Search results for: fully spatial signal processing
6173 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker
Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi
Abstract:
Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles
Procedia PDF Downloads 2906172 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles
Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo
Abstract:
Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.Keywords: HRRP, NCTI, simulated/synthetic database, SVD
Procedia PDF Downloads 3546171 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation
Procedia PDF Downloads 3456170 OSEME: A Smart Learning Environment for Music Education
Authors: Konstantinos Sofianos, Michael Stefanidakis
Abstract:
Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web
Procedia PDF Downloads 3126169 Innovation Eco-Systems and Cities: Sustainable Innovation and Urban Form
Authors: Claudia Trillo
Abstract:
Regional innovation eco-ecosystems are composed of a variety of interconnected urban innovation eco-systems, mutually reinforcing each other and making the whole territorial system successful. Combining principles drawn from the new economic growth theory and from the socio-constructivist approach to the economic growth, with the new geography of innovation emerging from the networked nature of innovation districts, this paper explores the spatial configuration of urban innovation districts, with the aim of unveiling replicable spatial patterns and transferable portfolios of urban policies. While some authors suggest that cities should be considered ideal natural clusters, supporting cross-fertilization and innovation thanks to the physical setting they provide to the construction of collective knowledge, still a considerable distance persists between regional development strategies and urban policies. Moreover, while public and private policies supporting entrepreneurship normally consider innovation as the cornerstone of any action aimed at uplifting the competitiveness and economic success of a certain area, a growing body of literature suggests that innovation is non-neutral, hence, it should be constantly assessed against equity and social inclusion. This paper draws from a robust qualitative empirical dataset gathered through 4-years research conducted in Boston to provide readers with an evidence-based set of recommendations drawn from the lessons learned through the investigation of the chosen innovation districts in the Boston area. The evaluative framework used for assessing the overall performance of the chosen case studies stems from the Habitat III Sustainable Development Goals rationale. The concept of inclusive growth has been considered essential to assess the social innovation domain in each of the chosen cases. The key success factors for the development of the Boston innovation ecosystem can be generalized as follows: 1) a quadruple helix model embedded in the physical structure of the two cities (Boston and Cambridge), in which anchor Higher Education (HE) institutions continuously nurture the Entrepreneurial Environment. 2) an entrepreneurial approach emerging from the local governments, eliciting risk-taking and bottom-up civic participation in tackling key issues in the city. 3) a networking structure of some intermediary actors supporting entrepreneurial collaboration, cross-fertilization and co-creation, which collaborate at multiple-scales thus enabling positive spillovers from the stronger to the weaker contexts. 4) awareness of the socio-economic value of the built environment as enabler of cognitive networks allowing activation of the collective intelligence. 5) creation of civic-led spaces enabling grassroot collaboration and cooperation. Evidence shows that there is not a single magic recipe for the successful implementation of place-based and social innovation-driven strategies. On the contrary, the variety of place-grounded combinations of micro and macro initiatives, embedded in the social and spatial fine grain of places and encompassing a diversity of actors, can create the conditions enabling places to thrive and local economic activities to grow in a sustainable way.Keywords: innovation-driven sustainable Eco-systems , place-based sustainable urban development, sustainable innovation districts, social innovation, urban policie
Procedia PDF Downloads 1046168 An Approach to Make Low-Cost Self-Compacting Geo-Polymer Concrete
Authors: Ankit Chakraborty, Raj Shah, Prayas Variya
Abstract:
Self-compacting geo-polymer concrete is a blended version of self-compacting concrete developed in Japan by Okamura. H. in 1986 and geo-polymer concrete proposed by Davidovits in 1999. This method is eco-friendly as there is low CO₂ emission and reduces labor cost due to its self-compacting property and zero percent cement content. We are making an approach to reduce concreting cost and make concreting eco-friendly by replacing cement fully and sand by a certain amount of industrial waste. It will reduce overall concreting cost due to its self-compatibility and replacement of materials, forms eco-friendly concreting technique and gives better fresh property and hardened property results compared to self-compacting concrete and geo-polymer concrete.Keywords: geopolymer concrete, low cost concreting, low carbon emission, self compactability
