Search results for: bi-directional long and short-term memory networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9540

Search results for: bi-directional long and short-term memory networks

6870 Exploring the Visual Roots of Classical Rhetoric and Its Implication for Gender Politics: Reflection upon Roman Rhetoric from a Bakhtin's Perspective

Authors: Hsiao-Yung Wang

Abstract:

This study aims to explore the visual roots of classical rhetoric and its implication for gender politics by the constant reference to Mikhail Bakhtin’s theory of novelist time. First, it attempts to clarify the argument that “visuality always has been integral to rhetorical consciousness” by critically re-reading the rhetorical theories of roman rhetorician such as Cicero and Quintilian. Thereby, the vague clues of visuality would be realized from the so-called ‘five canons of rhetoric’ (invention, arrangement, style, memory, and delivery), which originally deriving from verbal and spoken rhetorical tradition. Drawing on Mikhail Bakhtin’s elaboration of novelist time in contrast to epic time, it addresses the specific timeline inherent in the dynamics of visual rhetoric involves the refusing the ‘absolute past’, the focusing on unfinalized contemporary reality, and the expecting for open future. Taking the primary visions of Taipei LGBT parade over the past 13 years as research cases, it mentions that visuality could not only activate the rhetorical functions of classical rhetoric, but also inspire gender politics in the contemporary era.

Keywords: classical rhetoric, gender politics, Mikhail Bakhtin, visuality

Procedia PDF Downloads 379
6869 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin

Authors: Mohammad Salehi, Mohammad Erfan Doraki

Abstract:

In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.

Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink

Procedia PDF Downloads 122
6868 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 210
6867 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 534
6866 Improving the Crashworthiness Characteristics of Long Steel Circular Tubes Subjected to Axial Compression by Inserting a Helical Spring

Authors: Mehdi Tajdari, Farzad Mokhtarnejad, Fatemeh Moradi, Mehdi Najafizadeh

Abstract:

Nowadays, energy absorbing devices have been widely used in all vehicles and moving parts such as railway couches, aircraft, ships and lifts. The aim is to protect these structures from serious damages while subjected to impact loads, or to minimize human injuries while collision is occurred in transportation systems. These energy-absorbing devices can dissipate kinetic energy in a wide variety of ways like friction, facture, plastic bending, crushing, cyclic plastic deformation and metal cutting. On the other hand, various structures may be used as collapsible energy absorbers. Metallic cylindrical tubes have attracted much more attention due to their high stiffness and strength combined with the low weight and ease of manufacturing process. As a matter of fact, favorable crash worthiness characteristics for energy dissipation purposes can be achieved from axial collapse of tubes while they crush progressively in symmetric modes. However, experimental and theoretical results have shown that depending on various parameters such as tube geometry, material properties of tube, boundary and loading conditions, circular tubes buckle in different modes of deformation, namely, diamond and Euler collapsing modes. It is shown that when the tube length is greater than the critical length, the tube deforms in overall Euler buckling mode, which is an inefficient mode of energy absorption and needs to be avoided in crash worthiness applications. This study develops a new method with the aim of improving energy absorption characteristics of long steel circular tubes. Inserting a helical spring into the tubes is proved experimentally to be an efficient solution. In fact when a long tube is subjected to axial compression load, the spring prevents of undesirable Euler or diamond collapsing modes. This is because the spring reinforces the internal wall of tubes and it causes symmetric deformation in tubes. In this research three specimens were prepared and three tests were performed. The dimensions of tubes were selected so that in axial compression load buckling is occurred. In the second and third tests a spring was inserted into tubes and they were subjected to axial compression load in quasi-static and impact loading, respectively. The results showed that in the second and third tests buckling were not happened and the tubes deformed in symmetric modes which are desirable in energy absorption.

Keywords: energy absorption, circular tubes, collapsing deformation, crashworthiness

Procedia PDF Downloads 340
6865 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 50
6864 Health Care using Queuing Theory

Authors: S. Vadivukkarasi, K. Karthi, M. Karthick, C. Dinesh, S. Santhosh, A. Yogaraj

Abstract:

The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times.

