkeswar site using 1979 Imperial Valley Earthquake, 1989 Loma Gilroy Earthquake and 1987 Whitter Narrows Earthquake, respectively. In the absence of any site-specific response spectrum for the chosen sites in Mumbai, the generated spectrum at the surface may be utilized for the design of any superstructure at these locations.

Keywords: deepsoil, ground response analysis, multi point constraint, response spectrum

Procedia PDF Downloads 179
1817 Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling

Authors: A. Falsafi, M. Dadkhah, S. Shahidi

Abstract:

The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs.

Keywords: most tangential tension criterion, longitudinal angle of failure, side angle of fracture, drills crack

Procedia PDF Downloads 130
1816 Time-Dependent Analysis of Composite Steel-Concrete Beams Subjected to Shrinkage

Authors: Rahal Nacer, Beghdad Houda, Tehami Mohamed, Souici Abdelaziz

Abstract:

Although the shrinkage of the concrete causes undesirable parasitic effects to the structure, it can then harm the resistance and the good appearance of the structure. Long term behaviourmodelling of steel-concrete composite beams requires the use of the time variable and the taking into account of all the sustained stress history of the concrete slab constituting the cross section. The work introduced in this article is a theoretical study of the behaviour of composite beams with respect to the phenomenon of concrete shrinkage. While using the theory of the linear viscoelasticity of the concrete, and on the basis of the rate of creep method, in proposing an analytical model, made up by a system of two linear differential equations, emphasizing the effects caused by shrinkage on the resistance of a steel-concrete composite beams. Results obtained from the application of the suggested model to a steel-concrete composite beam are satisfactory.

Keywords: composite beams, shrinkage, time, rate of creep method, viscoelasticity theory

Procedia PDF Downloads 527
1815 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.

Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus

Procedia PDF Downloads 217
1814 Activity of Malate Dehydrogenase in Cell Free Extracts from S. proteamaculans, A. hydrophila, and K. pneumoniae

Authors: Mohamed M. Bumadian, D. James Gilmour

Abstract:

Three bacterial species were isolated from the River Wye (Derbyshire, England) and identified using 16S rRNA gene sequencing as Serratia proteamaculans, Aeromonas hydrophila and Klebsiella pneumoniae. Respiration rates of the strains were measured in order to determine the metabolic activity under salt stress. The highest respiration rates of all three strains were found at 0.17 M and 0.5 M NaCl and then the respiration rate decreased with increasing concentrations of NaCl. In addition, the effect of increasing concentrations of NaCl on malate dehydrogenase activity was determined using cell-free extracts of the three strains. Malate dehydrogenase activity was stimulated at NaCl concentrations up to 0.5 M, and a small level of activity remained even at 3.5 M NaCl. The pH optimum of the malate dehydrogenase in cell-free extracts of all strains was higher than pH 7.5.

Keywords: fresh water, halotolerant pathogenic bacteria, 16S rRNA gene, cell-free extracts, respiration rates, malate dehydrogenase

Procedia PDF Downloads 461
1813 Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop

Authors: S. Athiralakshmi, B.E. Bhojaraja, U. Pruthviraj

Abstract:

In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS.

Keywords: FLAASH, Hyperspectral remote sensing, Linear Spectral Unmixing, Spectral Angle Mapper Classifier.

Procedia PDF Downloads 518
1812 Plastic Deformation Behavior of a Pre-Bored Pile Filler Material Due to Lateral Cyclic Loading in Sandy Soil

Authors: A. Y. Purnama, N. Yasufuku

Abstract:

The bridge structure is a building that has to be maintained, especially for the elastomeric bearing. The girder of the bridge needs to be lifted upward to maintain this elastomeric bearing, that needs high cost. Nowadays, integral abutment bridges are becoming popular. The integral abutment bridge is less costly because the elastomeric bearings are eliminated, which reduces the construction cost and maintenance costs. However, when this elastomeric bearing removed, the girder movement due to environmental thermal forces directly support by pile foundation, and it needs to be considered in the design. In case of pile foundation in a stiff soil, in the top area of the pile cannot move freely due to the fixed condition by soil stiffness. Pre-bored pile system can be used to increase the flexibility of pile foundation using a pre-bored hole that filled with elastic materials, but the behavior of soil-pile interaction and soil response due to this system is still rarely explained. In this paper, an experimental study using small-scale laboratory model test conducted in a half size model. Single flexible pile model embedded in sandy soil with the pre-bored ring, which filled with the filler material. The testing box made from an acrylic glass panel as observation area of the pile shaft to monitor the displacement of the pile during the lateral loading. The failure behavior of the soil inside the pre-bored ring and around the pile shaft was investigated to determine the point of pile rotation and the movement of this point due to the pre-bored ring system along the pile shaft. Digital images were used to capture the deformations of the soil and pile foundation during the loading from the acrylic glass on the side of the testing box. The results were presented in the form of lateral load resistance charts against the pile shaft displacement. The failure pattern result also established due to the cyclic lateral loading. The movement of the rotational point was measured due to the pre-bored system filled with appropriate filler material. Based on the findings, design considerations for pre-bored pile system due to cyclic lateral loading can be introduced.

