Search results for: automatic classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2914

Search results for: automatic classification

244 Combined Treatment with Microneedling and Chemical Peels Improves Periorbital Wrinkles and Skin Laxity

Authors: G. Kontochristopoulos, T. Spiliopoulos, V. Markantoni, E. Platsidaki, A. Kouris, E. Balamoti, C. Bokotas, G. Haidemenos

Abstract:

Introduction: There is a high patient demand for periorbital rejuvenation since the facial area is often the first to show visible signs of aging. With advancing age, there are sometimes marked changes that occur in the skin, fat, muscle and bone of the periorbital region, resulting to wrinkles and skin laxity. These changes are among the easiest areas to correct using several minimally invasive techniques, which have become increasingly popular over the last decade. Lasers, radiofrequency, botulinum toxin, fat grafting and fillers are available treatments sometimes in combination to traditional blepharoplasty. This study attempts to show the benefits of a minimally invasive approach to periorbital wrinkles and skin laxity that combine microneedling and 10% trichloroacetic acid (TCA) peels. Method: Eleven female patients aged 34-72 enrolled in the study. They all gave informed consent after receiving detailed information regarding the treatment procedure. Exclusion criteria in the study were previous treatment for the same condition in the past six months, pregnancy, allergy or hypersensitivity to the components, infection, inflammation and photosensitivity on the affected region. All patients had diffuse periorbital wrinkles and mild to moderate upper or lower eyelid skin laxity. They were treated with Automatic Microneedle Therapy System-Handhold and topical application of 10% trichloroacetic acid solution to each periorbital area for five minutes. Needling at a 0,25 mm depth was performed in both latelar (x-y) directions. Subsequently, the peeling agent was applied to each periorbital area for five minutes. Patients were subjected to the above combination every two weeks for a series of four treatments. Subsequently they were followed up regularly every month for two months. The effect was photo-documented. A Physician's and a Patient's Global Assessment Scale was used to evaluate the efficacy of the treatment (0-25% indicated poor response, 25%-50% fair, 50%-75% good and 75%-100% excellent response). Safety was assessed by monitoring early and delayed adverse events. Results: At the end of the study, almost all patients demonstrated significant aesthetic improvement. Physicians assessed a fair and a good improvement in 9(81.8% of patients) and 2(18.1% of patients) participants respectively. Patients Global Assessment rated a fair and a good response in 6 (54.5%) and 5 (45.4%) participants respectively. The procedure was well tolerated and all patients were satisfied. Mild discomfort and transient erythema were quite common during or immediately after the procedure, however only temporary. During the monthly follow up, no complications or scars were observed. Conclusions: Microneedling is known as a simple, office–based collagen induction therapy. Low concentration TCA solution applied to the epidermis that has been more permeable by microneedling, can reach the dermis more effectively. In the present study, chemical peels with 10% TCA acted as an adjuvant to microneedling, as it causes controlled skin damage, promoting regeneration and rejuvenation of tissues. This combined therapy improved periorbital fine lines, wrinkles, and overall appearance of the skin. Thus it constitutes an alternative treatment of periorbital skin aging, with encouraging results and minor side-effects.

Keywords: chemical peels, microneedling, periorbital wrinkles, skin laxity

Procedia PDF Downloads 354
243 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector

Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.

Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation

Procedia PDF Downloads 138
242 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Primary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

Finding algorithms to predict the growth of tumors has piqued the interest of researchers ever since the early days of cancer research. A number of studies were carried out as an attempt to obtain reliable data on the natural history of breast cancer growth. Mathematical modeling can play a very important role in the prognosis of tumor process of breast cancer. However, mathematical models describe primary tumor growth and metastases growth separately. Consequently, we propose a mathematical growth model for primary tumor and primary metastases which may help to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoM-IV and corresponding software. We are interested in: 1) modelling the whole natural history of primary tumor and primary metastases; 2) developing adequate and precise CoM-IV which reflects relations between PT and MTS; 3) analyzing the CoM-IV scope of application; 4) implementing the model as a software tool. The CoM-IV is based on exponential tumor growth model and consists of a system of determinate nonlinear and linear equations; corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and primary metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for primary metastases; 3) ‘visible period’ for primary metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-IV model and predictive software: a) detect different growth periods of primary tumor and primary metastases; b) make forecast of the period of primary metastases appearance; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of BC and facilitate optimization of diagnostic tests. The following are calculated by CoM-IV: the number of doublings for ‘nonvisible’ and ‘visible’ growth period of primary metastases; tumor volume doubling time (days) for ‘nonvisible’ and ‘visible’ growth period of primary metastases. The CoM-IV enables, for the first time, to predict the whole natural history of primary tumor and primary metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-IV describes correctly primary tumor and primary distant metastases growth of IV (T1-4N0-3M1) stage with (N1-3) or without regional metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and manifestation of primary metastases.