Keywords: appointment system, patient scheduling, bed management, queueing calculation, system analysis

Procedia PDF Downloads 300
6863 Correlation between Physical Fitness and Performance and Grade of Table Tennis of Middle School Students

Authors: Yisong Cong, Mingming Guo, Xiaozan Wang, Yizhi Zhang, Qingqing Yuan

Abstract:

This study is to test the correlation between the Physical Fitness (PF) of middle school students and their performance and sports grade of table tennis. Methods: 398 middle school students from Shanghai Tongji No.2 Middle School participated in the study, including 232 boys and 166 girls. Each participant participated in the Chinese Students’ Physical Fitness Test (CSPFT), including BMI, 50-meter running, vital capacity, sitting body flexion, standing long jump, 800-meter running, 1000-meter running, pull-ups, and sit-ups. Test scores were converted to a percentage score according to the CSPFT guidelines. In addition, each student participated in the Nation Junior Table Tennis grade test, and completed the table tennis sports grade assessment of 1-9. Results: There is a significant positive correlation between the scores of multiple PF tests and the total scores of table tennis, such as BMI (r = 0.15, p < 0.01), standing long jump (r = 0.15, p < 0.05), 800-meter run (r = 0.02, p <0.01); The scores of multiple PF are positively correlated with table tennis grade, such as vital capacity (r = 0.1, p < 0.01) and 50-meter running (r = 0.18, p < 0.05). At the same time, the sit-ups performance showed a significant negative correlation with the table tennis performance (r = -0.08, p < 0.01); There is no significant correlation between the other PF indicators and the performance and grade of table tennis. Conclusions: This study shows that there is a corresponding relationship between some PF indicators of middle school students and their table tennis performance and table tennis grade,but the specific form and reason of the relationship need to be further explored.

Keywords: middle school students, physical fitness, table tennis grade, table tennis performance

Procedia PDF Downloads 160
6862 Managing Maritime Security in the Mediterranean Sea: The Roles of the EU in Tackling Irregular Migration

Authors: Shazwanis Shukri

Abstract:

The Mediterranean Sea, at the crossroads of three continents has always been the focus of pan-European and worldwide attention. Over the past decade, the Mediterranean Sea has become a hotbed for irregular migration particularly from the African continent toward the Europe. Among the major transit routes in the Mediterranean Sea include the Strait of Gibraltar, Canary Island and island of Lampedusa. In recent years, Mediterranean Sea has witnessed significant numbers of accidents and shipwrecks involving the irregular migrants and refugees trying to reach Europe via the sea. The shipwrecks and traffickers exploitation of migrants draw most of the attention particularly for the European Union (EU). This incident has been a wakeup call for the EU and become the top political agenda in the EU policy to tackle irregular migration and human smuggling at sea. EU has repeatedly addressed irregular migration as one of the threats the EU and its citizens may be confronted with and therefore immediate measures are crucial to tackle the crisis. In light of this, various initiatives have been adopted by the EU to strengthen external border control and restrict access to irregular migrants, notably through the enforcement of Frontex and Eunavfor Med. This paper analyses current development of counter-migration operations by the EU in response to migration crisis in the Mediterranean Sea. The analysis is threefold. First, this study examines the patterns and trends of irregular migration’s movements from recent perspective. Second, this study concentrates on the evolution of the EU operations that are in place in the Mediterranean Sea, notably by Frontex and Eunavfor Med to curb the influx of irregular migrants to the European countries, including, among others, Greece and Italy. Third, this study investigates the EU approaches to fight against the proliferation of human trafficking networks at sea. This study is essential to determine the roles of the EU in tackling migration crisis and human trafficking in the Mediterranean Sea and the effectiveness of their counter-migration operations to reduce the number of irregular migrants travelling via the sea. Elite interviews and document analysis were used as a methodology in this study. The study discovers that the EU operations have successfully contributed to reduce the numbers of irregular migrant’s arrival to Europe. The study also shows that the operations were effective to disrupt smugglers business models particularly from Libya. This study provides essential understanding about the roles of the EU not limited to tackle the migration crisis and disrupt trafficking networks, but also pledged to prevent further loss of lives at sea.