Procedia PDF Downloads 2326167 Mitigation of Indoor Human Exposure to Traffic-Related Fine Particulate Matter (PM₂.₅)
Authors: Ruchi Sharma, Rajasekhar Balasubramanian
Abstract:
Motor vehicles emit a number of air pollutants, among which fine particulate matter (PM₂.₅) is of major concern in cities with high population density due to its negative impacts on air quality and human health. Typically, people spend more than 80% of their time indoors. Consequently, human exposure to traffic-related PM₂.₅ in indoor environments has received considerable attention. Most of the public residential buildings in tropical countries are designed for natural ventilation where indoor air quality tends to be strongly affected by the migration of air pollutants of outdoor origin. However, most of the previously reported traffic-related PM₂.₅ exposure assessment studies relied on ambient PM₂.₅ concentrations and thus, the health impact of traffic-related PM₂.₅ on occupants in naturally ventilated buildings remains largely unknown. Therefore, a systematic field study was conducted to assess indoor human exposure to traffic-related PM₂.₅ with and without mitigation measures in a typical naturally ventilated residential apartment situated near a road carrying a large volume of traffic. Three PM₂.₅ exposure scenarios were simulated in this study, i.e., Case 1: keeping all windows open with a ceiling fan on as per the usual practice, Case 2: keeping all windows fully closed as a mitigation measure, and Case 3: keeping all windows fully closed with the operation of a portable indoor air cleaner as an additional mitigation measure. The indoor to outdoor (I/O) ratios for PM₂.₅ mass concentrations were assessed and the effectiveness of using the indoor air cleaner was quantified. Additionally, potential human health risk based on the bioavailable fraction of toxic trace elements was also estimated for the three cases in order to identify a suitable mitigation measure for reducing PM₂.₅ exposure indoors. Traffic-related PM₂.₅ levels indoors exceeded the air quality guidelines (12 µg/m³) in Case 1, i.e., under natural ventilation conditions due to advective flow of outdoor air into the indoor environment. However, while using the indoor air cleaner, a significant reduction (p < 0.05) in the PM₂.₅ exposure levels was noticed indoors. Specifically, the effectiveness of the air cleaner in terms of reducing indoor PM₂.₅ exposure was estimated to be about 74%. Moreover, potential human health risk assessment also indicated a substantial reduction in potential health risk while using the air cleaner. This is the first study of its kind that evaluated the indoor human exposure to traffic-related PM₂.₅ and identified a suitable exposure mitigation measure that can be implemented in densely populated cities to realize health benefits.Keywords: fine particulate matter, indoor air cleaner, potential human health risk, vehicular emissions
Procedia PDF Downloads 1266166 Learner's Difficulties Acquiring English: The Case of Native Speakers of Rio de La Plata Spanish Towards Justifying the Need for Corpora
Authors: Maria Zinnia Bardas Hoffmann
Abstract:
Contrastive Analysis (CA) is the systematic comparison between two languages. It stems from the notion that errors are caused by interference of the L1 system in the acquisition process of an L2. CA represents a useful tool to understand the nature of learning and acquisition. Also, this particular method promises a path to un-derstand the nature of underlying cognitive processes, even when other factors such as intrinsic motivation and teaching strategies were found to best explain student’s problems in acquisition. CA study is justified not only from the need to get a deeper understanding of the nature of SLA, but as an invaluable source to provide clues, at a cognitive level, for those general processes involved in rule formation and abstract thought. It is relevant for cross disciplinary studies and the fields of Computational Thought, Natural Language processing, Applied Linguistics, Cognitive Linguistics and Math Theory. That being said, this paper intends to address here as well its own set of constraints and limitations. Finally, this paper: (a) aims at identifying some of the difficulties students may find in their learning process due to the nature of their specific variety of L1, Rio de la Plata Spanish (RPS), (b) represents an attempt to discuss the necessity for specific models to approach CA.Keywords: second language acquisition, applied linguistics, contrastive analysis, applied contrastive analysis English language department, meta-linguistic rules, cross-linguistics studies, computational thought, natural language processing
Procedia PDF Downloads 1506165 Control of Sensors in Metering System of Fluid
Authors: A. Harrouz, O. Harrouz, A. Benatiallah
Abstract:
This paper is to review the essential definitions, roles, and characteristics of communication of metering system. We discuss measurement, data acquisition, and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.Keywords: data acquisition, dynamic metering system, reference standards, metrological control