Keywords: breast cancer, exponential growth model, mathematical modelling, primary metastases, primary tumor, survival

Procedia PDF Downloads 335
241 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 157
240 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.

Procedia PDF Downloads 89
239 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
238 The Textual Criticism on the Age of ‘Wan Li’ Shipwreck Porcelain and Its Comparison with ‘Whitte Leeuw’ and Hatcher Shipwreck Porcelain

Authors: Yang Liu, Dongliang Lyu

Abstract:

After the Wan li shipwreck was discovered 60 miles off the east coast of Tan jong Jara in Malaysia, numerous marvelous ceramic shards have been salvaged from the seabed. Remarkable pieces of Jing dezhen blue-and-white porcelain recovered from the site represent the essential part of the fascinating research. The porcelain cargo of Wan li shipwreck is significant to the studies on exported porcelains and Jing dezhen porcelain manufacture industry of Late-Ming dynasty. Using the ceramic shards categorization and the study of the Chinese and Western historical documents as a research strategy, the paper wants to shed new light on the Wan li shipwreck wares classification with Jingdezhen kiln ceramic as its main focus. The article is also discussing Jing dezhen blue-and-white porcelains from the perspective of domestic versus export markets and further proceeding to the systematization and analyses of Wan li shipwreck porcelain which bears witness to the forms, styles, and types of decoration that were being traded in this period. The porcelain data from two other shipwrecked projects -White Leeuw and Hatcher- were chosen as comparative case studies and Wan li shipwreck Jing dezhen blue-and-white porcelain is being reinterpreted in the context of art history and archeology of the region. The marine archaeologist Sten Sjostrand named the ship ‘Wanli shipwreck’ because its porcelain cargoes are typical of those made during the reign of Emperor Wan li of Ming dynasty. Though some scholars question the appropriateness of the name, the final verdict of the history is still to be made. Based on previous historical argumentation, the article uses a comparative approach to review the Wan li shipwreck blue-and-white porcelains on the grounds of the porcelains unearthed from the tomb or abandoned in the towns and carrying the time-specific reign mark. All these materials provide a very strong evidence which suggests that the porcelain recovered from Wan li ship can be dated to as early as the second year of Tianqi era (1622) and early Chongzhen reign. Lastly, some blue-and-white porcelain intended for the domestic market and some bowls of blue-and-white porcelain from Jing dezhen kilns recovered from the Wan li shipwreck all carry at the bottom the specific residue from the firing process. The author makes the corresponding analysis for these two interesting phenomena.

Keywords: blue-and-white porcelain, Ming dynasty, Jing dezhen kiln, Wan li shipwreck

Procedia PDF Downloads 190
237 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms

Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson

Abstract:

This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.

Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection

Procedia PDF Downloads 464
236 Equivalences and Contrasts in the Morphological Formation of Echo Words in Two Indo-Aryan Languages: Bengali and Odia

Authors: Subhanan Mandal, Bidisha Hore

Abstract:

The linguistic process whereby repetition of all or part of the base word with or without internal change before or after the base itself takes place is regarded as reduplication. The reduplicated morphological construction annotates with itself a new grammatical category and meaning. Reduplication is a very frequent and abundant phenomenon in the eastern Indian languages from the states of West Bengal and Odisha, i.e. Bengali and Odia respectively. Bengali, an Indo-Aryan language and a part of the Indo-European language family is one of the largest spoken languages in India and is the national language of Bangladesh. Despite this classification, Bengali has certain influences in terms of vocabulary and grammar due to its geographical proximity to Tibeto-Burman and Austro-Asiatic language speaking communities. Bengali along with Odia belonged to a single linguistic branch. But with time and gradual linguistic changes due to various factors, Odia was the first to break away and develop as a separate distinct language. However, less of contrasts and more of similarities still exist among these languages along the line of linguistics, leaving apart the script. This paper deals with the procedure of echo word formations in Bengali and Odia. The morphological research of the two languages concerning the field of reduplication reveals several linguistic processes. The revelation is based on the information elicited from native language speakers and also on the analysis of echo words found in discourse and conversational patterns. For the purpose of partial reduplication analysis, prefixed class and suffixed class word formations are taken into consideration which show specific rule based changes. For example, in suffixed class categorization, both consonant and vowel alterations are found, following the rules: i) CVx à tVX, ii) CVCV à CVCi. Further classifications were also found on sentential studies of both languages which revealed complete reduplication complexities while forming echo words where the head word lose its original meaning. Complexities based on onomatopoetic/phonetic imitation of natural phenomena and not according to any rule-based occurrences were also found. Taking these aspects into consideration which are very prevalent in both the languages, inferences are drawn from the study which bring out many similarities in both the languages in this area in spite of branching away from each other several years ago.