Keywords: European union, frontex, irregular migration, Mediterranean sea

Procedia PDF Downloads 328
6861 Relationship between Job Satisfaction, Job Stressors and Long Term Physical Morbidities among University Employees in Pakistan

Authors: Shahzad A. Mughal, Ameer A. P. Ghaloo, Faisal Laghari, Mohsin A. Mirza

Abstract:

Job satisfaction and level of job stressors among employees of a university are considered as essential factors responsible for institutional success. Job satisfaction is usually believed as a single baseline variable for the evaluation of a university human resource area. The objectives of this study were to assess the level of job satisfaction and influence of job stressors among university teachers and their association with long term physical health of the employees in government sector universities in Pakistan. A cross-sectional study was conducted on university employees including faculty members and administrative staff of three government sector universities in Sindh province of Pakistan who have completed at least ten years of their job. The study period was six months. All the employees were randomly selected. The job satisfaction scale Questionnaire with yes and no options, together with questions regarding demographic factors, job stress or other working factors and physical health issues were administered in questionnaires. These questionnaires were handed out to 100 faculty members of both genders with permanent job and 50 non faculty staff of grade 17 and above with permanent employment status. Students’ T test and one way ANOVA was applied to categorical variables and Pearson’s correlation analysis was performed to evaluate the correlations between study variables. 121 successful responses were obtained (effective respondent rate 80.6%). The average score of overall job satisfaction was 65.6%. Statistical analysis revealed that the job satisfaction and work related stressors had negative impact on overall health status of the employees with resultant less efficacy and mental stress. The positive relation was perceived by employees for organizational support and high income with job satisfaction. Demographic features such as age and female gender were also linked to the level of job satisfaction and health related issues. The total variation among all responses regarding correlation between job satisfaction job stressors and health related issues was 55%. A study was conducted on University employees of government sector Universities in Pakistan, regarding association of job satisfaction and job stressors with long term physical health of the employees. Study revealed a moderate level of job satisfaction among the employees of all universities included in this study. Attitude and personal relations with heads of the departments and institution along with salary packages were considered as biggest job stressors related correlated directly with physical health. Demographic features and gender were associated factors for job satisfaction. Organizational support was the strongest factor for job satisfaction and results pointed out that by improving support level from University may improve the quality of job satisfaction and overall health of employees.

Keywords: job satisfaction, organizational support, physical health, university employees

Procedia PDF Downloads 252
6860 Modeling Waiting and Service Time for Patients: A Case Study of Matawale Health Centre, Zomba, Malawi

Authors: Moses Aron, Elias Mwakilama, Jimmy Namangale

Abstract:

Spending more time on long queues for a basic service remains a common challenge to most developing countries, including Malawi. For health sector in particular, Out-Patient Department (OPD) experiences long queues. This puts the lives of patients at risk. However, using queuing analysis to under the nature of the problems and efficiency of service systems, such problems can be abated. Based on a kind of service, literature proposes different possible queuing models. However, unlike using generalized assumed models proposed by literature, use of real time case study data can help in deeper understanding the particular problem model and how such a model can vary from one day to the other and also from each case to another. As such, this study uses data obtained from one urban HC for BP, Pediatric and General OPD cases to investigate an average queuing time for patients within the system. It seeks to highlight the proper queuing model by investigating the kind of distributions functions over patient’s arrival time, inter-arrival time, waiting time and service time. Comparable with the standard set values by WHO, the study found that patients at this HC spend more waiting times than service times. On model investigation, different days presented different models ranging from an assumed M/M/1, M/M/2 to M/Er/2. As such, through sensitivity analysis, in general, a commonly assumed M/M/1 model failed to fit the data but rather an M/Er/2 demonstrated to fit well. An M/Er/3 model seemed to be good in terms of measuring resource utilization, proposing a need to increase medical personnel at this HC. However, an M/Er/4 showed to cause more idleness of human resources.