Keywords: failure behavior, pre-bored pile system, cyclic lateral loading, sandy soil

Procedia PDF Downloads 231
1811 Numerical Study of Leisure Home Chassis under Various Loads by Using Finite Element Analysis

Authors: Asem Alhnity, Nicholas Pickett

Abstract:

The leisure home industry is experiencing an increase in sales due to the rise in popularity of staycations. However, there is also a demand for improvements in thermal and structural behaviour from customers. Existing standards and codes of practice outline the requirements for leisure home design. However, there is a lack of expertise in applying Finite Element Analysis (FEA) to complex structures in this industry. As a result, manufacturers rely on standardized design approaches, which often lead to excessively engineered or inadequately designed products. This study aims to address this issue by investigating the impact of the habitation structure on chassis performance in leisure homes. The aim of this research is to comprehensively analyse the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, including both the habitation structure and the chassis, this study seeks to develop a novel framework for designing and analysing leisure homes. The objectives include material reduction, enhancing structural stability, resolving existing design issues, and developing innovative modular and wooden chassis designs. The methodology used in this research is quantitative in nature. The study utilizes FEA to analyse the performance of leisure home chassis under various loads. The analysis procedures involve running the FEA simulations on the numerical model of the leisure home chassis. Different load scenarios are applied to assess the stress and deflection performance of the chassis under various conditions. FEA is a numerical method that allows for accurate analysis of complex systems. The research utilizes flexible mesh sizing to calculate small deflections around doors and windows, with large meshes used for macro deflections. This approach aims to minimize run-time while providing meaningful stresses and deflections. Moreover, it aims to investigate the limitations and drawbacks of the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load. The findings of this study indicate that the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load overlooks the strengthening generated from the habitation structure. By employing FEA on the entire unit, it is possible to optimize stress and deflection performance while achieving material reduction and enhanced structural stability. The study also introduces innovative modular and wooden chassis designs, which show promising weight reduction compared to the existing heavily fabricated lattice chassis. In conclusion, this research provides valuable insights into the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, the study demonstrates the importance of considering the strengthening generated from the habitation structure in chassis design. The research findings contribute to advancements in material reduction, structural stability, and overall performance optimization. The novel framework developed in this study promotes sustainability, cost-efficiency, and innovation in leisure home design.

Keywords: static homes, caravans, motor homes, holiday homes, finite element analysis (FEA)

Procedia PDF Downloads 100
1810 Analysis of the Transcriptional Response of Rhazia stricta to Jasmonic Acid Induction

Authors: Nahid H. Hajrah, Jamal S. M. Sabir, Neil Hall

Abstract:

The jasmonic pathway is ubiquitous in plants and is crucial to plant development. It Is involved in fertility, ripening, and sex determination as well as in response to environmental stresses such as herbivory, pathogen drought or temperature shock. Essentially the jasmonic pathway acts to shut down growth in order to induce defence pathways. These pathways include the production of secondary metabolites which have evolved to defend against herbivores and pathogens but are of increasing interest due to their roll in medicine and biotechnology. Here we describe the transcriptional response of Rhazia stricta (a poisonous shrub widely used in traditional medicine) to jasmonic acid, in order to better characterize the genes involved in secondary metabolite production and its response to stress. We observe coordinated upregulation of flavonoid biosynthesis pathway leading to flavonols, flavones and anthocyanins but no similar coordination of the monoterpene indole alkaloid pathway.

Keywords: medicinal plants, Rhazia stricta, jasmonic acid, transcriptional analysis

Procedia PDF Downloads 142
1809 Interior Designing Suggestions and Guidelines for Dementia Patients in Taiwan for Their Wellbeing

Authors: Rina Yadav, Lih-Yau Song

Abstract:

The claim for elderly care center has increased enormously with the world demographic revolution as the number of senior citizens increased in the 21st century. As per the world progress into contemporaneousness, a large number of people are engaged in daily routine to bring about the senior citizens to lose the care that they in fact need. New design suggestions have been made on the basis of available guidelines and two case studies in Taiwan. Interior design can provide positive and sensory stimulation through memory stimulation, and by creating a friendly and comfortable environment for demented older people, which can reduce patient anxiety and reduce stress on caregivers. This report pursues to reveal the better design of an elderly care center with a new tactic in a direction to offer better service for demented elderly people which could upraise their living standard.