Keywords: consonant alteration, onomatopoetic, partial reduplication and complete reduplication, reduplication, vowel alteration

Procedia PDF Downloads 242
235 Implications of Measuring the Progress towards Financial Risk Protection Using Varied Survey Instruments: A Case Study of Ghana

Authors: Jemima C. A. Sumboh

Abstract:

Given the urgency and consensus for countries to move towards Universal Health Coverage (UHC), health financing systems need to be accurately and consistently monitored to provide valuable data to inform policy and practice. Most of the indicators for monitoring UHC, particularly catastrophe and impoverishment, are established based on the impact of out-of-pocket health payments (OOPHP) on households’ living standards, collected through varied household surveys. These surveys, however, vary substantially in survey methods such as the length of the recall period or the number of items included in the survey questionnaire or the farming of questions, potentially influencing the level of OOPHP. Using different survey instruments can provide inaccurate, inconsistent, erroneous and misleading estimates of UHC, subsequently influencing wrong policy decisions. Using data from a household budget survey conducted by the Navrongo Health Research Center in Ghana from May 2017 to December 2018, this study intends to explore the potential implications of using surveys with varied levels of disaggregation of OOPHP data on estimates of financial risk protection. The household budget survey, structured around food and non-food expenditure, compared three OOPHP measuring instruments: Version I (existing questions used to measure OOPHP in household budget surveys), Version II (new questions developed through benchmarking the existing Classification of the Individual Consumption by Purpose (COICOP) OOPHP questions in household surveys) and Version III (existing questions used to measure OOPHP in health surveys integrated into household budget surveys- for this, the demographic and health surveillance (DHS) health survey was used). Version I, II and III contained 11, 44, and 56 health items, respectively. However, the choice of recall periods was held constant across versions. The sample size for Version I, II and III were 930, 1032 and 1068 households, respectively. Financial risk protection will be measured based on the catastrophic and impoverishment methodologies using STATA 15 and Adept Software for each version. It is expected that findings from this study will present valuable contributions to the repository of knowledge on standardizing survey instruments to obtain estimates of financial risk protection that are valid and consistent.

Keywords: Ghana, household budget surveys, measuring financial risk protection, out-of-pocket health payments, survey instruments, universal health coverage

Procedia PDF Downloads 137
234 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh

Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter

Abstract:

Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.

Keywords: land cover change, land surface temperature, normalized difference vegetation index, urban heat island

Procedia PDF Downloads 272
233 Human Identification Using Local Roughness Patterns in Heartbeat Signal

Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori

Abstract:

Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.

Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification

Procedia PDF Downloads 404
232 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 37
231 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
230 Comparison of Two Strategies in Thoracoscopic Ablation of Atrial Fibrillation

Authors: Alexander Zotov, Ilkin Osmanov, Emil Sakharov, Oleg Shelest, Aleksander Troitskiy, Robert Khabazov

Abstract:

Objective: Thoracoscopic surgical ablation of atrial fibrillation (AF) includes two technologies in performing of operation. 1st strategy used is the AtriCure device (bipolar, nonirrigated, non clamping), 2nd strategy is- the Medtronic device (bipolar, irrigated, clamping). The study presents a comparative analysis of clinical outcomes of two strategies in thoracoscopic ablation of AF using AtriCure vs. Medtronic devices. Methods: In 2 center study, 123 patients underwent thoracoscopic ablation of AF for the period from 2016 to 2020. Patients were divided into two groups. The first group is represented by patients who applied the AtriCure device (N=63), and the second group is - the Medtronic device (N=60), respectively. Patients were comparable in age, gender, and initial severity of the condition. Among the patients, in group 1 were 65% males with a median age of 57 years, while in group 2 – 75% and 60 years, respectively. Group 1 included patients with paroxysmal form -14,3%, persistent form - 68,3%, long-standing persistent form – 17,5%, group 2 – 13,3%, 13,3% and 73,3% respectively. Median ejection fraction and indexed left atrial volume amounted in group 1 – 63% and 40,6 ml/m2, in group 2 - 56% and 40,5 ml/m2. In addition, group 1 consisted of 39,7% patients with chronic heart failure (NYHA Class II) and 4,8% with chronic heart failure (NYHA Class III), when in group 2 – 45% and 6,7%, respectively. Follow-up consisted of laboratory tests, chest Х-ray, ECG, 24-hour Holter monitor, and cardiopulmonary exercise test. Duration of freedom from AF, distant mortality rate, and prevalence of cerebrovascular events were compared between the two groups. Results: Exit block was achieved in all patients. According to the Clavien-Dindo classification of surgical complications fraction of adverse events was 14,3% and 16,7% (1st group and 2nd group, respectively). Mean follow-up period in the 1st group was 50,4 (31,8; 64,8) months, in 2nd group - 30,5 (14,1; 37,5) months (P=0,0001). In group 1 - total freedom of AF was in 73,3% of patients, among which 25% had additional antiarrhythmic drugs (AADs) therapy or catheter ablation (CA), in group 2 – 90% and 18,3%, respectively (for total freedom of AF P<0,02). At follow-up, the distant mortality rate in the 1st group was – 4,8%, and in the 2nd – no fatal events. Prevalence of cerebrovascular events was higher in the 1st group than in the 2nd (6,7% vs. 1,7% respectively). Conclusions: Despite the relatively shorter follow-up of the 2nd group in the study, applying the strategy using the Medtronic device showed quite encouraging results. Further research is needed to evaluate the effectiveness of this strategy in the long-term period.