Procedia PDF Downloads 4926164 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 106163 Distant Speech Recognition Using Laser Doppler Vibrometer
Authors: Yunbin Deng
Abstract:
Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR
Procedia PDF Downloads 1796162 GIS Technology for Environmentally Polluted Sites with Innovative Process to Improve the Quality and Assesses the Environmental Impact Assessment (EIA)
Authors: Hamad Almebayedh, Chuxia Lin, Yu wang
Abstract:
The environmental impact assessment (EIA) must be improved, assessed, and quality checked for human and environmental health and safety. Soil contamination is expanding, and sites and soil remediation activities proceeding around the word which simplifies the answer “quality soil characterization” will lead to “quality EIA” to illuminate the contamination level and extent and reveal the unknown for the way forward to remediate, countifying, containing, minimizing and eliminating the environmental damage. Spatial interpolation methods play a significant role in decision making, planning remediation strategies, environmental management, and risk assessment, as it provides essential elements towards site characterization, which need to be informed into the EIA. The Innovative 3D soil mapping and soil characterization technology presented in this research paper reveal the unknown information and the extent of the contaminated soil in specific and enhance soil characterization information in general which will be reflected in improving the information provided in developing the EIA related to specific sites. The foremost aims of this research paper are to present novel 3D mapping technology to quality and cost-effectively characterize and estimate the distribution of key soil characteristics in contaminated sites and develop Innovative process/procedure “assessment measures” for EIA quality and assessment. The contaminated site and field investigation was conducted by innovative 3D mapping technology to characterize the composition of petroleum hydrocarbons contaminated soils in a decommissioned oilfield waste pit in Kuwait. The results show the depth and extent of the contamination, which has been interred into a developed assessment process and procedure for the EIA quality review checklist to enhance the EIA and drive remediation and risk assessment strategies. We have concluded that to minimize the possible adverse environmental impacts on the investigated site in Kuwait, the soil-capping approach may be sufficient and may represent a cost-effective management option as the environmental risk from the contaminated soils is considered to be relatively low. This research paper adopts a multi-method approach involving reviewing the existing literature related to the research area, case studies, and computer simulation.Keywords: quality EIA, spatial interpolation, soil characterization, contaminated site
Procedia PDF Downloads 886161 A Review of Brain Implant Device: Current Developments and Applications
Authors: Ardiansyah I. Ryan, Ashsholih K. R., Fathurrohman G. R., Kurniadi M. R., Huda P. A
Abstract:
The burden of brain-related disease is very high. There are a lot of brain-related diseases with limited treatment result and thus raise the burden more. The Parkinson Disease (PD), Mental Health Problem, or Paralysis of extremities treatments had risen concern, as the patients for those diseases usually had a low quality of life and low chance to recover fully. There are also many other brain or related neural diseases with the similar condition, mainly the treatments for those conditions are still limited as our understanding of the brain function is insufficient. Brain Implant Technology had given hope to help in treating this condition. In this paper, we examine the current update of the brain implant technology. Neurotechnology is growing very rapidly worldwide. The United States Food and Drug Administration (FDA) has approved the use of Deep Brain Stimulation (DBS) as a brain implant in humans. As for neural implant both the cochlear implant and retinal implant are approved by FDA too. All of them had shown a promising result. DBS worked by stimulating a specific region in the brain with electricity. This device is planted surgically into a very specific region of the brain. This device consists of 3 main parts: Lead (thin wire inserted into the brain), neurostimulator (pacemaker-like device, planted surgically in the chest) and an external controller (to turn on/off the device by patient/programmer). FDA had approved DBS for the treatment of PD, Pain Management, Epilepsy and Obsessive Compulsive Disorder (OCD). The target treatment of DBS in PD is to reduce the tremor and dystonia symptoms. DBS has been showing the promising result in animal and limited human trial for other conditions such as Alzheimer, Mental Health Problem (Major Depression, Tourette Syndrome), etc. Every surgery has risks of complications, although in DBS the chance is very low. DBS itself had a very satisfying result as long as the subject criteria to be implanted this device based on indication and strictly selection. Other than DBS, there are several brain implant devices that still under development. It was included (not limited to) implant to treat paralysis (In Spinal Cord Injury/Amyotrophic Lateral Sclerosis), enhance brain memory, reduce obesity, treat mental health problem and treat epilepsy. The potential of neurotechnology is unlimited. When brain function and brain implant were fully developed, it may be one of the major breakthroughs in human history like when human find ‘fire’ for the first time. Support from every sector for further research is very needed to develop and unveil the true potential of this technology.Keywords: brain implant, deep brain stimulation (DBS), deep brain stimulation, Parkinson