Keywords: health care, out-patient department, queuing model, sensitivity analysis

Procedia PDF Downloads 435
6859 Encoding the Design of the Memorial Park and the Family Network as the Icon of 9/11 in Amy Waldman's the Submission

Authors: Masami Usui

Abstract:

After 9/11, the American literary scene was confronted with new perspectives that enabled both writers and readers to recognize the hidden aspects of their political, economic, legal, social, and cultural phenomena. There appeared an argument over new and challenging multicultural aspects after 9/11 and this argument is presented by a tension of space related to 9/11. In Amy Waldman’s the Submission (2011), designing both the memorial park and the family network has a significant meaning in establishing the progress of understanding from multiple perspectives. The most intriguing and controversial topic of racism is reflected in the Submission, where one young architect’s blind entry to the competition for the memorial of Ground Zero is nominated, yet he is confronted with strong objections and hostility as soon as he turns out to be a Muslim named Mohammad Khan. This ‘Khan’ issue, immediately enlarged into a social controversial issue on American soil, causes repeated acts of hostility to Muslim women by ignorant citizens all over America. His idea of the park is to design a new concept of tracing the cultural background of the open space. Against his will, his name is identified as the ‘ingredient’ of the networking of the resistant community with his supporters: on the other hand, the post 9/11 hysteria and victimization is presented in such family associations as the Angry Family Members and Grieving Family Members. These rapidly expanding networks, whether political or not, constructed by the internet, embody the contemporary societal connection and representation. The contemporary quest for the significance of human relationships is recognized as a quest for global peace. Designing both the memorial park and the communication networks strengthens a process of facing the shared conflicts and healing the survivors’ trauma. The tension between the idea and networking of the Garden for the memorial site and the collapse of Ground Zero signifies the double mission of the site: to establish the space to ease the wounded and to remember the catastrophe. Reading the design of these icons of 9/11 in the Submission means that decoding the myth of globalization and its representations in this century.

Keywords: American literature, cultural studies, globalization, literature of catastrophe

Procedia PDF Downloads 533
6858 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec

Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed

Abstract:

Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.

Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation

Procedia PDF Downloads 211
6857 The Biological Function and Clinical Significance of Long Non-coding RNA LINC AC008063 in Head and Neck Squamous Carcinoma

Authors: Maierhaba Mijiti

Abstract:

Objective:The aim is to understand the relationship between the expression level of the long-non-coding RNA LINC AC008063 and the clinicopathological parameters of patients with head and neck squamous cell carcinoma (HNSCC), and to clarify the biological function of LINC AC008063 in HNSCC cells. Moreover, it provides a potential biomarker for the diagnosis, treatment, and prognosis evaluation of HNSCC. Methods: The expression level of LINC AC008063 in the HNSCC was analyzed using transcriptome sequencing data from the TCGA (The cancer genome atlas) database. The expression levels of LINC AC008063 in human embryonic lung diploid cells 2BS, human immortalized keratinocytes HACAT, HNSCC cell lines CAL-27, Detroit562, AMC-HN-8, FD-LSC-1, FaDu and WSU-HN30 were determined by real-time quantitative PCR (qPCR). RNAi (RNA interference) was introduced for LINC AC008063 knockdown in HNSCC cell lines, the localization and abundance analysis of LINC AC008063 was determined by RT-qPCR, and the biological functions were examined by CCK-8, clone formation, flow cytometry, transwell invasion and migration assays, Seahorse assay. Results: LINC AC008063 was upregulated in HNSCC tissue (P<0.001), and verified b CCK-8, clone formation, flow cytometry, transwell invasion and migration assays, Seahorse assayy qPCR in HNSCC cell lines. The survival analysis revealed that the overall survival rate (OS) of patients with high LINC AC008063 expression group was significantly lower than that in the LINC AC008063 expression group, the median survival times for the two groups were 33.10 months and 61.27 months, respectively (P=0.002). The clinical correlation analysis revealed that its expression was positively correlated with the age of patients with HNSCC (P<0.001) and positively correlated with pathological state (T3+T4>T1+T2, P=0.03). The RT-qPCR results showed that LINC AC008063 was mainly enriched in cytoplasm (P=0.01). Knockdown of LINC AC008063 inhibited proliferation, colony formation, migration and invasion; the glycolytic capacity was significantly decreased in HNSCC cell lines (P<0.05). Conclusion: High level of LINC AC008063 was associated with the malignant progression of HNSCC as well as promoting the important biological functions of proliferation, colony formation, migration and invasion; in particular, the glycolytic capacity was decreased in HNSCC cells. Therefore, LINC AC008063 may serve as a potential biomarker for HNSCC and a distinct molecular target to inhibit glycolysis.