Keywords: atrial fibrillation, clamping, ablation, thoracoscopic surgery

Procedia PDF Downloads 110
229 Correlation Between the Toxicity Grade of the Adverse Effects in the Course of the Immunotherapy of Lung Cancer and Efficiency of the Treatment in Anti-PD-L1 and Anti-PD-1 Drugs - Own Clinical Experience

Authors: Anna Rudzińska, Katarzyna Szklener, Pola Juchaniuk, Anna Rodzajweska, Katarzyna Machulska-Ciuraj, Monika Rychlik- Grabowska, Michał łOziński, Agnieszka Kolak-Bruks, SłAwomir Mańdziuk

Abstract:

Introduction: Immune checkpoint inhibition (ICI) belongs to the modern forms of anti-cancer treatment. Due to the constant development and continuous research in the field of ICI, many aspects of the treatment are yet to be discovered. One of the less researched aspects of ICI treatment is the influence of the adverse effects on the treatment success rate. It is suspected that adverse events in the course of the ICI treatment indicate a better response rate and correlate with longer progression-free- survival. Methodology: The research was conducted with the usage of the documentation of the Department of Clinical Oncology and Chemotherapy. Data of the patients with a lung cancer diagnosis who were treated between 2019-2022 and received ICI treatment were analyzed. Results: Out of over 133 patients whose data was analyzed, the vast majority were diagnosed with non-small cell lung cancer. The majority of the patients did not experience adverse effects. Most adverse effects reported were classified as grade 1 or grade 2 according to CTCAE classification. Most adverse effects involved skin, thyroid and liver toxicity. Statistical significance was found for the adverse effect incidence and overall survival (OS) and progression-free survival (PFS) (p=0,0263) and for the time of toxicity onset and OS and PFS (p<0,001). The number of toxicity sites was statistically significant for prolonged PFS (p=0.0315). The highest OS was noted in the group presenting grade 1 and grade 2 adverse effects. Conclusions: Obtained results confirm the existence of the prolonged OS and PFS in the adverse-effects-charged patients, mostly in the group presenting mild to intermediate (Grade 1 and Grade 2) adverse effects and late toxicity onset. Simultaneously our results suggest a correlation between treatment response rate and the toxicity grade of the adverse effects and the time of the toxicity onset. Similar results were obtained in several similar research conducted - with the proven tendency of better survival in mild and moderate toxicity; meanwhile, other studies in the area suggested an advantage in patients with any toxicity regardless of the grade. The contradictory results strongly suggest the need for further research on this topic, with a focus on additional factors influencing the course of the treatment.

Keywords: adverse effects, immunotherapy, lung cancer, PD-1/PD-L1 inhibitors

Procedia PDF Downloads 91
228 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 105
227 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 184
226 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food

Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez

Abstract:

The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.

Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion

Procedia PDF Downloads 251
225 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions

Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule

Abstract:

Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.

Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination

Procedia PDF Downloads 133
224 The Extension of the Kano Model by the Concept of Over-Service

Authors: Lou-Hon Sun, Yu-Ming Chiu, Chen-Wei Tao, Chia-Yun Tsai

Abstract:

It is common practice for many companies to ask employees to provide heart-touching service for customers and to emphasize the attitude of 'customer first'. However, services may not necessarily gain praise, and may actually be considered excessive, if customers do not appreciate such behaviors. In reality, many restaurant businesses try to provide as much service as possible without taking into account whether over-provision may lead to negative customer reception. A survey of 894 people in Britain revealed that 49 percent of respondents consider over-attentive waiters the most annoying aspect of dining out. It can be seen that merely aiming to exceed customers’ expectations without actually addressing their needs, only further distances and dissociates the standard of services from the goals of customer satisfaction itself. Over-service is defined, as 'service provided that exceeds customer expectations, or simply that customers deemed redundant, resulting in negative perception'. It was found that customers’ reactions and complaints concerning over-service are not as intense as those against service failures caused by the inability to meet expectations; consequently, it is more difficult for managers to become aware of the existence of over-service. Thus the ability to manage over-service behaviors is a significant topic for consideration. The Kano model classifies customer preferences into five categories: attractive quality attribute, one-dimensional quality attribute, must-be quality attribute, indifferent quality attribute and reverse quality attributes. The model is still very popular for researchers to explore the quality aspects and customer satisfaction. Nevertheless, several studies indicated that Kano’s model could not fully capture the nature of service quality. The concept of over-service can be used to restructure the model and provide a better understanding of the service quality construct. In this research, the structure of Kano's two-dimensional questionnaire will be used to classify the factors into different dimensions. The same questions will be used in the second questionnaire for identifying the over-service experienced of the respondents. The finding of these two questionnaires will be used to analyze the relevance between service quality classification and over-service behaviors. The subjects of this research are customers of fine dining chain restaurants. Three hundred questionnaires will be issued based on the stratified random sampling method. Items for measurement will be derived from DINESERV scale. The tangible dimension of the questionnaire will be eliminated due to this research is focused on the employee behaviors. Quality attributes of the Kano model are often regarded as an instrument for improving customer satisfaction. The concept of over-service can be used to restructure the model and provide a better understanding of service quality construct. The extension of the Kano model will not only develop a better understanding of customer needs and expectations but also enhance the management of service quality.

Keywords: consumer satisfaction, DINESERV, kano model, over-service

Procedia PDF Downloads 161
223 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 241
222 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique

Authors: Pavana Basavakumar, Devadas Bhat

Abstract:

Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.

Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes

Procedia PDF Downloads 325
221 A Comparative Analysis on Survival in Patients with Node Positive Cutaneous Head and Neck Squamous Cell Carcinoma as per TNM 7th and Tnm 8th Editions

Authors: Petr Daniel Edward Kovarik, Malcolm Jackson, Charles Kelly, Rahul Patil, Shahid Iqbal

Abstract:

Introduction: Recognition of the presence of extra capsular spread (ECS) has been a major change in the TNM 8th edition published by the American Joint Committee on Cancer in 2018. Irrespective of the size or number of lymph nodes, the presence of ECS makes N3b disease a stage IV disease. The objective of this retrospective observational study was to conduct a comparative analysis of survival outcomes in patients with lymph node-positive cutaneous head and neck squamous cell carcinoma (CHNSCC) based on their TNM 7th and TNM 8th editions classification. Materials and Methods: From January 2010 to December 2020, 71 patients with CHNSCC were identified from our centre’s database who were treated with radical surgery and adjuvant radiotherapy. All histopathological reports were reviewed, and comprehensive nodal mapping was performed. The data were collected retrospectively and survival outcomes were compared using TNM 7th and 8th editions. Results: The median age of the whole group of 71 patients was 78 years, range 54 – 94 years, 63 were male and 8 female. In total, 2246 lymph nodes were analysed; 195 were positive for cancer. ECS was present in 130 lymph nodes, which led to a change in TNM staging. The details on N-stage as per TNM 7th edition was as follows; pN1 = 23, pN2a = 14, pN2b = 32, pN2c = 0, pN3 = 2. After incorporating the TNM 8th edition criterion (presence of ECS), the details on N-stage were as follows; pN1 = 6, pN2a = 5, pN2b = 3, pN2c = 0, pN3a = 0, pN3b = 57. This showed an increase in overall stage. According to TNM 7th edition, there were 23 patients were with stage III and remaining 48 patients, stage IV. As per TNM 8th edition, there were only 6 patients with stage III as compared to 65 patients with stage IV. For all patients, 2-year disease specific survival (DSS) and overall survival (OS) were 70% and 46%. 5-year DSS and OS rates were 66% and 20% respectively. Comparing the survival between stage III and stage IV of the two cohorts using both TNM 7th and 8th editions, there is an obvious greater survival difference between the stages if TNM 8th staging is used. However, meaningful statistics were not possible as the majority of patients (n = 65) were with stage IV and only 6 patients were stage III in the TNM 8th cohort. Conclusion: Our study provides a comprehensive analysis on lymph node data mapping in this specific patient population. It shows a better differentiation between stage III and stage IV in the TNM 8th edition as compared to TNM 7th however meaningful statistics were not possible due to the imbalance of patients in the sub-cohorts of the groups.