Keywords: daycare center, dementia patients, interior designing, older adults

Procedia PDF Downloads 250
1808 Assessment of Cellular Metabolites and Impedance for Early Diagnosis of Oral Cancer among Habitual Smokers

Authors: Ripon Sarkar, Kabita Chaterjee, Ananya Barui

Abstract:

Smoking is one of the leading causes of oral cancer. Cigarette smoke affects various cellular parameters and alters molecular metabolism of cells. Epithelial cells losses their cytoskeleton structure, membrane integrity, cellular polarity that subsequently initiates the process of epithelial cells to mesenchymal transition due to long exposure of cigarette smoking. It changes the normal cellular metabolic activity which induces oxidative stress and enhances the reactive oxygen spices (ROS) formation. Excessive ROS and associated oxidative stress are considered to be a driving force in alteration in cellular phenotypes, polarity distribution and mitochondrial metabolism. Noninvasive assessment of such parameters plays essential role in development of routine screening system for early diagnosis of oral cancer. Electrical cell-substrate impedance sensing (ECIS) is one of such method applied for detection of cellular membrane impedance which can be correlated to cell membrane integrity. Present study intends to explore the alteration in cellular impedance along with the expression of cellular polarity molecules and cytoskeleton distributions in oral epithelial cells of habitual smokers and to correlate the outcome to that of clinically diagnosed oral leukoplakia and oral squamous cell carcinoma patients. Total 80 subjects were categorized into four study groups: nonsmoker (NS), cigarette smoker (CS), oral leukoplakia (OLPK) and oral squamous cell carcinoma (OSCC). Cytoskeleton distribution was analyzed by staining of actin filament and generation of ROS was measured using assay kit using standard protocol. Cell impedance was measured through ECIS method at different frequencies. Expression of E-cadherin and protease-activated receptor (PAR) proteins were observed through immune-fluorescence method. Distribution of actin filament is well organized in NS group however; distribution pattern was grossly varied in CS, OLPK and OSCC. Generation of ROS was low in NS which subsequently increased towards OSCC. Expressions of E-cadherin and change in cellular electrical impedance in different study groups indicated the hallmark of cancer progression from NS to OSCC. Expressions of E-cadherin, PAR protein, and cell impedance were decreased from NS to CS and farther OSCC. Generally, the oral epithelial cells exhibit apico-basal polarity however with cancer progression these cells lose their characteristic polarity distribution. In this study expression of polarity molecule and ECIS observation indicates such altered pattern of polarity among smoker group. Overall the present study monitored the alterations in intracellular ROS generation and cell metabolic function, membrane integrity in oral epithelial cells in cigarette smokers. Present study thus has clinical significance, and it may help in developing a noninvasive technique for early diagnosis of oral cancer amongst susceptible individuals.

Keywords: cigarette smoking, early oral cancer detection, electric cell-substrate impedance sensing, noninvasive screening

Procedia PDF Downloads 175
1807 Designating and Evaluating a Healthy Eating Model at the Workplace: A Practical Strategy for Preventing Non-Communicable Diseases in Aging

Authors: Mahnaz Khalafehnilsaz, Rozina Rahnama

Abstract:

Introduction: The aging process has been linked to a wide range of non-communicable diseases that cause a loss of health-related quality of life. This process can be worsened if an active and healthy lifestyle is not followed by adults, especially in the workplace. This setting not only may create a sedentary lifestyle but will lead to obesity and overweight in the long term and create unhealthy and inactive aging. In addition, eating habits are always known to be associated with active aging. Therefore, it is very valuable to know the eating patterns of people at work in order to detect and prevent diseases in the coming years. This study aimed to design and test a model to improve eating habits among employees at an industrial complex as a practical strategy. Material and method: The present research was a mixed-method study with a subsequent exploratory design which was carried out in two phases, qualitative and quantitative, in 2018 year. In the first step, participants were selected by purposive sampling (n=34) to ensure representation of different job roles; hours worked, gender, grade, and age groups, and semi-structured interviews were used. All interviews were conducted in the workplace and were audio recorded, transcribed verbatim, and analyzed using the Strauss and Corbin approach. The interview question was, “what were their experiences of eating at work, and how could these nutritional habits affect their health in old age.” Finally, a total of 1500 basic codes were oriented at the open coding step, and they were merged together to create the 17 classes, and six concepts and a conceptual model were designed. The second phase of the study was conducted in the form of a cross-sectional study. After verification of the research tool, the developed questionnaire was examined in a group of employees. In order to test the conceptual model of the study, a total of 500 subjects were included in psychometry. Findings: Six main concepts have been known, including 1. undesirable control of stress, 2. lack of eating knowledge, 3. effect of the social network, 4. lack of motivation for healthy habits, 5. environmental-organizational intensifier, 6. unhealthy eating behaviors. The core concept was “Motivation Loss to do preventive behavior.” The main constructs of the motivational-based model for the promotion of eating habits are “modification and promote of eating habits,” increase of knowledge and competency, convey of healthy nutrition behavior culture and effecting of behavioral model especially in older age, desirable of control stress. Conclusion: A key factor for unhealthy eating behavior at the workplace is a lack of motivation, which can be an obstacle to conduct preventive behaviors at work that can affect the healthy aging process in the long term. The motivational-based model could be considered an effective conceptual framework and instrument for designing interventions for the promotion to create healthy and active aging.