Keywords: head and neck squamous cell carcinoma, oncogene, long non-coding RNA, LINC AC008063, invasion and metastasis

Procedia PDF Downloads 12
6856 Satellite Connectivity for Sustainable Mobility

Authors: Roberta Mugellesi Dow

Abstract:

As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.

Keywords: sustainability, connectivity, mobility, satellites

Procedia PDF Downloads 133
6855 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join

Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel

Abstract:

Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.

Keywords: map reduce, hadoop, semi join, two way join

Procedia PDF Downloads 513
6854 Legal Pluralism and Land Administration in West Sumatra: The Implementation of the Regulations of Both Local and Nagari Governments on Communal Land Tenure

Authors: Hilaire Tegnan

Abstract:

Land administration has always been a delicate issue in the history of nations, and Indonesia, a country where a significant number of the population lives a pastoral life is not exempt from this reality. This paper discusses land tenure issues in West Sumatra, an Indonesian province which is home to the Minangkabau people with their long existing village management system known as Nagari, established to settle disputes based on adat (custom) principles as well as to protect the rights of the community members. These rights include communal land (referred to as tanahulayat hereafter). Long before the Dutch occupation of Indonesian archipelago, the nagari government was vested with powers to regulate communal land in West Sumatra. However, this authority was constantly overlooked by the then Dutch colonial administration as well as the post-independence governments (both central and regional). To reinforce the Nagari government as the guardian of the customary law (hukumadat) and to specify its jurisdiction, the Regional Government of West Sumatra enacted two laws between 2000 and 2008: Law No. 9/2000 repealed by Law No. 2/2007 and Law No. 6/2008 on communal land tenure. Although these two laws provide legal grounds to address land issues across the region, land conflicts still prevail among West Sumatran populations due to unsynchronized and contradictory regulations. The protests against the army (Korem) in Nagari Kapalo Hilalang, against the oil palm company in Nagari Kinali, and against a cement factory in Nagari Lubuk Kilangan are cited in this paper as case references.

Keywords: local government, Nagari government, Tanah Ulayat, legal pluralism, land administration

Procedia PDF Downloads 508
6853 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
6852 Optimising Transcranial Alternating Current Stimulation

Authors: Robert Lenzie

Abstract:

Transcranial electrical stimulation (tES) is significant in the research literature. However, the effects of tES on brain activity are still poorly understood at the surface level, the Brodmann Area level, and the impact on neural networks. Using a method like electroencephalography (EEG) in conjunction with tES might make it possible to comprehend the brain response and mechanisms behind published observed alterations in more depth. Using a method to directly see the effect of tES on EEG may offer high temporal resolution data on the brain activity changes/modulations brought on by tES that correlate to various processing stages within the brain. This paper provides unpublished information on a cutting-edge methodology that may reveal details about the dynamics of how the human brain works beyond what is now achievable with existing methods.

Keywords: tACS, frequency, EEG, optimal

Procedia PDF Downloads 82
6851 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development

Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar

Abstract:

The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).

Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV

Procedia PDF Downloads 65
6850 The Impression of Adaptive Capacity of the Rural Community in the Indian Himalayan Region: A Way Forward for Sustainable Livelihood Development

Authors: Rommila Chandra, Harshika Choudhary

Abstract:

The value of integrated, participatory, and community based sustainable development strategies is eminent, but in practice, it still remains fragmentary and often leads to short-lived results. Despite the global presence of climate change, its impacts are felt differently by different communities based on their vulnerability. The developing countries have the low adaptive capacity and high dependence on environmental variables, making them highly susceptible to outmigration and poverty. We need to understand how to enable these approaches, taking into account the various governmental and non-governmental stakeholders functioning at different levels, to deliver long-term socio-economic and environmental well-being of local communities. The research assessed the financial and natural vulnerability of Himalayan networks, focusing on their potential to adapt to various changes, through accessing their perceived reactions and local knowledge. The evaluation was conducted by testing indices for vulnerability, with a major focus on indicators for adaptive capacity. Data for the analysis were collected from the villages around Govind National Park and Wildlife Sanctuary, located in the Indian Himalayan Region. The villages were stratified on the basis of connectivity via road, thus giving two kinds of human settlements connected and isolated. The study focused on understanding the complex relationship between outmigration and the socio-cultural sentiments of local people to not abandon their land, assessing their adaptive capacity for livelihood opportunities, and exploring their contribution that integrated participatory methodologies can play in delivering sustainable development. The result showed that the villages having better road connectivity, access to market, and basic amenities like health and education have a better understanding about the climatic shift, natural hazards, and a higher adaptive capacity for income generation in comparison to the isolated settlements in the hills. The participatory approach towards environmental conservation and sustainable use of natural resources were seen more towards the far-flung villages. The study helped to reduce the gap between local understanding and government policies by highlighting the ongoing adaptive practices and suggesting precautionary strategies for the community studied based on their local conditions, which differ on the basis of connectivity and state of development. Adaptive capacity in this study has been taken as the externally driven potential of different parameters, leading to a decrease in outmigration and upliftment of the human environment that could lead to sustainable livelihood development in the rural areas of Himalayas.

Keywords: adaptive capacity, Indian Himalayan region, participatory, sustainable livelihood development

Procedia PDF Downloads 118
6849 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data

Authors: Tapan Jain, Davender Singh Saini

Abstract:

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.

Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network

Procedia PDF Downloads 615
6848 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence

Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács

Abstract:

The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.

Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility

Procedia PDF Downloads 118
6847 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 111
6846 Connected Objects with Optical Rectenna for Wireless Information Systems

Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli

Abstract:

Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.

Keywords: antenna, IoT, optical rectenna, solar cell

Procedia PDF Downloads 178
6845 Agenesis of the Corpus Callosum: The Role of Neuropsychological Assessment with Implications to Psychosocial Rehabilitation

Authors: Ron Dick, P. S. D. V. Prasadarao, Glenn Coltman

Abstract:

Agenesis of the corpus callosum (ACC) is a failure to develop corpus callosum - the large bundle of fibers of the brain that connects the two cerebral hemispheres. It can occur as a partial or complete absence of the corpus callosum. In the general population, its estimated prevalence rate is 1 in 4000 and a wide range of genetic, infectious, vascular, and toxic causes have been attributed to this heterogeneous condition. The diagnosis of ACC is often achieved by neuroimaging procedures. Though persons with ACC can perform normally on intelligence tests they generally present with a range of neuropsychological and social deficits. The deficit profile is characterized by poor coordination of motor movements, slow reaction time, processing speed and, poor memory. Socially, they present with deficits in communication, language processing, the theory of mind, and interpersonal relationships. The present paper illustrates the role of neuropsychological assessment with implications to psychosocial management in a case of agenesis of the corpus callosum. Method: A 27-year old left handed Caucasian male with a history of ACC was self-referred for a neuropsychological assessment to assist him in his employment options. Parents noted significant difficulties with coordination and balance at an early age of 2-3 years and he was diagnosed with dyspraxia at the age of 14 years. History also indicated visual impairment, hypotonia, poor muscle coordination, and delayed development of motor milestones. MRI scan indicated agenesis of the corpus callosum with ventricular morphology, widely spaced parallel lateral ventricles and mild dilatation of the posterior horns; it also showed colpocephaly—a disproportionate enlargement of the occipital horns of the lateral ventricles which might be affecting his motor abilities and visual defects. The MRI scan ruled out other structural abnormalities or neonatal brain injury. At the time of assessment, the subject presented with such problems as poor coordination, slowed processing speed, poor organizational skills and time management, and difficulty with social cues and facial expressions. A comprehensive neuropsychological assessment was planned and conducted to assist in identifying the current neuropsychological profile to facilitate the formulation of a psychosocial and occupational rehabilitation programme. Results: General intellectual functioning was within the average range and his performance on memory-related tasks was adequate. Significant visuospatial and visuoconstructional deficits were evident across tests; constructional difficulties were seen in tasks such as copying a complex figure, building a tower and manipulating blocks. Poor visual scanning ability and visual motor speed were evident. Socially, the subject reported heightened social anxiety, difficulty in responding to cues in the social environment, and difficulty in developing intimate relationships. Conclusion: Persons with ACC are known to present with specific cognitive deficits and problems in social situations. Findings from the current neuropsychological assessment indicated significant visuospatial difficulties, poor visual scanning and problems in social interactions. His general intellectual functioning was within the average range. Based on the findings from the comprehensive neuropsychological assessment, a structured psychosocial rehabilitation programme was developed and recommended.

Keywords: agenesis, callosum, corpus, neuropsychology, psychosocial, rehabilitation

Procedia PDF Downloads 276
6844 Effect of Minerals in Middlings on the Reactivity of Gasification-Coke by Blending a Large Proportion of Long Flame Coal

Authors: Jianjun Wu, Fanhui Guo, Yixin Zhang

Abstract:

In this study, gasification-coke were produced by blending the middlings (MC), and coking coal (CC) and a large proportion of long flame coal (Shenfu coal, SC), the effects of blending ratio were investigated. Mineral evolution and crystalline order obtained by XRD methods were reproduced within reasonable accuracy. Structure characteristics of partially gasification-coke such as surface area and porosity were determined using the N₂ adsorption and mercury porosimetry. Experimental data of gasification-coke was dominated by the TGA results provided trend, reactivity differences between gasification-cokes are discussed in terms of structure characteristic, crystallinity, and alkali index (AI). The first-order reaction equation was suitable for the gasification reaction kinetics of CO₂ atmosphere which was represented by the volumetric reaction model with linear correlation coefficient above 0.985. The differences in the microporous structure of gasification-coke and catalysis caused by the minerals in parent coals were supposed to be the main factors which affect its reactivity. The addition of MC made the samples enriched with a large amount of ash causing a higher surface area and a lower crystalline order to gasification-coke which was beneficial to gasification reaction. The higher SiO₂ and Al₂O₃ contents, causing a decreasing AI value and increasing activation energy, which reduced the gasification reaction activity. It was found that the increasing amount of MC got a better performance on the coke gasification reactivity by blending > 30% SC with this coking process.

Keywords: low-rank coal, middlings, structure characteristic, mineral evolution, alkali index, gasification-coke, gasification kinetics

Procedia PDF Downloads 175
6843 Effectiveness of Computer-Based Cognitive Training in Improving Attention-Deficit/Hyperactivity Disorder Rehabilitation

Authors: Marjan Ghazisaeedi, Azadeh Bashiri

Abstract:

Background: Attention-Deficit/Hyperactivity Disorder(ADHD), is one of the most common psychiatric disorders in early childhood that in addition to its main symptoms provide significant deficits in the areas of educational, social and individual relationship. Considering the importance of rehabilitation in ADHD patients to control these problems, this study investigated the advantages of computer-based cognitive training in these patients. Methods: This review article has been conducted by searching articles since 2005 in scientific databases and e-Journals and by using keywords including computerized cognitive rehabilitation, computer-based training and ADHD. Results: Since drugs have short term effects and also they have many side effects in the rehabilitation of ADHD patients, using supplementary methods such as computer-based cognitive training is one of the best solutions. This approach has quick feedback and also has no side effects. So, it provides promising results in cognitive rehabilitation of ADHD especially on the working memory and attention. Conclusion: Considering different cognitive dysfunctions in ADHD patients, application of the computerized cognitive training has the potential to improve cognitive functions and consequently social, academic and behavioral performances in patients with this disorder.