Keywords: cutaneous head and neck squamous cell carcinoma, extra capsular spread, neck lymphadenopathy, TNM 7th and 8th editions

Procedia PDF Downloads 107
220 The Study of Intangible Assets at Various Firm States

Authors: Gulnara Galeeva, Yulia Kasperskaya

Abstract:

The study deals with the relevant problem related to the formation of the efficient investment portfolio of an enterprise. The structure of the investment portfolio is connected to the degree of influence of intangible assets on the enterprise’s income. This determines the importance of research on the content of intangible assets. However, intangible assets studies do not take into consideration how the enterprise state can affect the content and the importance of intangible assets for the enterprise`s income. This affects accurateness of the calculations. In order to study this problem, the research was divided into several stages. In the first stage, intangible assets were classified based on their synergies as the underlying intangibles and the additional intangibles. In the second stage, this classification was applied. It showed that the lifecycle model and the theory of abrupt development of the enterprise, that are taken into account while designing investment projects, constitute limit cases of a more general theory of bifurcations. The research identified that the qualitative content of intangible assets significant depends on how close the enterprise is to being in crisis. In the third stage, the author developed and applied the Wide Pairwise Comparison Matrix method. This allowed to establish that using the ratio of the standard deviation to the mean value of the elements of the vector of priority of intangible assets makes it possible to estimate the probability of a full-blown crisis of the enterprise. The author has identified a criterion, which allows making fundamental decisions on investment feasibility. The study also developed an additional rapid method of assessing the enterprise overall status based on using the questionnaire survey with its Director. The questionnaire consists only of two questions. The research specifically focused on the fundamental role of stochastic resonance in the emergence of bifurcation (crisis) in the economic development of the enterprise. The synergetic approach made it possible to describe the mechanism of the crisis start in details and also to identify a range of universal ways of overcoming the crisis. It was outlined that the structure of intangible assets transforms into a more organized state with the strengthened synchronization of all processes as a result of the impact of the sporadic (white) noise. Obtained results offer managers and business owners a simple and an affordable method of investment portfolio optimization, which takes into account how close the enterprise is to a state of a full-blown crisis.

Keywords: analytic hierarchy process, bifurcation, investment portfolio, intangible assets, wide matrix

Procedia PDF Downloads 208
219 Petrology and Petrochemistry of Basement Rocks in Ila Orangun Area, Southwestern Nigeria

Authors: Jayeola A. O., Ayodele O. S., Olususi J. I.

Abstract:

From field studies, six (6) lithological units were identified to be common around the study area, which includes quartzites, granites, granite gneiss, porphyritic granites, amphibolite and pegmatites. Petrographical analysis was done to establish the major mineral assemblages and accessory minerals present in selected rock samples, which represents the major rock types in the area. For the purpose of this study, twenty (20) pulverized rock samples were taken to the laboratory for geochemical analysis with their results used in the classification, as well as suggest the geochemical attributes of the rocks. Results from petrographical studies of the rocks under both plane and cross polarized lights revealed the major minerals identified under thin sections to include quartz, feldspar, biotite, hornblende, plagioclase and muscovite with opaque other accessory minerals, which include actinolite, spinel and myrmekite. Geochemical results obtained and interpreted using various geochemical plots or discrimination plots all classified the rocks in the area as belonging to both the peralkaline metaluminous and peraluminous types. Results for the major oxides ratios produced for Na₂O/K₂O, Al₂O₃/Na₂O + CaO + K₂O and Na₂O + CaO + K₂O/Al₂O₃ show the excess of alumina, Al₂O₃ over the alkaline Na₂O +CaO +K₂O thus suggesting peraluminous rocks. While the excess of the alkali over the alumina suggests the peralkaline metaluminous rock type. The results of correlation coefficient show a perfect strong positive correlation, which shows that they are of same geogenic sources, while negative correlation coefficient values indicate a perfect weak negative correlation, suggesting that they are of heterogeneous geogenic sources. From factor analysis, five component groups were identified as Group 1 consists of Ag-Cr-Ni elemental associations suggesting Ag, Cr, and Ni mineralization, predicting the possibility of sulphide mineralization. in the study area. Group ll and lll consist of As-Ni-Hg-Fe-Sn-Co-Pb-Hg element association, which are pathfinder elements to the mineralization of gold. Group 1V and V consist of Cd-Cu-Ag-Co-Zn, which concentrations are significant to elemental associations and mineralization. In conclusion, from the potassium radiometric anomaly map produced, the eastern section (northeastern and southeastern) is observed to be the hot spot and mineralization zone for the study area.