Procedia PDF Downloads 1556160 Analyzing Competition in Public Construction Projects
Authors: Khaled Hesham Hyari, Amjad Almani
Abstract:
Construction projects in the public sector are commonly awarded through competitive bidding. In the last decade, the Construction projects environment in the Middle East went through many changes. These changes have been caused by different factors including the economic crisis, delays in monthly payments, international competition and reduced number of projects. These factors had a great impact on the bidding behaviors of contractors and their pricing strategies. This paper examines the competition characteristics in public construction projects through an analysis of bidding results of contractors in public construction projects over a period of 6 years (2006-2011) in Jordan. The analyzed projects include all categories of projects such as infrastructure, buildings, transportation and engineering services (design and supervision contracts). Data for the projects were obtained from the General Tender’s Directorate in Jordan and includes 462 projects. The analysis performed in this projects includes, studying the bid spread in all projects as it is an indication of the level of competition in the analyzed bids. The analysis studied the factors that affect bid spread such as number of bidders, Value of the project, Project category and years. It also studying the “Signal to Noise Ratio” in all projects as it is an indication of the accuracy of cost estimating performed by competing bidders and bidder´s evaluation of project risks. The analysis performed includes the relationship between signal to noise ratio and different parameters such as project category, number of bidders and changes over years. Moreover, the analysis includes determining the bidder´s aggressiveness in bidding as it is an indication of competition level in such projects. This was performed by determining the pack price which can be considered as the true value of the project and comparing it with the lowest bid submitted for each project to determine the level of aggressiveness in submitted bids. The analysis performed in this project should prove to be useful to owners in understanding bidding behaviors of contractors and pointing out areas that needs improvement in preparing bidding documents. Also the project should be useful to contractors in understanding the competitive bidding environment and should help them to improve their bidding strategies to maximize the success rate in obtaining contracts.Keywords: construction projects, competitive bidding, public construction, competition
Procedia PDF Downloads 3336159 Sharia Non-Compliant Transactions and Disclosure by Islamic Banks: Content Analysis of Annual Reports
Authors: Mehriban Ahmadova
Abstract:
Country of origin has been found to be an important determinant of the level of corporate social disclosure. The purpose of this study is to investigate the differences of corporate social disclosure, including sharia non-compliant information, by Islamic banks. The study applies content analysis approach of annual reports of fully-fledged Islamic banks from 24 countries. International differences are found in terms of level, methods and location of disclosure.Keywords: Content analysis, Corporate social disclosure, Islamic banks, Sharia non-compliant disclosure
Procedia PDF Downloads 1526158 Printed Electronics for Enhanced Monitoring of Organ-on-Chip Culture Media Parameters
Authors: Alejandra Ben-Aissa, Martina Moreno, Luciano Sappia, Paul Lacharmoise, Ana Moya
Abstract:
Organ-on-Chip (OoC) stands out as a highly promising approach for drug testing, presenting a cost-effective and ethically superior alternative to conventional in vivo experiments. These cutting-edge devices emerge from the integration of tissue engineering and microfluidic technology, faithfully replicating the physiological conditions of targeted organs. Consequently, they offer a more precise understanding of drug responses without the ethical concerns associated with animal testing. When addressing the limitations of OoC due to conventional and time-consuming techniques, Lab-On-Chip (LoC) emerge as a disruptive technology capable of providing real-time monitoring without compromising sample integrity. This work develops LoC platforms that can be integrated within OoC platforms to monitor essential culture media parameters, including glucose, oxygen, and pH, facilitating the straightforward