Keywords: ADHD, computer-based cognitive training, cognitive functions, rehabilitation

Procedia PDF Downloads 277
6842 Thin Films of Glassy Carbon Prepared by Cluster Deposition

Authors: Hatem Diaf, Patrice Melinon, Antonio Pereira, Bernard Moine, Nicholas Blanchard, Florent Bourquard, Florence Garrelie, Christophe Donnet

Abstract:

Glassy carbon exhibits excellent biological compatibility with live tissues meaning it has high potential for applications in life science. Moreover, glassy carbon has interesting properties including 'high temperature resistance', hardness, low density, low electrical resistance, low friction, and low thermal resistance. The structure of glassy carbon has long been a subject of debate. It is now admitted that glassy carbon is 100% sp2. This term is a little bit confusing as long sp2 hybridization defined from quantum chemistry is related to both properties: threefold configuration and pi bonding (parallel pz orbitals). Using plasma laser deposition of carbon clusters combined with pulsed nano/femto laser annealing, we are able to synthesize thin films of glassy carbon of good quality (probed by G band/ D disorder band ratio in Raman spectroscopy) without thermal post annealing. A careful inspecting of Raman signal, plasmon losses and structure performed by HRTEM (High Resolution Transmission Electron Microscopy) reveals that both properties (threefold and pi orbitals) cannot coexist together. The structure of the films is compared to models including schwarzites based from negatively curved surfaces at the opposite of onions or fullerene-like structures with positively curved surfaces. This study shows that a huge collection of porous carbon named vitreous carbon with different structures can coexist.

Keywords: glassy carbon, cluster deposition, coating, electronic structure

Procedia PDF Downloads 319
6841 Neuroimaging Markers for Screening Former NFL Players at Risk for Developing Alzheimer's Disease / Dementia Later in Life

Authors: Vijaykumar M. Baragi, Ramtilak Gattu, Gabriela Trifan, John L. Woodard, K. Meyers, Tim S. Halstead, Eric Hipple, Ewart Mark Haacke, Randall R. Benson

Abstract:

NFL players, by virtue of their exposure to repetitive head injury, are at least twice as likely to develop Alzheimer's disease (AD) and dementia as the general population. Early recognition and intervention prior to onset of clinical symptoms could potentially avert/delay the long-term consequences of these diseases. Since AD is thought to have a long preclinical incubation period, the aim of the current research was to determine whether former NFL players, referred to a depression center, showed evidence of incipient dementia in their structural imaging prior to diagnosis of dementia. Thus, to identify neuroimaging markers of AD, against which former NFL players would be compared, we conducted a comprehensive volumetric analysis using a cohort of early stage AD patients (ADNI) to produce a set of brain regions demonstrating sensitivity to early AD pathology (i.e., the “AD fingerprint”). A cohort of 46 former NFL players’ brain MRIs were then interrogated using the AD fingerprint. Brain scans were done using a T1-weighted MPRAGE sequence. The Free Surfer image analysis suite (version 6.0) was used to obtain the volumetric and cortical thickness data. A total of 55 brain regions demonstrated significant atrophy or ex vacuo dilatation bilaterally in AD patients vs. healthy controls. Of the 46 former NFL players, 19 (41%) demonstrated a greater than expected number of atrophied/dilated AD regions when compared with age-matched controls, presumably reflecting AD pathology.

Keywords: alzheimers, neuroimaging biomarkers, traumatic brain injury, free surfer, ADNI

Procedia PDF Downloads 154