Keywords: petrography, Ila Orangun, petrochemistry, pegmatites, peraluminous

Procedia PDF Downloads 63
218 Vulnerability of the Rural Self-Constructed Housing with Social Programs and His Economic Impact in the South-East of Mexico

Authors: Castillo-Acevedo J, Mena-Rivero R, Silva-Poot H

Abstract:

In Mexico, as largely of the developing countries, the rural housing is a study object, since the diversity of constructive idiosyncrasies for locality, involves various factors that make it vulnerable; an important aspect of study is the progressive deterioration that is seen in the rural housing. Various social programs, contribute financial resources in the field of housing to provide support for families living in rural areas, however, they do not provide a coordination with the self-construction that is usually the way in which is built in these areas. The present study, exposes the physical situation and an economic assessment that presents the rural self-constructed housing in three rural communities in the south of the state of Quintana Roo, Mexico, which were built with funding from federal social programs. The information compilation was carried out in a period of seven months in which there was used the intentional sampling of typical cases, where the object study was the housing constructed with supports of the program “Rural Housing” between the year 2009 and 2014. Instruments were used as the interview, ballot papers of observation, ballot papers of technical verification and various measuring equipment laboratory for the classification of pathologies; for the determination of some pathologies constructive Mexican standards were applied how NMX-C-192-ONNCCE, NMX-C-111-ONNCCE, NMX-C-404-ONNCCE and finally used the software of Opus CMS ® with the help of tables of the National Consumer Price Index (CPI) for update of costs and wages according to the line of being applied in Mexico, were used for an economic valuation. The results show 11 different constructive pathologies and exposes greater presence with the 22.50% to the segregation of the concrete; the economic assessment shows that 80% of self-constructed housing, exceed the cost of construction it would have compared to a similar dwelling built by a construction company; It is also exposed to the 46.10% of the universe of study represent economic losses in materials to the social activities by houses not built. The system of self-construction used by the social programs, affect to some extent the program objectives applied in underserved areas, as implicit and additional costs affect the economic capacity of beneficiaries who invest time and effort in an activity that are not specialists, which this research provides foundations for sustainable alternatives or possibly eliminate the practice of self-construction of implemented social programs in marginalized rural communities in the south of state of Quintana Roo, Mexico.

Keywords: economic valuation, pathologies constructive, rural housing, social programs

Procedia PDF Downloads 532
217 An EEG-Based Scale for Comatose Patients' Vigilance State

Authors: Bechir Hbibi, Lamine Mili

Abstract:

Understanding the condition of comatose patients can be difficult, but it is crucial to their optimal treatment. Consequently, numerous scoring systems have been developed around the world to categorize patient states based on physiological assessments. Although validated and widely adopted by medical communities, these scores still present numerous limitations and obstacles. Even with the addition of additional tests and extensions, these scoring systems have not been able to overcome certain limitations, and it appears unlikely that they will be able to do so in the future. On the other hand, physiological tests are not the only way to extract ideas about comatose patients. EEG signal analysis has helped extensively to understand the human brain and human consciousness and has been used by researchers in the classification of different levels of disease. The use of EEG in the ICU has become an urgent matter in several cases and has been recommended by medical organizations. In this field, the EEG is used to investigate epilepsy, dementia, brain injuries, and many other neurological disorders. It has recently also been used to detect pain activity in some regions of the brain, for the detection of stress levels, and to evaluate sleep quality. In our recent findings, our aim was to use multifractal analysis, a very successful method of handling multifractal signals and feature extraction, to establish a state of awareness scale for comatose patients based on their electrical brain activity. The results show that this score could be instantaneous and could overcome many limitations with which the physiological scales stock. On the contrary, multifractal analysis stands out as a highly effective tool for characterizing non-stationary and self-similar signals. It demonstrates strong performance in extracting the properties of fractal and multifractal data, including signals and images. As such, we leverage this method, along with other features derived from EEG signal recordings from comatose patients, to develop a scale. This scale aims to accurately depict the vigilance state of patients in intensive care units and to address many of the limitations inherent in physiological scales such as the Glasgow Coma Scale (GCS) and the FOUR score. The results of applying version V0 of this approach to 30 patients with known GCS showed that the EEG-based score similarly describes the states of vigilance but distinguishes between the states of 8 sedated patients where the GCS could not be applied. Therefore, our approach could show promising results with patients with disabilities, injected with painkillers, and other categories where physiological scores could not be applied.