Keywords: aging, eating habits, older age, workplace

Procedia PDF Downloads 101
1806 Impact of Workplace Psychology on Architect's Work Satisfaction

Authors: Sriram Prabhakar

Abstract:

Architects are known for long and unfriendly work hours and thus adapt to routines mandated by nature and surroundings of their work. Work gratification among architects is necessary to have a healthy working condition that sequentially supports to create built environments as work satisfaction has been low among Architects and are also exposed to a number of stress factors like long working hours, the slow pace of work, high workload, and lack of job safety with low pay which negatively impacts their well-being. Additionally, architects have only a limited scope to use their creative skill. This paper studies the case of work satisfaction and the factors that impact it in the state of Indian architects. An eloquent survey in the form of a questionnaire and standardized interviews will be utilized to form a comprehensive method for the study. Factors that basically affect workplaces include restraining over thermal conditions, indoor air quality, recreational spaces, acoustics, views, lighting, and ergonomics. The expected outcome of the paper is to check architects' workplace psychology and their control on their work environment.

Keywords: architects, gratification, stressors, workplace psychology

Procedia PDF Downloads 221
1805 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique

Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich

Abstract:

In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.

Keywords: annular flow, disturbance waves, entrainment, flow development

Procedia PDF Downloads 249
1804 Optimal Analysis of Structures by Large Wing Panel Using FEM

Authors: Byeong-Sam Kim, Kyeongwoo Park

Abstract:

In this study, induced structural optimization is performed to compare the trade-off between wing weight and induced drag for wing panel extensions, construction of wing panel and winglets. The aerostructural optimization problem consists of parameters with strength condition, and two maneuver conditions using residual stresses in panel production. The results of kinematic motion analysis presented a homogenization based theory for 3D beams and 3D shells for wing panel. This theory uses a kinematic description of the beam based on normalized displacement moments. The displacement of the wing is a significant design consideration as large deflections lead to large stresses and increased fatigue of components cause residual stresses. The stresses in the wing panel are small compared to the yield stress of aluminum alloy. This study describes the implementation of a large wing panel, aerostructural analysis and structural parameters optimization framework that couples a three-dimensional panel method.

Keywords: wing panel, aerostructural optimization, FEM, structural analysis

Procedia PDF Downloads 590
1803 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 385
1802 Understanding Mudrocks and Their Shear Strength Deterioration Associated with Inundation

Authors: Haslinda Nahazanan, Afshin Asadi, Zainuddin Md. Yusoff, Nik Nor Syahariati Nik Daud

Abstract:

Mudrocks is considered as a problematic material due to their unexpected behaviour specifically when they are contacting with water or being exposed to the atmosphere. Many instability problems of cutting slopes were found lying on high slaking mudrocks. It has become one of the major concerns to geotechnical engineer as mudrocks cover up to 50% of sedimentary rocks in the geologic records. Mudrocks display properties between soils and rocks which can be very hard to understand. Therefore, this paper aims to review the definition, mineralogy, geo-chemistry, classification and engineering properties of mudrocks. As water has become one of the major factors that will rapidly change the behaviour of mudrocks, a review on the shear strength of mudrocks in Derbyshire has been made using a fully automated hydraulic stress path testing system under three states: dry, short-term inundated and long-term inundated. It can be seen that the strength of mudrocks has deteriorated as it condition changed from dry to short-term inundated and finally to long-term inundated.

Keywords: mudrocks, sedimentary rocks, inundation, shear strength

Procedia PDF Downloads 234
1801 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry

Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista

Abstract:

The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.

Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests

Procedia PDF Downloads 60