exchange of sensing units within a dynamic and controlled environment without disrupting cultures. This approach preserves the experimental setup, minimizes the impact on cells, and enables efficient, prolonged measurement. The LoC system is fabricated following the patented methodology protected by EU patent EP4317957A1. One of the key challenges of integrating sensors in a biocompatible, feasible, robust, and scalable manner is addressed through fully printed sensors, ensuring a customized, cost-effective, and scalable solution. With this technique, sensor reliability is enhanced, providing high sensitivity and selectivity for accurate parameter monitoring. In the present study, LoC is validated measuring a complete culture media. The oxygen sensor provided a measurement range from 0 mgO2/L to 6.3 mgO2/L. The pH sensor demonstrated a measurement range spanning 2 pH units to 9.5 pH units. Additionally, the glucose sensor achieved a measurement range from 0 mM to 11 mM. All the measures were performed with the sensors integrated in the LoC. In conclusion, this study showcases the impactful synergy of OoC technology with LoC systems using fully printed sensors, marking a significant step forward in ethical and effective biomedical research, particularly in drug development. This innovation not only meets current demands but also lays the groundwork for future advancements in precision and customization within scientific exploration.Keywords: organ on chip, lab on chip, real time monitoring, biosensors
Procedia PDF Downloads 186157 Theorizing Optimal Use of Numbers and Anecdotes: The Science of Storytelling in Newsrooms
Authors: Hai L. Tran
Abstract:
When covering events and issues, the news media often employ both personal accounts as well as facts and figures. However, the process of using numbers and narratives in the newsroom is mostly operated through trial and error. There is a demonstrated need for the news industry to better understand the specific effects of storytelling and data-driven reporting on the audience as well as explanatory factors driving such effects. In the academic world, anecdotal evidence and statistical evidence have been studied in a mutually exclusive manner. Existing research tends to treat pertinent effects as though the use of one form precludes the other and as if a tradeoff is required. Meanwhile, narratives and statistical facts are often combined in various communication contexts, especially in news presentations. There is value in reconceptualizing and theorizing about both relative and collective impacts of numbers and narratives as well as the mechanism underlying such effects. The current undertaking seeks to link theory to practice by providing a complete picture of how and why people are influenced by information conveyed through quantitative and qualitative accounts. Specifically, the cognitive-experiential theory is invoked to argue that humans employ two distinct systems to process information. The rational system requires the processing of logical evidence effortful analytical cognitions, which are affect-free. Meanwhile, the experiential system is intuitive, rapid, automatic, and holistic, thereby demanding minimum cognitive resources and relating to the experience of affect. In certain situations, one system might dominate the other, but rational and experiential modes of processing operations in parallel and at the same time. As such, anecdotes and quantified facts impact audience response differently and a combination of data and narratives is more effective than either form of evidence. In addition, the present study identifies several media variables and human factors driving the effects of statistics and anecdotes. An integrative model is proposed to explain how message characteristics (modality, vividness, salience, congruency, position) and individual differences (involvement, numeracy skills, cognitive resources, cultural orientation) impact selective exposure, which in turn activates pertinent modes of processing, and thereby induces corresponding responses. The present study represents a step toward bridging theoretical frameworks from various disciplines to better understand the specific effects and the conditions under which the use of anecdotal evidence and/or statistical evidence enhances or undermines information processing. In addition to theoretical contributions, this research helps inform news professionals about the benefits and pitfalls of incorporating quantitative and qualitative accounts in reporting. It proposes a typology of possible scenarios and appropriate strategies for journalists to use when presenting news with anecdotes and numbers.Keywords: data, narrative, number, anecdote, storytelling, news
Procedia PDF Downloads 796156 A Palmprint Identification System Based Multi-Layer Perceptron
Authors: David P. Tantua, Abdulkader Helwan
Abstract:
Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator
Procedia PDF Downloads 3716155 Low Field Microwave Absorption and Magnetic Anisotropy in TM Co-Doped ZnO System
Authors: J. Das, T. S. Mahule, V. V. Srinivasu
Abstract:
Electron spin resonance (ESR) study at 9.45 GHz and a field modulation frequency of 100Hz was performed on bulk polycrystalline samples of Mn:TM (Fe/Ni) and Mn:RE (Gd/Sm) co doped ZnO samples with composition Zn1-xMn:TM/RE)xO synthesised by solid state reaction route and sintered at 500 0C temperature. The room temperature microwave absorption data collected by sweeping the DC magnetic field from -500 to 9500 G for the Mn:Fe and Mn:Ni co doped ZnO samples exhibit a rarely reported non resonant low field absorption (NRLFA) in addition to a strong absorption at around 3350G, usually associated with ferromagnetic resonance (FMR) satisfying Larmor’s relation due to absorption in the full saturation state. Observed low field absorption is distinct to ferromagnetic resonance even at low temperature and shows hysteresis. Interestingly, it shows a phase opposite with respect to the main ESR signal of the samples, which indicates that the low field absorption has a minimum value at zero magnetic field whereas the ESR signal has a maximum value. The major resonance peak as well as the peak corresponding to low field absorption exhibit asymmetric nature indicating magnetic anisotropy in the sample normally associated with intrinsic ferromagnetism. Anisotropy parameter for Mn:Ni codoped ZnO sample is noticed to be quite higher. The g values also support the presence of oxygen vacancies and clusters in the samples. These samples have shown room temperature ferromagnetism in the SQUID measurement. However, in rare earth (RE) co doped samples (Zn1-x (Mn: Gd/Sm)xO), which show paramagnetic behavior at room temperature, the low field microwave signals are not observed. As microwave currents due to itinerary electrons can lead to ohmic losses inside the sample, we speculate that more delocalized 3d electrons contributed from the TM dopants facilitate such microwave currents leading to the loss and hence absorption at the low field which is also supported by the increase in current with increased micro wave power. Besides, since Fe and Ni has intrinsic spin polarization with polarisability of around 45%, doping of Fe and Ni is expected to enhance the spin polarization related effect in ZnO. We emphasize that in this case Fe and Ni doping contribute to polarized current which interacts with the magnetization (spin) vector and get scattered giving rise to the absorption loss.Keywords: co-doping, electron spin resonance, hysteresis, non-resonant microwave absorption
Procedia PDF Downloads 3146154 Cloud Effect on Power Generation of Grid-Connected Small PV Systems
Authors: Yehya Abdellatif, Ahmed Alsalaymeh, Iyad Muslih, Ali Alshduifat
Abstract:
Photovoltaic (PV) power generation systems, mainly small scale, are rapidly being deployed in Jordan. The impact of these systems on the grid has not been studied or analyzed. These systems can cause many technical problems such as reverse power flows and voltage rises in distribution feeders, and real and reactive power transients that affect the operation of the transmission system. To fully understand and address these problems, extensive research, simulation, and case studies are required. To this end, this paper studies the cloud shadow effect on the power generation of a ground mounted PV system installed at the test field of the Renewable Energy Center at the Applied Science University.Keywords: photovoltaic, cloud effect, MPPT, power transients
Procedia PDF Downloads 5996153 Production of Alcohol from Sweet Potato
Authors: Abhishek S. Shete
Abstract:
There is nothing new in the use of alcohol made from root crops as a motor fuel. Alcohol is an excellent alternative motor fuel for petrol engines. The reason alcohol fuel has not been fully exploited is that, up until now; gasoline has been cheap, available, and easy to produce. However, nowadays, crude oil is getting scarce, and the historic price difference between alcohol and gasoline is getting narrower. Alcohol fuel can be an important part of the solution for Rwanda because there is tremendous scope to use bulk production of sweet potato into alcohol. The total sweet potato production in both seasons is found to be 1.607.296 tones/year. The average productivity of sweet potato in the country irrespective of seasons is found to be 8.9 tones/ha. If all of the available agricultural surplus were converted to ethanol, alcohol would supply less than 5% of motor fuel needs.Keywords: root crops, sweet potato, surplus, alcohol
Procedia PDF Downloads 4236152 Seismotectonic Deformations along Strike-Slip Fault Systems of the Maghreb Region, Western Mediterranean
Authors: Abdelkader Soumaya, Noureddine Ben Ayed, Mojtaba Rajabi, Mustapha Meghraoui, Damien Delvaux, Ali Kadri, Moritz Ziegler, Said Maouche, Ahmed Braham, Aymen Arfaoui
Abstract:
The northern Maghreb region (Western Mediterranean) is a key area to study the seismotectonic deformations across the Africa-Eurasia convergent plate boundary. On the basis of young geologic fault slip data and stress inversion of focal mechanisms, we defined a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable SHmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with a reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with a normal component in the Alboran/Rif domain. This spatial variation of the active stress field and the tectonic regime is relatively in agreement with the inferred stress information from neotectonic features. According to newly suggested structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major preexisting strike-slip faults and related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Smoothed present-day and Neotectonic stress maps (mean SHmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The seismotectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones.Keywords: Maghreb, strike-slip fault, seismotectonic, focal mechanism, inversion
Procedia PDF Downloads 1226151 Inappropriate Effects Which the Use of Computer and Playing Video Games Have on Young People
Authors: Maja Ruzic-Baf, Mirjana Radetic-Paic
Abstract:
The use of computers by children has many positive aspects, including the development of memory, learning methods, problem-solving skills and the feeling of one’s own competence and self-confidence. Playing on line video games can encourage hanging out with peers having similar interests as well as communication; it develops coordination, spatial relations and presentation. On the other hand, the Internet enables quick access to different information and the exchange of experiences. How kids use computers and what the negative effects of this can be depends on various factors. ICT has improved and become easy to get for everyone. In the past 12 years so many video games has been made even to that level that some of them are free to play. Young people, even some adults, had simply start to forget about the real outside world because in that other, digital world, they have found something that makes them feal more worthy as a man. This article present the use of ICT, forms of behavior and addictions to on line video games. The use of computers by children has many positive aspects, including the development of memory, learning methods, problem-solving skills and the feeling of one’s own competence and self-confidence. Playing on line video games can encourage hanging out with peers having similar interests as well as communication; it develops coordination, spatial relations and presentation. On the other hand, the Internet enables quick access to different information and the exchange of experiences. How kids use computers and what the negative effects of this can be depends on various factors. ICT has improved and become easy to get for everyone. In the past 12 years so many video games has been made even to that level that some of them are free to play. Young people, even some adults, had simply start to forget about the real outside world because in that other, digital world, they have found something that makes them feal more worthy as a man. This article present the use of ICT, forms of behavior and addictions to on line video games.Keywords: addiction to video games, behaviour, ICT, young people
Procedia PDF Downloads 5456150 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously
Authors: S. Mehrab Amiri, Nasser Talebbeydokhti
Abstract:
Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme. In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations
Procedia PDF Downloads 1876149 Thiosulfate Leaching of the Auriferous Ore from Castromil Deposit: A Case Study
Authors: Rui Sousa, Aurora Futuro, António Fiúza
Abstract:
The exploitation of gold ore deposits is highly dependent on efficient mineral processing methods, although actual perspectives based on life-cycle assessment introduce difficulties that were unforeseen in a very recent past. Cyanidation is the most applied gold processing method, but the potential environmental problems derived from the usage of cyanide as leaching reagent led to a demand for alternative methods. Ammoniacal thiosulfate leaching is one of the most important alternatives to cyanidation. In this article, some experimental studies carried out in order to assess the feasibility of thiosulfate as a leaching agent for the ore from the unexploited Portuguese gold mine of Castromil. It became clear that the process depends on the concentrations of ammonia, thiosulfate and copper. Based on this fact, a few leaching tests were performed in order to assess the best reagent prescription, and also the effects of different combination of these concentrations. Higher thiosulfate concentrations cause the decrease of gold dissolution. Lower concentrations of ammonia require higher thiosulfate concentrations, and higher ammonia concentrations require lower thiosulfate concentrations. The addition of copper increases the gold dissolution ratio. Subsequently, some alternative operatory conditions were tested such as variations in temperature and in the solid/liquid ratio as well as the application of a pre-treatment before the leaching stage. Finally, thiosulfate leaching was compared to cyanidation. Thiosulfate leaching showed to be an important alternative, although a pre-treatment is required to increase the yield of the gold dissolution.Keywords: gold, leaching, pre-treatment, thiosulfate
Procedia PDF Downloads 3106148 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method
Procedia PDF Downloads 4046147 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach
Authors: Niyongabo Elyse
Abstract:
Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling
Procedia PDF Downloads 506146 Geospatial Land Suitability Modeling for Biofuel Crop Using AHP
Authors: Naruemon Phongaksorn
Abstract:
The biofuel consumption has increased significantly over the decade resulting in the increasing request on agricultural land for biofuel feedstocks. However, the biofuel feedstocks are already stressed of having low productivity owing to inappropriate agricultural practices without considering suitability of crop land. This research evaluates the land suitability using GIS-integrated Analytic Hierarchy Processing (AHP) of biofuel crops: cassava, at Chachoengsao province, in Thailand. AHP method that has been widely accepted for land use planning. The objective of this study is compared between AHP method and the most limiting group of land characteristics method (classical approach). The reliable results of the land evaluation were tested against the crop performance assessed by the field investigation in 2015. In addition to the socio-economic land suitability, the expected availability of raw materials for biofuel production to meet the local biofuel demand, are also estimated. The results showed that the AHP could classify and map the physical land suitability with 10% higher overall accuracy than the classical approach. The Chachoengsao province showed high and moderate socio-economic land suitability for cassava. Conditions in the Chachoengsao province were also favorable for cassava plantation, as the expected raw material needed to support ethanol production matched that of ethanol plant capacity of this province. The GIS integrated AHP for biofuel crops land suitability evaluation appears to be a practical way of sustainably meeting biofuel production demand.Keywords: Analytic Hierarchy Processing (AHP), Cassava, Geographic Information Systems, Land suitability
Procedia PDF Downloads 2016145 Evaluating the Ability to Cycle in Cities Using Geographic Information Systems Tools: The Case Study of Greek Modern Cities
Authors: Christos Karolemeas, Avgi Vassi, Georgia Christodoulopoulou
Abstract:
Although the past decades, planning a cycle network became an inseparable part of all transportation plans, there is still a lot of room for improvement in the way planning is made, in order to create safe and direct cycling networks that gather the parameters that positively influence one's decision to cycle. The aim of this article is to study, evaluate and visualize the bikeability of cities. This term is often used as the 'the ability of a person to bike' but this study, however, adopts the term in the sense of bikeability as 'the ability of the urban landscape to be biked'. The methodology used included assessing cities' accessibility by cycling, based on international literature and corresponding walkability methods and the creation of a 'bikeability index'. Initially, a literature review was made to identify the factors that positively affect the use of bicycle infrastructure. Those factors were used in order to create the spatial index and quantitatively compare the city network. Finally, the bikeability index was applied in two case studies: two Greek municipalities that, although, they have similarities in terms of land uses, population density and traffic congestion, they are totally different in terms of geomorphology. The factors suggested by international literature were (a) safety, (b) directness, (c) comfort and (d) the quality of the urban environment. Those factors were quantified through the following parameters: slope, junction density, traffic density, traffic speed, natural environment, built environment, activities coverage, centrality and accessibility to public transport stations. Each road section was graded for the above-mentioned parameters, and the overall grade shows the level of bicycle accessibility (low, medium, high). Each parameter, as well as the overall accessibility levels, were analyzed and visualized through Geographic Information Systems. This paper presents the bikeability index, its' results, the problems that have arisen and the conclusions from its' implementation through Strengths-Weaknesses-Opportunities-Threats analysis. The purpose of this index is to make it easy for researchers, practitioners, politicians, and stakeholders to quantify, visualize and understand which parts of the urban fabric are suitable for cycling.Keywords: accessibility, cycling, green spaces, spatial data, urban environment
Procedia PDF Downloads 1116144 Polymer Industrial Floors: The Possibility of Using Secondary Raw Materials from Solar Panels
Authors: J. Kosikova, B. Vacenovska, M. Vyhnankova
Abstract:
The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are incorporated into these polymers as fillers. One of the tested filler materials was glass obtained from solar panels. The following text describes procedures and results of the tests that were performed on these materials, confirming the possibility of the use of solar panel glass in industrial polymer flooring systems.Keywords: fillers, industrial floors, recycling, secondary raw material, solar panel
Procedia PDF Downloads 287