Keywords: coma, vigilance state, EEG, multifractal analysis, feature extraction

Procedia PDF Downloads 68
216 Visual Design of Walkable City as Sidewalk Integration with Dukuh Atas MRT Station in Jakarta

Authors: Nadia E. Christiana, Azzahra A. N. Ginting, Ardhito Nurcahya, Havisa P. Novira

Abstract:

One of the quickest ways to do a short trip in urban areas is by walking, either individually, in couple or groups. Walkability nowadays becomes one of the parameters to measure the quality of an urban neighborhood. As a Central Business District and public transport transit hub, Dukuh Atas area becomes one of the highest numbers of commuters that pass by the area and interchange between transportation modes daily. Thus, as a public transport hub, a lot of investment should be focused to speed up the development of the area that would support urban transit activity between transportation modes, one of them is revitalizing pedestrian walkways. The purpose of this research is to formulate the visual design concept of 'Walkable City' based on the results of the observation and a series of rankings. To achieve this objective, it is necessary to accomplish several stages of the research that consists of (1) Identifying the system of pedestrian paths in Dukuh Atas area using descriptive qualitative method (2) Analyzing the sidewalk walkability rate according to the perception and the walkability satisfaction rate using the characteristics of pedestrians and non-pedestrians in Dukuh Atas area by using Global Walkability Index analysis and Multicriteria Satisfaction Analysis (3) Analyzing the factors that determine the integration of pedestrian walkways in Dukuh Atas area using descriptive qualitative method. The results achieved in this study is that the walkability level of Dukuh Atas corridor area is 44.45 where the value is included in the classification of 25-49, which is a bit of facility that can be reached by foot. Furthermore, based on the questionnaire, satisfaction rate of pedestrian walkway in Dukuh Atas area reached a number of 64%. It is concluded that commuters have not been fully satisfied with the condition of the sidewalk. Besides, the factors that influence the integration in Dukuh Atas area have been reasonable as it is supported by the utilization of land and modes such as KRL, Busway, and MRT. From the results of all analyzes conducted, the visual design and the application of the concept of walkable city along the pathway pedestrian corridor of Dukuh Atas area are formulated. Achievement of the results of this study amounted to 80% which needs to be done further review of the results of the analysis. The work of this research is expected to be a recommendation or input for the government in the development of pedestrian paths in maximizing the use of public transportation modes.

Keywords: design, global walkability index, mass rapid transit, walkable city

Procedia PDF Downloads 192
215 Management of the Experts in the Research Evaluation System of the University: Based on National Research University Higher School of Economics Example

Authors: Alena Nesterenko, Svetlana Petrikova

Abstract:

Research evaluation is one of the most important elements of self-regulation and development of researchers as it is impartial and independent process of assessment. The method of expert evaluations as a scientific instrument solving complicated non-formalized problems is firstly a scientifically sound way to conduct the assessment which maximum effectiveness of work at every step and secondly the usage of quantitative methods for evaluation, assessment of expert opinion and collective processing of the results. These two features distinguish the method of expert evaluations from long-known expertise widespread in many areas of knowledge. Different typical problems require different types of expert evaluations methods. Several issues which arise with these methods are experts’ selection, management of assessment procedure, proceeding of the results and remuneration for the experts. To address these issues an on-line system was created with the primary purpose of development of a versatile application for many workgroups with matching approaches to scientific work management. Online documentation assessment and statistics system allows: - To realize within one platform independent activities of different workgroups (e.g. expert officers, managers). - To establish different workspaces for corresponding workgroups where custom users database can be created according to particular needs. - To form for each workgroup required output documents. - To configure information gathering for each workgroup (forms of assessment, tests, inventories). - To create and operate personal databases of remote users. - To set up automatic notification through e-mail. The next stage is development of quantitative and qualitative criteria to form a database of experts. The inventory was made so that the experts may not only submit their personal data, place of work and scientific degree but also keywords according to their expertise, academic interests, ORCID, Researcher ID, SPIN-code RSCI, Scopus AuthorID, knowledge of languages, primary scientific publications. For each project, competition assessments are processed in accordance to ordering party demands in forms of apprised inventories, commentaries (50-250 characters) and overall review (1500 characters) in which expert states the absence of conflict of interest. Evaluation is conducted as follows: as applications are added to database expert officer selects experts, generally, two persons per application. Experts are selected according to the keywords; this method proved to be good unlike the OECD classifier. The last stage: the choice of the experts is approved by the supervisor, the e-mails are sent to the experts with invitation to assess the project. An expert supervisor is controlling experts writing reports for all formalities to be in place (time-frame, propriety, correspondence). If the difference in assessment exceeds four points, the third evaluation is appointed. As the expert finishes work on his expert opinion, system shows contract marked ‘new’, managers commence with the contract and the expert gets e-mail that the contract is formed and ready to be signed. All formalities are concluded and the expert gets remuneration for his work. The specificity of interaction of the examination officer with other experts will be presented in the report.

Keywords: expertise, management of research evaluation, method of expert evaluations, research evaluation

Procedia PDF Downloads 208